Announcements

1) Reading Quiz for today does not expire!

2) HW3 due next Tuesday

Proof by Contradiction

Section 3.3

Definition: (contradiction) A

Contradiction is a compound statement that is always false, independent of the truth value of its components

Easiest contradiction: $P \land (\neg P)$

Itow it works (reductio ad absordum) Given a conclusion, you assume the negation. You reason from the negation to a contradictory Statement (often PN(7P)) Since this kind of statement is always false, your assumption of the negation must be false.

Example 1: Prove that there are Infinitely many prime numbers proof: By contradiction! Suppose there are finitely many prime numbers Pi, Pa, ..., Pn. Let $X = (P, P_1, \dots, P_{n-1}, P_n) + 1$. None of Pi, 14i4n, divide X since the remainder is one. Therefore, either x itself is prime or there is another prime Potl where Poti X.

In either case, we have both n and ntl prime numbers, contradiction. Therefore, there are infinitely many prime numbers.

Example 2: 12 is irrational

Note: 1/Ja

Proof: By contradiction Suppose J_{2} is rational. Therefore, $\exists m, n \in \mathbb{Z}$, $n \neq 0$, with $J_{2} = \frac{m}{n}$ Square both sides.

$$\Im_{v_{g}} = w_{g}.$$

$$\mathcal{O}^{V_{g}} = W_{g}$$

There are an even number
of 2's in the factorization
of
$$m^{2}$$
.
(IF $m = 2^{K}b$, $2Kb$, then
 $m^{2} = (2^{K})^{2}b^{2} = 2^{2K}b^{2}$,
 $2K$ two's in the factorization)

Similarly, there are an even number of 2's in the factorization of 1².

(If
$$n = 2^{l}a, 2X^{n}$$
, then
 $n^{2} = 2^{2l}a^{2}, 2l$ twos)
Therefore, $2n^{2} = 2^{2l+1}a^{2}$,
 $2l+1$ twos, which is an
odd number of twos.
Since m^{2} has $2k$ twos, if
 $m^{2} = 2n^{2}$, then $2l+1 = 2k$
and so we have a number
that is both even and odd,
contradiction.

Therefore, JD is irrational.