Math 300 Final

Thursday, December 14th

The even-numbered problems are definitions meant to aid you in the subsequent odd-numbered problem. Use them wisely.

1) a) Negate the statement " $P \Rightarrow (Q \lor \neg R)$ ".

b) Show that the statement " $P \Rightarrow (Q \lor \neg R)$ " is logically equivalent to the statement " $\neg P \lor Q \lor \neg R$ ".

- **2)** a) Define what it means for $m \in \mathbb{N}$ to divide $n \in \mathbb{N}$.
 - b) Define the set \mathbb{Q} of rational numbers.

- **3)** a) Prove that, for all $n \in \mathbb{N}$, 3 divides $n^3 n$.
 - b) Prove that $\sqrt{45}$ is irrational.

4) Define an equivalence relation "~" on a set S (alternatively, you may define an equivalence relation as a subset of $S \times S$).

5) Define a relation " \sim " on $\mathbb R$ by

$$x \sim y$$
 if $x - y = n\pi$

for some $n \in \mathbb{Z}$. Prove that "~" is an equivalence relation.

- 6) Let S and T be sets. Let $\phi: S \to T$ be a function.
 - a) What does it mean for ϕ to be injective?
 - b) What does it mean for ϕ to be surjective?
 - c) What does it mean for ϕ to be bijective?

7) Suppose $\psi : A \to B$ is a bijection and $\gamma : S \to T$ is a bijection. Prove that the map $\phi : A \times S \to B \times T$ given by

$$\phi(a,s) = (\psi(a), \gamma(s))$$

is a bijection.

- 8) a) Define what it means for a set S to be countably infinite.
 - b) Give an explicit example of a countably infinite set that is not \mathbb{N} .
 - c) In \mathbb{Z}_4 , define $[1]_4$.

9) Choose one of the following two problems. If you attempt both, I will grade the one you do WORSE on.

a) Let \mathcal{S} be the set whose elements are the FINITE subsets of \mathbb{N} . Prove that \mathcal{S} is countably infinite. You may use the fact that a countable union of countable sets is countable.

-OR-

b) Show if $\phi : \mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_2$ is a bijection, then ϕ can never satisfy

$$\phi([x]_4) + \phi([y]_4) = \phi([x+y]_4).$$

EXTRA CREDIT: Prove that the first principle of mathematical induction is equivalent to the well-ordering principle, where the former is the statement

• If $S \subseteq \mathbb{N}$ is such that $1 \in S$ and if $n \in S$, then $n+1 \in S$, we must have $S = \mathbb{N}$

and the latter is the statement

• Every nonempty subset of $\mathbb N$ contains a least element.