Math 300 Assignment 3

Due Tuesday, October 10

1) (\#15, Section 3.1) Let h and k be real numbers and let r be a positive number. The equation for a circle whose center is at the point (h, k) and whose radius is r is

$$
(x-h)^{2}+(y-k)^{2}=r^{2} .
$$

We also know that if a and b are real numbers, then

- The point (a, b) is inside the circle if $(x-h)^{2}+(y-k)^{2}<r^{2}$.
- The point (a, b) is on the circle if $(x-h)^{2}+(y-k)^{2}=r^{2}$.
- The point (a, b) is outside the circle if $(x-h)^{2}+(y-k)^{2}>r^{2}$.

Prove that all points on or inside the circle whose equation is $(x-1)^{2}+$ $(y-2)^{2}=4$ are inside the circle whose equation is $x^{2}+y^{2}=26$.
2) (\#9, Section 3.2) Is the following proposition true or false? Explain.

For each positive real number x, if x is irrational, then \sqrt{x} is irrational.
3) Let V be a vector space over \mathbb{R} and let W be a subspace of V. Define, for $x, y \in V$,

$$
x \sim y \text { if } x-y \in W .
$$

Show that " \sim " is an equivalence relation on V.
4) (\#11, Section 7.2) Let U be a finite, nonempty set and let $\mathcal{P}(U)$ be the power set of U. That is, $\mathcal{P}(U)$ is the set of all subsets of U. Define the relation " \sim " on $\mathcal{P}(U)$ as follows: For $A, B \in \mathcal{P}(U), A \sim B$ if and only if $A \cap B=\emptyset$. That is, the ordered pair (A, B) is in the relation " \sim " if and only if A and B are disjoint.

Is the relation " \sim " an equivalence relation $\mathcal{P}(U)$? If not, is it reflexive, symmetric, or transitive? Justify all conclusions.
5) Define a relation on \mathbb{Z} as $a \sim b$ if and only if $4 a+3 b$ is even. Briefly justify that " \sim " is NOT an equivalence relation on \mathbb{Z}.
6) Let $X=\{0,1,2,3,5\}$ and $Y=\{1,2,3\}$.
(a) How many ordered pairs are in $X \times Y$ and $Y \times X$ respectively?
(b) How many ordered triples are in $Y \times X \times Y$?
(c) List the elements of the set $\{(a, b, c) \in X \times Y \times X \mid a<b<c\}$.

