More on functions

$$
(6.4+6.5)
$$

Function composition
Given $f: S \rightarrow T$ and $g: R \rightarrow S$
Where S, T, R are sets, we define the composition fog as the function
fog: $R \rightarrow T$,

$$
(f \circ g)(x)=f(g(x)) \forall x \in R
$$

Picture

Example 1: $f: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$
$M_{2}(\mathbb{R})=2 \times 2$ matrices with real entries

$$
\begin{aligned}
& g: \mathbb{Z} \rightarrow M_{2}(\mathbb{R}) \\
& g(n)=(-1)^{n}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& f(A)=\operatorname{Tr}(A) \\
& \operatorname{Tr}(A)=\text { trace of } A \\
& \operatorname{Tr}\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right)=a_{11}+a_{22}
\end{aligned}
$$

$$
\begin{aligned}
g(1) & =(-1)^{\prime}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] \\
g(2) & =(-1)^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Range of $g=\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\right\}$

$$
\begin{aligned}
(f \circ g)(n) & =f(g(n)) \\
& =\left\{\begin{array}{l}
f\left(\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right) \text {, neven } \\
f\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right) \text {, nodd }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& f(g(n))=\left\{\begin{array}{l}
f\left(\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right. \text {, neven } \\
f\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right) \text {, nodd } \\
\end{array}\right. \\
&= \begin{cases}\operatorname{Tr}\left(\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right), \text { neven } \\
\operatorname{Tr}\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right), \text { nodd }\end{cases} \\
&=\left\{\begin{array}{cc}
2, n \text { even } \\
-2, & n \text { odd }
\end{array}\right.
\end{aligned}
$$

Warnings

1) function composition is non commutative in general. In particular, if fog is defined, gof may not be. (See previous example)
2) Function composition is not multiplication!

Composition and Injectivity a Surjectivily

Suppose $f: S \rightarrow T, g: R \rightarrow S$.
Then

1) If $f \circ g$ is injective, then g is injective.
2) If fog is surjective, then f is surjective.
proof. 1) By contradiction.
Suppose fog is injective but g is not injective.

Then $\mathcal{F} r_{1}, r_{2} \in R, r_{1} \neq r_{2}$,

$$
g\left(r_{1}\right)=g\left(r_{2}\right)=S
$$

Then

$$
\begin{aligned}
& (f \circ g)\left(r_{1}\right)=f\left(g\left(r_{1}\right)\right)=f(s) \\
& (f \circ g)\left(r_{2}\right)=f\left(g\left(r_{2}\right)\right)=f(s)
\end{aligned}
$$

and so fog is not infective, contradiction. Therefore) 9 must be injective.
2) Similar, by contradiction.

Invertibility

Let $f: S \rightarrow T$. We say f is invertible if \exists 9: $T \rightarrow S$ such that

$$
\begin{aligned}
& \text { 1) }(f \circ g)(t)=t \quad \forall t \in T \\
& \text { 2) }(g \circ f)(s)=s \quad \forall s \in S
\end{aligned}
$$

Example 2: $f: \mathbb{Z} \rightarrow$ R

$$
f(n)=-n+1
$$

Show f is invertible
Find a $g: \pi \rightarrow \lambda$,

$$
\begin{aligned}
(g \circ f)(n) & =(f \circ g)(n)=n \\
g(n) & =-(n-1) \\
& =-n+1=f(n) \\
(f \circ g)(n)=f(g(n)) & =f(-n+1) \\
& =-(-n+1)+1 \\
& =n-1+1=n
\end{aligned}
$$

Example 3: $f: \mathbb{R} \rightarrow \mathbb{C}$

$$
f(x)=1
$$

f is not invertible since
if $g: \mathbb{C} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
(f \circ g)(z) & =z \quad \forall z \in \mathbb{C} \\
(g \circ f)(x) & =x, \text { then } \\
(g \circ f)(x) & =g(f(x)) \\
& =g(1)
\end{aligned}
$$

For g to be the inverse function, we'd need $g(1)=x \forall x \in \mathbb{R}$

Then g would not even be a function.

Checking for Invertibility

A function $f: S \rightarrow T$ is invertible if and only if f is bijective.

