Math 300 Midterm 2

Tuesday, November 21st

The even-numbered problems are definitions meant to aid you in the subsequent odd-numbered problem. Use them wisely.

1) Prove that $3^n > n+1$ for all $n \in \mathbb{N}$.

- **2)** Let S and T be sets. Let $\phi: S \to T$ be a function.
 - a) What does it mean for ϕ to be injective?
 - b) What does it mean for ϕ to be surjective?
 - c) What does it mean for ϕ to be bijective?

3) Let $M_2(\mathbb{R})$ denote the 2 × 2 matrices with real entries. Define

$$\phi: M_2(\mathbb{R}) \to M_2(\mathbb{R})$$

by

$$\phi\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = \left[\begin{array}{cc}-a&c\\b&-d\end{array}\right]$$

Prove that ϕ is a bijection.

4) Let S be a universal set. Let $A, B \subseteq S$. State DeMorgan's Laws:

a) $(A \cap B)^c =$ _____

b) $(A \cup B)^c =$ _____

5) Let S and T be universal sets and let $A \subseteq S$, $B \subseteq T$. Prove that

 $A \times B = (A \times B^c)^c \cap (A^c \times B)^c \cap (A^c \times B^c)^c.$