Math 473/573 Assignment 3

Due Tuesday, February 18

1) For each matrix, calculate the reduced and full QR decomposition up to four decimal places.

a)
$$A = \begin{bmatrix} i & -3\\ 2+i & 16 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 5-i & \sqrt{2}\\ -11 & 4\\ 8i & 32 \end{bmatrix}$$

2) Problem 6.1 in the text.

3) Problem 7.4 in the text.

4) Problem 8.1 in the text.

5) Problem 9.1 in the text.

6) Recall that one-dimensional subspaces of \mathbb{R}^2 are just lines through the origin.

a) For every such line ℓ , find a matrix P in the standard basis for the orthogonal projection onto ℓ . Your answer should depend on the slope of ℓ .

b) Now consider the basis $\{v_1, v_2\}$ where v_1 is a unit vector on the line ℓ and v_2 is a unit vector on the line perpendicular to ℓ . Find the matrix of the orthogonal projection onto ℓ in the basis $\{v_1, v_2\}$.

c) Now choose your favorite line ℓ through the origin that is neither vertical, horizontal, nor y = x. In the standard basis, find the matrix of one NON-orthogonal projection onto ℓ .

7) Let

$$x = \begin{bmatrix} 1\\\sqrt{2} \end{bmatrix}, y = \begin{bmatrix} 0\\\sqrt{3} \end{bmatrix}.$$

a) Set v = x - y and let $F = I_2 - \frac{2}{v^* v} (vv^*)$. Show that Fx = y and Fy = x, by Matlab or any other computational resource, if you like.

b) Pick another vector z with $||z||_2 = ||x||_2$ and set v = x - z. Show that Fx = z and Fz = x, again using a computational resource, if you like.

c) Explain why whenever $||x||_2 = ||y||_2$ and v = x - y, then we must have Fx = y and Fy = x. *Hint:* Draw a picture.

8) If $A \in \mathbb{C}^{m \times n}$ and A = QR is the full QR decomposition of A, show that $||A||_2 = ||R||_2$.