Math 473/573 Assignment 4

Due Thursday, March 27

1) Problem 13.4 in the text. Some hints:
a) Remember that Newton's method works as follows: With initial guess x_{0},

$$
x_{1}=x_{0}-\frac{p\left(x_{0}\right)}{p^{\prime}\left(x_{0}\right)}, \quad x_{2}=x_{1}-\frac{p\left(x_{1}\right)}{p^{\prime}\left(x_{1}\right)}, \quad x_{3}=x_{2}-\frac{p\left(x_{2}\right)}{p^{\prime}\left(x_{2}\right)}, \text { etc. }
$$

b) If you've never used Mathematica before, you can access it on any computer on the 2nd floor of CASL. Here are some inputs that might help:

Defining p : $\mathrm{p}\left[\mathrm{x}_{-}\right]=\mathrm{x}^{5}-2^{*} \mathrm{x}^{4}-3^{*} \mathrm{x}^{3}+3^{*} \mathrm{x}^{2}-2^{*} \mathrm{x}-1$
Defining the derivative of $p: \mathrm{q}[\mathrm{x}]=\mathrm{D}[\mathrm{p}[\mathrm{x}], \mathrm{x}]$
Setting up Newton's method: $\mathrm{f}[\mathrm{x}-]=\mathrm{x}-(\mathrm{p}[\mathrm{x}] / \mathrm{q}[\mathrm{x}])$
Then $\mathrm{f}[0]$ gives $x_{1}, f\left[x_{1}\right]$ gives x_{2}, etc. Be careful not to use underscores in Mathematica for the x_{i} 's, use $x 1, x 2$,etc.
2) Problem 14.2 in the text. Some hints:
a) Multiply out $f\left(\varepsilon_{\text {machine }}\right)=\left(1+O\left(\varepsilon_{\text {machine }}\right)\left(1+O\left(\varepsilon_{\text {machine }}\right)\right.\right.$. The first $O\left(\varepsilon_{\text {machine }}\right)$ is less than or equal to $k_{1} \varepsilon_{\text {machine }}$ and the second $O\left(\varepsilon_{\text {machine }}\right)$ is less than or equal to $k_{2} \varepsilon_{\text {machine }}$ for some $k_{1}, k_{2}>0$. Then remember that as $\varepsilon_{\text {machine }}$ goes to zero, $\varepsilon_{\text {machine }}^{2} \leq \varepsilon_{\text {machine }}$.
b) Cross-multiply.
3) Problem 15.2 in the text: just do a) and c).
4) Define the third and fourth Hilbert matrices by

$$
H_{3}=\left[\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right] \& H_{4}=\left[\begin{array}{cccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 \\
1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\
1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 \\
1 / 4 & 1 / 5 & 1 / 6 & 1 / 7
\end{array}\right]
$$

a) Find the condition numbers $\kappa\left(H_{3}\right)$ and $\kappa\left(H_{4}\right)$ to four decimal places with respect to the 2-norm.
b) If $b=[1,1,1]^{t}$ and $b^{\prime}=[1,1,1.01]^{t}$, solve the systems

$$
H_{3} x=b, \quad H_{3} x^{\prime}=b^{\prime}
$$

using your favorite program. Then find the absolute and relative errors with respect to the 2-norm.
c) If $b=[1,1,1,1]^{t}$ and $b^{\prime}=[1,1,1,1.01]^{t}$, solve the systems

$$
H_{4} x=b, \quad H_{4} x^{\prime}=b^{\prime}
$$

using your favorite program. Then find the absolute and relative errors with respect to the 2-norm.
5) This problem shows rigorously that floating-point multiplication is backwards stable. Let $x, y \in \mathbb{C}$.

Recall that there are floating point approximations $f l(x)=\left(1+\varepsilon_{1}\right) x$ and $f l(y)=\left(1+\varepsilon_{2}\right) y$ for y for some $\varepsilon_{1},, \varepsilon_{2}$ with $\left|\varepsilon_{1}\right|,,\left|\varepsilon_{2}\right|<\varepsilon_{\text {machine }}$.

Further recall that $f l(x) \otimes f l(y)=\left(1+\varepsilon_{3}\right)(f l(x) \times f l(y))$ for some ε_{3} with $\left|\varepsilon_{3}\right|<\varepsilon_{\text {machine }}$
a) If $\tilde{f}: \mathbb{R} \times \mathbb{R}: \mathbb{R}$ is defined by $\tilde{f}((x, y))=f l(x) \otimes f l(y)$, find $\tilde{x}, \tilde{y} \in \mathbb{R}$ with $\tilde{x} \times \tilde{y}=\tilde{f}((x, y))$.
b) Show that $\frac{|x-\tilde{x}|}{|x|}=O\left(\varepsilon_{\text {machine }}\right)$ and $\frac{|y-\tilde{y}|}{|y|}=O\left(\varepsilon_{\text {machine }}\right)$.
c) Finally, show that $\frac{\|(x, y)-(\tilde{x}, \tilde{y})\|_{\infty}}{\|(x, y)\|_{\infty}}=O\left(\varepsilon_{\text {machine }}\right)$.

