Announcements

1) Reading Quiz for today does not expire!
a) HW3 due next Tuesday

Proof by Contradiction
Section 3.3

Definition: (contradiction) A

Contradiction is a compound statement that is always false, independent of the truth value of its components

Easiest contradiction: $P \wedge(\neg P)$

How it works (reduction ad absurdum)

Giver a conclusion, you assume the negation. You reason from the negation to a contradictory statement (often $P \wedge(\neg p)$)

Since this kind of statement is always false, your assumption of the negation must be false.

Example 1: Prove that there are infinitely many prime numbers
proof: By contradiction! Suppose there are finitely many prime numbers $P_{1}, P_{2}, \cdots, P_{n}$.

Let $x=\left(P_{1} P_{2} \cdots P_{n-1} P_{n}\right)+1$
None of $P_{i}, 1 \leq i \leq n$, divide X since the remainder is one.

Therefore, either x itself is prime or there is another prime Pat where $P_{n+1} \mid X$.

In either case, we have both n and $n+1$ prime numbers, contradiction. Therefore, there are infinitely many prime numbers.

Example 2: $\sqrt{2}$ is irrational

Note:

proof: By contradiction. Suppose
$\sqrt{2}$ is rational. Therefore, $\exists m, n \in \pi, n \neq 0$, with

$$
\sqrt{2}=\frac{m}{n}
$$

Square both sides.

$$
\begin{aligned}
2 & =\frac{m^{2}}{n^{2}}, \text { so } \\
2 n^{2} & =m^{2}
\end{aligned}
$$

There are an even number of 2's in the factorization of m^{2}.
(If $m=2^{k} b, 2 X b$, then

$$
m^{2}=\left(2^{k}\right)^{2} b^{2}=2^{2 k} b^{2}
$$

$2 k$ two's in the factorization)
Similarly, there are an even number of $2^{\prime} s$ in the factorization of n^{2}.
(If $n=2^{l} a, 2 X_{a}$, then $n^{2}=2^{2 l} a^{2}, 2 l$ twos

Therefore, $2 n^{2}=2^{2 l+1} a^{2}$, $2 l+1$ twos, which is an odd number of twos.

Since m^{2} has $2 k$ twos, if $m^{2}=2 n^{2}$, then $2 l+1=2 k$ and so we have a number that is both even and odd, contradiction.

Therefore, $\sqrt{2}$ is irrational.

