Math 300 Assignment 5

Due Tuesday, November 14

1) (\#3(c), Section 4.1) Use mathematical induction to prove that for each natural number n,

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

2) For $f, g: \mathbb{R} \rightarrow \mathbb{R}$, define $f \sim g$ if $f(1)=g(1)$.
a) Let $f \in\left[x^{2}+1\right]$. What is the value of $f(1)$?
b) Prove that " \sim " is an equivalence relation.
3) Prove or disprove: Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions. Then $g \circ f$ is bijective if and only if f is injective and g is surjective.
4) (\#3, Section 6.3) For each of the following functions, determine if the function is an injection and determine if the function is a surjection. Justify all assertions. Note $\mathbb{R}^{*}=\{x \in \mathbb{R} \mid x \geq 0\}$
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=3 x+1$ for all $x \in \mathbb{Z}$.
(b) $F: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $F(x)=3 x+1$ for all $x \in \mathbb{Q}$.
(c) $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=x^{3}$ for all x in \mathbb{R}.
(d) $G: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $g(x)=x^{3}$ for all $x \in \mathbb{Q}$.
(e) $k: \mathbb{R} \rightarrow \mathbb{R}$ defined by $k(x)=e^{-x^{2}}$ for all $x \in \mathbb{R}$.
(f) $K: \mathbb{R}^{*} \rightarrow \mathbb{R}$ defined by $K(x)=e^{-x^{2}}$ for all $x \in \mathbb{R}^{*}$.
(g) $K_{1}: \mathbb{R}^{*} \rightarrow T$ defined by $K_{1}(x)=e^{-x^{2}}$ for all $x \in \mathbb{R}^{*}$, where $T=\{y \in$ $\mathbb{R} \mid 0<y \leq 1\}$.
(h) $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=\frac{2 x}{x^{2}+4}$ for all $x \in \mathbb{R}$.
(i) $H: \mathbb{R}^{*} \rightarrow\{x \in \mathbb{R} \mid 0 \leq y \leq 1 / 2\}$ defined by $H(x)=\frac{2 x}{x^{2}+4}$ for all $x \in \mathbb{R}^{*}$.
5) a) Prove that if X is a set with n elements, $\mathcal{P}(X)$ has 2^{n} elements, so that

$$
\begin{equation*}
\operatorname{card}(\mathcal{P}(X))>\operatorname{card}(X) \tag{1}
\end{equation*}
$$

b) (Extra Credit) Prove equation (1) without the assumption that $\operatorname{card}(X)$ is finite. I will accept no written arguments; you must present your solution on the board in my office.
6) For each $n \in \mathbb{Z}$, define the set $A_{n}=\mathbb{R}-[n, n+1]$. Use a contradiction argument to prove that

$$
\bigcap_{n \in \mathbb{Z}} A_{n}=\emptyset
$$

