Math 473/573 Assignment 6

Due Thursday, April 17

1) Problem 20.4 in the text.
2) Problem 21.3 b) in the text. Some hints: in the factorization, U must be upper-triangular and L must be lower triangular with ones on the diagonal and $(2,1)$ entry of absolute value less than or equal to one. All you need is a 2×2 example where such a factorization won't work. There are precisely two permutation matrices in $M_{2}(\mathbb{C})$: the identity and $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. To choose your example, remember that a 2×2 matrix is singular if and only if one row is a multiple of the other.
3) Let $A=\left[\begin{array}{ccc}1 & 1 & 2 \times 10^{9} \\ 2 & -1 & 10^{9} \\ 1 & 2 & 0\end{array}\right], x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, and $b=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
a) Solve $A x=b$ by hand using Gaussian elimination WITHOUT pivoting.
b) Solve $A x=b$ by hand using Gaussian elimination WITH partial pivoting. Do you get a different answer than a)? Explain.
c) Use your favorite program to solve $A x=b$. Then check the residual $\|A x-b\|_{2}$ to at least 16 decimal places. What do you find? Compare your answer to a) and b).
4) a) Let $n \in \mathbb{N}$ and let $A \in \mathbb{C}^{m \times m}$. Show that if λ is an eigenvalue of A, then λ^{n} is an eigenvalue of A^{n}. Some hints: use the definition of an eigenvalue to get a nonzero vector v with $A v=\lambda v$. Then apply A, A^{2}, A^{3}, etc to both sides and note a pattern.
b) A matrix $A \in \mathbb{C}^{m \times m}$ is nilpotent if there exists $n \in \mathbb{N}$ with $A^{n}=0_{m \times m}$. Show that if A is nilpotent then 0 is the only eigenvalue of A. Some hints: suppose $A^{n}=0_{m \times m}$ and λ is a nonzero eigenvalue of A. Let v be a nonzero vector with $A v=\lambda v$. Then quote part a).
c) Problem 24.4 a) in the text, only do the direction " $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0 \Rightarrow$ $\rho(A)<1$." Some hints: By problem 3.2, $\rho(A) \leq\|A\|$ for any norm. Let λ
be an eigenvalue of A with a corresponding eigenvector v of unit length. We have $|\lambda|^{n}=\left\|A^{n} v\right\| \leq\left\|A^{n}\right\|$ by definition. Now take a limit.
