Math 300 Midterm 1

Thursday, October 19th
The even-numbered problems are definitions meant to aid you in the subsequent odd-numbered problem. Use them wisely.

1) Let P, Q, and R be statements.
a) Negate the compound statement $P \Rightarrow(Q \Rightarrow R)$.
b) Show that the following compound statements are logically equivalent:

$$
P \Rightarrow(Q \Rightarrow R) \text { and }(P \wedge Q) \Rightarrow R
$$

2) a) Define what it means for a real number x to be a rational number.
b) Define an equivalence relation " \sim " on a set S (alternatively, you may define an equivalence relation as a subset of $S \times S$).
3) Define " \sim " on \mathbb{R} by

$$
x \sim y \text { if } x-y \in \mathbb{Q} .
$$

Prove that " \sim " is an equivalence relation. You may assume that products and sums of rational numbers are rational.
4) Let S be a universal set. Let $A, B \subseteq S$.
a) Define the intersection of A and B.
b) Define $S \backslash A$.
c) Define the power set $\mathcal{P}(S)$.
5) Let S be a set and let $\emptyset \neq A \subset S$. Show that $T \in \mathcal{P}(S)$ if and only if there exist $T_{1} \in \mathcal{P}(A)$ and $T_{2} \in \mathcal{P}(S \backslash A)$ with $T=T_{1} \cup T_{2}$.

