Math 300 Midterm 2

Tuesday, November 21st
The even-numbered problems are definitions meant to aid you in the subsequent odd-numbered problem. Use them wisely.

1) Prove that $3^{n}>n+1$ for all $n \in \mathbb{N}$.
2) Let S and T be sets. Let $\phi: S \rightarrow T$ be a function.
a) What does it mean for ϕ to be injective?
b) What does it mean for ϕ to be surjective?
c) What does it mean for ϕ to be bijective?
3) Let $M_{2}(\mathbb{R})$ denote the 2×2 matrices with real entries. Define

$$
\phi: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})
$$

by

$$
\phi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
-a & c \\
b & -d
\end{array}\right]
$$

Prove that ϕ is a bijection.
4) Let S be a universal set. Let $A, B \subseteq S$. State DeMorgan's Laws:
a) $(A \cap B)^{c}=$
b) $(A \cup B)^{c}=$
5) Let S and T be universal sets and let $A \subseteq S, B \subseteq T$. Prove that

$$
A \times B=\left(A \times B^{c}\right)^{c} \cap\left(A^{c} \times B\right)^{c} \cap\left(A^{c} \times B^{c}\right)^{c}
$$

