Math 300 Assignment 5

Due Tuesday, November 14

1) (#3(c), Section 4.1) Use mathematical induction to prove that for each natural number n,

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

2) For $f, g : \mathbb{R} \to \mathbb{R}$, define $f \sim g$ if f(1) = g(1).

- a) Let $f \in [x^2 + 1]$. What is the value of f(1)?
- b) Prove that " \sim " is an equivalence relation.

3) Prove or disprove: Suppose $f : A \to B$ and $g : B \to C$ are functions. Then $g \circ f$ is bijective if and only if f is injective and g is surjective.

4) (#3, Section 6.3) For each of the following functions, determine if the function is an injection and determine if the function is a surjection. Justify all assertions. Note $\mathbb{R}^* = \{x \in \mathbb{R} \mid x \geq 0\}$

- (a) $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 3x + 1 for all $x \in \mathbb{Z}$.
- (b) $F : \mathbb{Q} \to \mathbb{Q}$ defined by F(x) = 3x + 1 for all $x \in \mathbb{Q}$.
- (c) $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^3$ for all x in \mathbb{R} .
- (d) $G: \mathbb{Q} \to \mathbb{Q}$ defined by $g(x) = x^3$ for all $x \in \mathbb{Q}$.
- (e) $k : \mathbb{R} \to \mathbb{R}$ defined by $k(x) = e^{-x^2}$ for all $x \in \mathbb{R}$.
- (f) $K : \mathbb{R}^* \to \mathbb{R}$ defined by $K(x) = e^{-x^2}$ for all $x \in \mathbb{R}^*$.
- (g) $K_1 : \mathbb{R}^* \to T$ defined by $K_1(x) = e^{-x^2}$ for all $x \in \mathbb{R}^*$, where $T = \{y \in \mathbb{R} \mid 0 < y \leq 1\}$.

(h) $h : \mathbb{R} \to \mathbb{R}$ defined by $h(x) = \frac{2x}{x^2 + 4}$ for all $x \in \mathbb{R}$.

(i)
$$H : \mathbb{R}^* \to \{x \in \mathbb{R} \mid 0 \le y \le 1/2\}$$
 defined by $H(x) = \frac{2x}{x^2 + 4}$ for all $x \in \mathbb{R}^*$.

5) a) Prove that if X is a set with n elements, $\mathcal{P}(X)$ has 2^n elements, so that

$$\operatorname{card}(\mathcal{P}(X)) > \operatorname{card}(X)$$
 (1)

b) (Extra Credit) Prove equation (1) without the assumption that card(X) is finite. I will accept no written arguments; you must present your solution on the board in my office.

6) For each $n \in \mathbb{Z}$, define the set $A_n = \mathbb{R} - [n, n+1]$. Use a contradiction argument to prove that

$$\bigcap_{n\in\mathbb{Z}}A_n=\emptyset.$$