Announcements

1) It 4 - due today by $4: 30$
2) HW 5 up now, due Thursday next week
3) Latex template under "Files" on Canvas
4) Next section: 6.3 reading quit Thursday

Other forms of Induction
(Section 4.2)

Extended Principle of Mathematical
Induction

How to use: establish $P(1)$ is true.
Then assume $P(k)$ is true for all $1 \leq K \leq n$, prove $P(n+1)$ is true.

Second Principle of Induction

How to use: show $\exists m \in \mathbb{N}$, $m \geq 1$, such that $P(n)$ is true. Then assume $P(n)$ is true for $n \geq m$, prove $p(n+1)$ is true.
i.e. Start your induction at a number that might be larger than one because the statement is false for all smaller values of n.

Example 1: Show that $\exists m \in \mathbb{N}$ such that $2^{n}>5 n+1 \forall n \geq m$
$n=1: 2<6$ false
$n=2: \quad 4<11$ fave
$n=3: 8<16$ false
$n=4: 16<21$ false
$n=5: 32>26$ true!
Start at $m=5$. Now assume $2^{n}>5 n+1$ for some $n \geq 5$.

If $2^{n}>5 n+1$, we want to Show $2^{n+1}>5(n+1)+1=5 n+6$.

$$
\begin{aligned}
2^{n+1} & =2^{n} \cdot 2 \\
& >(5 n+1) \cdot 2(\text { by induction }) \\
& =10 n+2
\end{aligned}
$$

We need to show

$$
\begin{aligned}
10 n+2> & 5(n+1)+1 \\
= & 5 n+6
\end{aligned}
$$

Equivalent to
$5 n+2>6$, true for all $n \geq 1$.

$$
\text { This shows } 2^{n+1}>5 n+6
$$

$\frac{\text { Recursion }}{(\text { section 4.3) }}$
For sequences, which are functions $f: \mathbb{N} \rightarrow S$ where S is some set. we usually denote the value $f(n)$ by f_{n}. A recursive sequence is a sequence whose $n^{\text {th }}$ terms depends on the value of the previous terms.

Example 2: Let $a_{1}=1$,

$$
a_{n+1}=\frac{1}{1+\frac{1}{5+a n}}
$$

Show: i) $a_{n+1} \leq a_{n} \forall n \in \mathbb{N}$
ii) $a_{n} \leq 1 \quad \forall n \in \mathbb{N}$

$$
\begin{aligned}
a_{1}=1, a_{2}=\frac{1}{1+\frac{1}{6}} & =\frac{1}{\frac{7}{6}} \\
& =\frac{6}{7} \\
a_{3} & =\frac{1}{1+\frac{1}{5+\frac{6}{7}}} \\
& =\frac{1}{1+\frac{1}{\left(\frac{41}{7}\right)}}=\frac{1}{1+\frac{7}{41}}=\frac{41}{48}
\end{aligned}
$$

i) $a_{n+1} \leq a_{n}$ true for $n=1$. (checked on previous page)

Show $a_{n+1}=\frac{1}{1+\frac{1}{5+a_{n}}} \leq a_{n}$
if we assume

$$
\begin{aligned}
& \text { we assume } \leftarrow \text { inductive step } \\
& a_{n} \leq a_{n-1} \leftarrow \text { in }
\end{aligned}
$$

Then $5+a_{n} \leq 5+a_{n-1}$

$$
\begin{gathered}
\frac{1}{5+a_{n}} \geq \frac{1}{5+a_{n-1}} \\
1+\frac{1}{5 \tan } \geq 1+\frac{1}{5+a_{n-1}} \\
a_{n+1}=\frac{1}{1+\frac{1}{5 \tan }} \leq \frac{1}{1+\frac{1}{5+a_{n-1}}}=a_{n}
\end{gathered}
$$

(i) $a_{n} \leq 1 \quad \forall n \in \mathbb{N}$.

Checked for $n=1$ two pages ago

Assume $a_{n} \leq 1 . \leftarrow$ inductive step

Show $a_{n+1} \leqslant 1$.
But if $a_{n} \leqslant 1$,

$$
\begin{gathered}
5 \tan \leq 1+5=6 \\
\frac{1}{5 \tan } \geq \frac{1}{6} \\
1+\frac{1}{5+a_{n}} \geq 1+\frac{1}{6} \\
a_{n+1}=\frac{1}{1+\frac{1}{5 \tan }} \leq \frac{1}{1+\frac{1}{6}}=\frac{6}{7}<1
\end{gathered}
$$

Notes: 1) If you can prove the monotone convergence theorem for sequences (Math 451), youve just shown that $\left(a_{n}\right)_{n=1}^{\infty}$ has a limit!
2)

$$
\begin{aligned}
& \begin{aligned}
a_{3}=\frac{1}{1+\frac{1}{5+a_{2}}} & =\frac{1}{1+\frac{1}{5+\left(\frac{1}{1+\frac{1}{5+a}}\right)}} \\
& =\frac{1}{1+\frac{1}{5+\left(\frac{1}{1+\frac{1}{6}}\right)}}
\end{aligned}
\end{aligned}
$$

The sequence $\left(a_{n}\right)_{n=1}^{\infty}$ determines a continued fraction.

Notes: 1) The first case is called the initial step.
2) Going from $P(n)$ to $P(n+1)$ is called the inductive step.
3) In 2), $P(n)$ is called the inductive hypothesis

