Math 300 Final

Thursday, December 14th

The even-numbered problems are definitions meant to aid you in the subsequent odd-numbered problem. Use them wisely.

1) a) Negate the statement " $P \Rightarrow(Q \vee \neg R)$ ".
b) Show that the statement " $P \Rightarrow(Q \vee \neg R)$ " is logically equivalent to the statement" $\neg P \vee Q \vee \neg R$ ".
2) a) Define what it means for $m \in \mathbb{N}$ to divide $n \in \mathbb{N}$.
b) Define the set \mathbb{Q} of rational numbers.
3) a) Prove that, for all $n \in \mathbb{N}, 3$ divides $n^{3}-n$.
b) Prove that $\sqrt{45}$ is irrational.
4) Define an equivalence relation " \sim " on a set S (alternatively, you may define an equivalence relation as a subset of $S \times S$).
5) Define a relation " \sim " on \mathbb{R} by

$$
x \sim y \text { if } x-y=n \pi
$$

for some $n \in \mathbb{Z}$. Prove that " \sim " is an equivalence relation.
6) Let S and T be sets. Let $\phi: S \rightarrow T$ be a function.
a) What does it mean for ϕ to be injective?
b) What does it mean for ϕ to be surjective?
c) What does it mean for ϕ to be bijective?
7) Suppose $\psi: A \rightarrow B$ is a bijection and $\gamma: S \rightarrow T$ is a bijection. Prove that the map $\phi: A \times S \rightarrow B \times T$ given by

$$
\phi(a, s)=(\psi(a), \gamma(s))
$$

is a bijection.
8) a) Define what it means for a set S to be countably infinite.
b) Give an explicit example of a countably infinite set that is not \mathbb{N}.
c) In \mathbb{Z}_{4}, define $[1]_{4}$.
9) Choose one of the following two problems. If you attempt both, I will grade the one you do WORSE on.
a) Let \mathcal{S} be the set whose elements are the FINITE subsets of \mathbb{N}. Prove that \mathcal{S} is countably infinite. You may use the fact that a countable union of countable sets is countable.
-OR-
b) Show if $\phi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is a bijection, then ϕ can never satisfy

$$
\phi\left([x]_{4}\right)+\phi\left([y]_{4}\right)=\phi\left([x+y]_{4}\right) .
$$

EXTRA CREDIT: Prove that the first principle of mathematical induction is equivalent to the well-ordering principle, where the former is the statement

- If $S \subseteq \mathbb{N}$ is such that $1 \in S$ and if $n \in S$, then $n+1 \in S$, we must have $S=\mathbb{N}$
and the latter is the statement
- Every nonempty subset of \mathbb{N} contains a least element.

