Math 473/573 Assignment 3

Due Tuesday, February 18

1) For each matrix, calculate the reduced and full $Q R$ decomposition up to four decimal places.
a) $A=\left[\begin{array}{cc}i & -3 \\ 2+i & 16\end{array}\right]$
b) $B=\left[\begin{array}{cc}5-i & \sqrt{2} \\ -11 & 4 \\ 8 i & 32\end{array}\right]$
2) Problem 6.1 in the text.
3) Problem 7.4 in the text.
4) Problem 8.1 in the text.
5) Problem 9.1 in the text.
6) Recall that one-dimensional subspaces of \mathbb{R}^{2} are just lines through the origin.
a) For every such line ℓ, find a matrix P in the standard basis for the orthogonal projection onto ℓ. Your answer should depend on the slope of ℓ.
b) Now consider the basis $\left\{v_{1}, v_{2}\right\}$ where v_{1} is a unit vector on the line ℓ and v_{2} is a unit vector on the line perpendicular to ℓ. Find the matrix of the orthogonal projection onto ℓ in the basis $\left\{v_{1}, v_{2}\right\}$.
c) Now choose your favorite line ℓ through the origin that is neither vertical, horizontal, nor $y=x$. In the standard basis, find the matrix of one NON-orthogonal projection onto ℓ.
7) Let

$$
x=\left[\begin{array}{c}
1 \\
\sqrt{2}
\end{array}\right], y=\left[\begin{array}{c}
0 \\
\sqrt{3}
\end{array}\right] .
$$

a) Set $v=x-y$ and let $F=I_{2}-\frac{2}{v^{*} v}\left(v v^{*}\right)$. Show that $F x=y$ and $F y=x$, by Matlab or any other computational resource, if you like.
b) Pick another vector z with $\|z\|_{2}=\|x\|_{2}$ and set $v=x-z$. Show that $F x=z$ and $F z=x$, again using a computational resource, if you like.
c) Explain why whenever $\|x\|_{2}=\|y\|_{2}$ and $v=x-y$, then we must have $F x=y$ and $F y=x$. Hint: Draw a picture.
8) If $A \in \mathbb{C}^{m \times n}$ and $A=Q R$ is the full $Q R$ decomposition of A, show that $\|A\|_{2}=\|R\|_{2}$.

