Announcements

1) HW 6 due Thursday Question \#5 - for all ODD n
2) Office hours slightly changed tody to $4-5$

The GCD
(Section 8.1)

Definition: Let $m, n \in \mathbb{N}$. The greatest common divisor of $\operatorname{mand} n$, denoted $\operatorname{gcd}(m, n)$ or (m, n), is the largest $k \in \mathbb{N}$ such that $k \mid m$ and $k \mid n$
Q. How to find the GCD?

A: The Euclidean Algorithm!

Example 1: Find $\operatorname{gcd}(10446,210,742)$

1) Divide smaller number into bigger number

$$
210,742=20 \cdot(10446)+1822
$$

2) Repeat procedure, with smaller number and remainder

$$
10446=5.1822+1336
$$

keep on going until there is no remainder

$$
\begin{aligned}
1822 & =1336+486 \\
1336 & =2 \cdot 486+364 \\
486 & =364+122 \\
364 & =2 \cdot 122+120 \\
G C D E \frac{122}{}=120+2 & =(2) 60
\end{aligned} \text { stop. }
$$

$\frac{\text { Prime Factorization }}{(\text { Section } 8.2)}$

Definition: (relatively prime)
If $m, n \in \mathbb{N}$, we say m and n are relatively prime if

$$
\operatorname{gcd}(m, n)=1
$$

Example 2: 28 and 15 are relatively prime.

Run Euclidean algorithm:

$$
\begin{aligned}
& 28=15+13 \\
& 15=13+2 \\
& 13=6 \cdot 2+1 \\
& 2=20 \\
& \text { ged }
\end{aligned}
$$

Lemma: If m and n are relatively prime and $m \mid n \cdot b$ for some $b \in \mathbb{N}$, then $m \mid b$.

Corollary: If p is a prime, p does not divide m_{1} and $p \mid m \cdot b$, then $p \mid b$.
proof: If p does not divide m, Since the only divisors of p are I and p, $\operatorname{gcd}(p, m)=1$. The result follows from the lemma.

Corollary: If p is prime and p divides min, then either plo or plan.
proof: If $p \times m$, then by the previous corollary, $p \mid n$. Conversely, if $p X \wedge$, then again by the corollary, $\mathrm{p} \mid \mathrm{m}$.

Corollary: Let $n \geq 2, n \in \mathbb{N}$. If p is prime and
$p \mid b_{1} b_{2}-b_{n}$ for bi $\in \mathbb{N}, 1 \leq i \leq n$, then $\exists k, 1 \leq k \leq n, \quad p \mid b_{k}$
proof: By induction.
Base case $n=2$ is the previous corollary. Now assume $\forall m<n$, $\cap>2$, that the result holds.

Write

$$
b_{1} b_{2}-b_{n-1}=a
$$

Then $p \mid a b_{n}$. By induction, the base cause,
pla or plan.

If $p \mid b_{n}$, then $n=k$ and we are done.
If pla, then by the inductive hypothesis, $\exists K, 1 \leq K \leq n-1$, $p \backslash b_{k}$, and we are done.

The Fundamental Theorem of Arithmetic

Let $n \in \mathbb{N}, n \geq 2$.

1) We have that either n is prime or is a product of primes.
2) (unique factorization)

If we can write, for $k, m \in \mathbb{N}$,

$$
a_{i}, 1 \leq i \leq k, \quad x_{j}, 1 \leq j \leq m \text { prime }
$$

numbers and

$$
n=a_{1} a_{2} \cdots a_{4}=x_{1} x_{2} \cdots x_{m},
$$

then $k=m$ and, up to reordering,

$$
a_{i}=x_{i} \quad \forall \quad 1 \leq i \leq k
$$

Up to reordering:

$$
6=2 \cdot 3=3 \cdot 2
$$

Proof: 1) By induction on n.
If $n=2$, then 2 is prime.

Now suppose $n>2$.
Either

1) \cap is prime, and we are done
2) n is not prime. Then \exists prime $p, p<n, p \mid n$.
So we can write

$$
n=p \cdot b \text { for } b<n
$$

By induction, b is either prime or a product of primes $\Rightarrow n$ is a product of primes.
2) Proof by inducting on n. $n=2$ is a prime.

Show: given $n>2$, if

$$
\left.\begin{array}{rl}
n & =a_{1} a_{2} \cdots a_{k} \\
& =x_{1} x_{2} \cdots x_{m}
\end{array}\right\} \text { all primes }
$$

then $k=m$ and, up to reordering,

$$
x_{i}=a_{i} \forall \quad \mid \leq i \leq k
$$

Since a_{1} is a prime and

$$
a_{1}\left|n, \quad a_{1}\right| x_{1} x_{2}-x_{m}
$$

Therefore, by our corollaries, \exists $j, 1 \leq j \leq m$, with

$$
a_{1} \mid x_{j} \quad \text { But } x_{j}
$$

is prime, and so $a_{1}=x_{j}$
Reordering the product of the x i's, we may assume $j=1$.

Then

$$
\begin{aligned}
n & =a_{1} a_{2} \cdots a_{k} \\
& =a_{1} x_{2} \cdots x_{m} \text {, so } \\
\frac{n}{a_{1}} & =a_{2} a_{3}-a_{4} \\
& =x_{2} x_{3}-x_{m}
\end{aligned}
$$

By induction, since $\frac{\Delta}{a_{1}}<n$, we have $k=m$ and, op to reordering, $x_{i}=a_{i} \quad \forall \alpha \leq i \leq k$. This immediately implies the result for n since $a_{1}=x_{1}$

