Math 300 Assignment 4

Due Tuesday, October 31

1) (\#5, Section 3.3) Prove the following propositions:
(a) For all real numbers x and y, if x is rational and y is irrational, then $x+y$ is irrational.
(b) For all nonzero real numbers x and y, if x is rational and y is irrational, then $\frac{x}{y}$ is irrational.
2) (\#11, Section 3.4) Let a be a positive real number. In Part (1) of Theorem 3.25 , we proved that for each real number $x,|x|<a$ if and only if $-a<x<a$. It is important to realize that the sentence $-a<x<a$ is actually the conjunction of two inequalities. That is, $-a<x<a$ means that $-a<x$ and $x<a$.
(a) Complete the following statement: For each real number $x,|x| \geq a$ if and only if...
(b) Prove that for each real number $x,|x| \leq a$ if and only if $-a \leq x \leq a$.
(c) Complete the following statement: For each real number $x,|x|>a$ if and only if...
3) $(\# 8$, Section 6.2) Let $g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be defined by $g(m, n)=$ $(2 m, m-n)$.
(a) Calculate $g(3,5)$ and $g(-1,4)$.
(b) Determine all the preimages of $(0,0)$. That is, find all $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ such that $g(m, n)=(0,0)$.
(c) Determine the set of all preimages of $(8,-3)$.
(d) Determine the set of all preimages of $(1,1)$.
(e) Is the following proposition true or false? Justify your conclusion.

For each $(s, t) \in \mathbb{Z} \times \mathbb{Z}$, there exists an $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ such that $g(m, n)=$ (s, t).
4) Let f be a real-valued function of a real variable and let $a, x \in \mathbb{R}$. Negate the following sentence: For every real number $\varepsilon>0$, there is a real number $\delta>0$ such that

$$
|f(x)-f(a)|<\varepsilon
$$

whenever $|x-a|<\delta$.
5) List all possible different functions $f:\{a, b, c\} \rightarrow\{1,2\}$.
6) Prove that for $n \in \mathbb{N}, \sqrt{n} \in \mathbb{Q}$ if and only if $n=m^{2}$ for some $m \in \mathbb{N}$.

