Announcements

1) Exam 1 Thursday next week

Proof By Cases
(Section 3.4)

Dividing the proof of a result into smaller pieces that are easier to establish.

Caution: make sure you have all the pieces!

Example 1: (The triangle inequality)

$$
\begin{aligned}
& \forall x, y \in \mathbb{R} \\
& \qquad|x+y| \leq|x|+|y|
\end{aligned}
$$

proof: By Cases!

1) $x \geq 0, y \geq 0$.

In this case,

$$
\begin{aligned}
& |x|=x \\
& |y|=y \\
& |x+y|=x+y
\end{aligned}
$$

and we have equality.
2)

$$
\begin{aligned}
& x \geq 0, \quad y<0 \\
&|x|=x \\
&|y|=-y \\
&|x+y| \leq \max \{|x|,|y|\} \\
& \leq|x|+|y| \\
&=x+(-y)
\end{aligned}
$$

3) $y \geq 0, x<0$

Same as case 2) with x and y interchanged
4)

$$
\begin{aligned}
x<0, y & <0 \\
|x| & =-x \\
|y| & =-y \\
|x+y| & =-(x+y) \\
& =-x-y
\end{aligned}
$$

and so we have equality.

This covers all cases, so

$$
|x+y| \leq|x|+|y|
$$

$\frac{\text { Intro to Functions }}{(\text { Section 6.1) }}$

We will be talking about functions from sets to sets.

Definition: If S, T are sets, a function from S to T, denoted $f: S \rightarrow T$, is an assignment that for each $s \in S$ gives precisely one element in T

Definition: (domain, codomain, range)
If $f: S \rightarrow T$ is a function, we call s the domain of f. We call T the codomain of f The range of f is the set

$$
f(s)=\{t \in T \mid \exists s \in S, f(s)=t\}
$$

$$
\subseteq T
$$

Example 2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=x^{2} .
$$

The domain of f is: \mathbb{R}
The codomain of $f: \mathbb{R}$
The range of f :

$$
\begin{aligned}
f(\mathbb{R}) & =\{y \in \mathbb{R} \mid \exists x \in \mathbb{R}, f(x)=y\} \\
& =\left\{y \in \mathbb{R} \mid \exists x \in \mathbb{R}, x^{2}=y\right\} \\
& =[0, \infty)
\end{aligned}
$$

Definition: (image, preimage)
Let $f: S \rightarrow T$, let $A \subseteq S$, $B \leq T$. The image of A, denoted by $f(A)$, is the set

$$
\begin{aligned}
f(A)= & \{t \in T \mid \exists a \in A, f(a)=t\} \\
& \subseteq T
\end{aligned}
$$

The preinage of B, denoted $f^{-1}(B)$, is the set

$$
\begin{gathered}
f^{-1}(B)=\{s \in S \mid \nexists b \in B, f(s)=b\} \\
\subseteq S
\end{gathered}
$$

Warnings: 1) The image and preinage are subsets
2) The notation for preimage, f^{-1}, does not imply f is invertible!

Example 3: $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}x, & x \text { rational } \\ 0, & x \text { irrational }\end{cases}
$$

Domain of $f: \mathbb{R}$
Codomain of $f: \mathbb{R}$
Range of $f: \mathbb{Q}$

$$
\begin{aligned}
& f(1 / 2)=1 / 2 \\
& f(-5 / 3)=-5 / 3 \\
& f(\sqrt{2})=0 \\
& f(e)=0 \\
& f(\pi+e)=?
\end{aligned}
$$

Let $A=[0,1]$.

$$
\begin{aligned}
f(A) & =\{x \in[0,1] \mid x \in \mathbb{Q}\} \\
& =[0,1] \cap \mathbb{Q} \\
A_{1} & =[2,3] \\
f\left(A_{1}\right) & =([2,3] \cap(\mathbb{Q}) \cup\{0\}
\end{aligned}
$$

Preimages:

$$
\begin{aligned}
& f^{-1}(\{23)=\{2\} \\
& f^{-1}(\{5 / 3,-11 / a\})=\{5 / 3,-11 / a\} \\
& f^{-1}(\{0\})=\mathbb{R} \backslash \mathbb{Q} \cup\{0\} \\
& f^{-1}(\{\sqrt{2}\})=\varnothing
\end{aligned}
$$

Since there are no real numbers x for which $f(x)=\sqrt{2}$

$$
\begin{aligned}
& f^{-1}([0,1])=(\mathbb{Q} \cap[0,1]) \cup \mathbb{R} \backslash \mathbb{Q} \\
& f^{-1}((0,1])=\mathbb{Q} \cap(0,1]
\end{aligned}
$$

