Announcements

1) How 4 due Tuesday
2) Colloquium today 2:30 CB 2046 Ravi Ramasami "Spectrum of the Kohn Laplacian on the Rossi Sphere"
3) Halloween Tuesday Costumes $=$ Candy

Example l: All babies have blue eyes.
$n=1$ step. My son has blue eyes.
Done

Assume that n babies have blue eyes. Consider any collection of $n+1$ babies

By induction, all babies in the blue circle have blue eyes.

Again by induction, all babies in the red circle have blue eyes.

Therefore, all babies have blue eyes by induction
False fails for $n=2$

2 babies

There is no way to conclude another baby has blue eyes by just knowing my son has blue eyes

Example 2: If $a_{1}, a_{2}, \ldots, a_{2}, \in \mathbb{R}$,

$$
a_{i} \geq 0 \forall 1 \leq i \leq 2^{n},
$$

then

$$
\underbrace{\left(a_{1} a_{2} \ldots a_{2}\right)^{1 / 2 n}}_{\substack{\text { geometric } \\ \text { average }}} \leq \underbrace{\sum_{k=1}^{2^{n}} a_{4}}_{\substack{\text { arithmetic } \\ \text { average }}}
$$

This is called the arithmetic-geometric mean inequality.

$$
n=1 \quad\left(a_{1} \cdot a_{2}\right)^{\frac{1}{2}} \leq \frac{a_{1}+a_{2}}{2}
$$

Square both sides.

$$
\begin{aligned}
& a_{1} a_{2} \leq \frac{2\left(a_{1}+a_{2}\right)^{2}}{4} \\
& a_{1} a_{2} \leq \frac{a_{1}^{2}+2 a_{1} a_{2}+a_{2}^{2}}{4}
\end{aligned}
$$

multiply both sites by 4

$$
4 a_{1} a_{2} \stackrel{?}{\leq} a_{1}^{2}+2 a_{1} a_{2}+a_{2}^{2}
$$

subtract $41_{1} a_{2}$ from both sides

$$
\begin{aligned}
& 0 \stackrel{?}{\leq} a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2} \\
& 0 \stackrel{?}{\leq}\left(a_{1}-a_{2}\right)^{2}
\end{aligned}
$$

True

Inductive Step: Assume

$$
\begin{aligned}
& \left(a_{1} a_{2} \cdots a_{2^{n}}\right)^{1 / 2^{n}} \leq \frac{\sum_{k=1}^{2^{n}} a_{k}}{2^{n}} \\
& \text { Show } \left.a_{2} a_{2^{n+1}}\right)^{\frac{1}{2^{n+1}}} \leq \frac{\sum_{k=1}^{2^{n+1}} a_{n}}{2^{n+1} \perp} \\
& =\left(\sqrt{\left.\left(a_{1} a_{2}\right) \sqrt{\left(a_{3} a_{4}\right)}\right) \sqrt{\left(a_{5} a_{6}\right)}} \cdot \sqrt{\left(a_{2}-a_{2} n+1\right)}\right)^{\frac{1}{2^{2}}} \\
& b_{1} b_{2} b_{3}-b_{2}{ }^{n} \\
& =\left(b_{1}--b_{2^{n}}\right)^{1 / 2^{n}} \\
& \leqslant\left(\frac{\sum_{k=1}^{\partial^{n}} b k}{\partial^{n}}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sum_{k=1}^{2^{n}} b_{k}}{2^{n}} \\
& b_{1}=\sqrt{a_{1} a_{2}} \leq \frac{a_{1}+a_{2}}{2} \\
& b_{2}=\sqrt{a_{3} a_{4}} \leq \frac{a_{3}+a_{4}}{2} \\
& b_{k}=\sqrt{a_{2 k-1} a_{2 k}} \\
& \leq \frac{a_{2 k-1}+a_{24}}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sum_{k=1}^{2^{n}} b_{k}}{2^{n}} & \leq \frac{\sum_{k=1}^{2^{n}}\left(\frac{a_{2 k-1}+a_{2 k}}{2}\right)}{2^{n}} \\
& =\frac{\sum_{k=1}^{2^{n}} a_{2 k-1}+a_{2 k}}{2^{n+1}} \\
& =\frac{\sum_{k=1}^{2^{n+1}} a_{k}}{2^{n+1}}
\end{aligned}
$$

