Math 300 Assignment 7

Due Tuesday, December 12

1) (#6, Section 6.4) Prove part (1) of Theorem 6.20.

Let A, B, and C be nonempty sets and let $f : A \to B$ and $g : B \to C$. If f and g are both injections, then $g \circ f$ is an injection.

2) Let S be a set and define an equivalence relation on $\mathcal{P}(S)$ by

 $S \sim T$ if $\operatorname{card}(S) = \operatorname{card}(T)$.

Prove that " \sim " is an equivalence relation.

- **3)** (#2, Section 8.1)
- (a) Let $a \in \mathbb{Z}$ and let $k \in \mathbb{Z}$ with $k \neq 0$. Prove that if $k \mid a$ and $k \mid (a+1)$, then $k \mid 1$, and hence $k = \pm 1$.
- (b) Let $a \in \mathbb{Z}$. Find the greatest common divisor of the consecutive integers a and a + 1. That is, determine gcd(a, a + 1).
- **4)** a) Let $n, k \in \mathbb{N}$. prove that gcd(n, n + k) = gcd(n, k).

b) (Extra Credit) Let $m, n \in \mathbb{N}$. Prove that $gcd(f_n, f_m) = f_{gcd(n,m)}$ where f_k is the k^{th} Fibonacci number for $k \in \mathbb{N}$.

- 5)
- (a) Show that, for any $n \in \mathbb{N}, \times_{i=1}^{n} \mathbb{N}$ is countable.
- (b) Explain how part (a) proves the following statement: a finite direct product of countable sets is countable.
- (c) (Extra Credit) Prove that the countable union of countable sets is countable.
- 6) Define $f : \mathbb{Z}_2 \times \mathbb{Z}_3 \to \mathbb{Z}_6$ by

$$f([x]_2, [y]_3) = [2y - 3x]_6$$

- (a) Show that f is bijective.
- (b) Find the inverse function of f, and carefully justify that this is the inverse.