Announcements

1) Guide for Induction under "Files" on Canvas
2) For next Tuesday: read Section 5.3

Injections, Surjections, and Bijections
(Section 6.3)
Motivation: cardinality for infinite sets

Two finite sets have the same Cardinality if they have the same number of clements.

For infinite sets, we need to know what "same number of elements" means

Definition: (injective function)
Also called a "one-to-one" function or a "monomorphism".

Let $f: S \rightarrow T$ where S and T are sets. We say f is injective (or is an injection) if $\forall x, y \in S$, if $f(x)=f(y)$, then $x=y$.

Example 1: Let $f: \mathbb{N} \rightarrow$ ת

$$
f(n)=2 n-5
$$

Prove f is injective
Suppose that $m, n \in \pi$, and

$$
f(m)=f(n)
$$

Show: $m=n$

$$
2 m-5=f(m)=f(n)=2 n-5
$$

simplify

$$
2 m=2 n \text { and }
$$

$m=n$, so f is invective.

Example 2: $\quad f: \mid N \rightarrow \mathbb{Q}$

$$
f(n)=\frac{(n-2)^{2}}{2}
$$

Show f is not injective
Negate the definition:
$\exists m, n \in \mathbb{N}$ with $f(n)=f(m)$
but $m \neq n$.

$$
\begin{aligned}
& n=1, m=3 \\
& f(n)=f(1)=\frac{(1-2)^{2}}{2}=\frac{1}{2} \\
& f(m)=f(3)=\frac{(3-2)^{2}}{2}=\frac{1}{2}
\end{aligned}
$$

so f is not injective.

Definition: (surjective function)
Also called "onto" or an "epimorphism".

Let S, T be sets, $f: S \rightarrow T$.
We say f is surjective if $\forall \quad y \in T, \quad \exists x \in S$,

$$
f(x)=y
$$

This says the range and codomain of f are equal.

Example 3: $f: \mathbb{C} \rightarrow \mathbb{R}$

$$
f(a+b i)=a
$$

Show f is surjective
Let $y \in \mathbb{R}$. We seed

$$
x \in \mathbb{\mathbb { C }}, \quad f(x)=y .
$$

We can let $x=y$.
Then $f(y)=y$,
so f is surjective.

Example $4:$

Itamiltonian quaternions (look it up)

$$
\begin{aligned}
& f(a+b i+c j+d k)=2 \\
& a, b, c, d \in \mathbb{R}
\end{aligned}
$$

Show f is not surjective
Negation is " $\exists n \in \mathbb{N}$ such that $\forall \alpha \in H, f(\alpha) \neq n$."
Choose $n=5$. Then $\forall \alpha \in H \mid$, $f(\alpha)=2 \neq 5$, so f is not surjective.

Definition: (bijective)
Let S, T be sets, $f: S \rightarrow T$.
We say f is bijective (or is a bijection) if f is both injective and surjective.

Back to examples $1+3$

1) $f: I N \rightarrow \pi$
$f(n)=2 n-5$. We showed
f is injective. Is f surjective?
No. Suppose $f(n)=-4$.
Then $-y=2 n-5$

$$
\begin{gathered}
1=2 n \\
n=1 / 2 \notin \mathbb{N}
\end{gathered}
$$

So f is not surjective.
Therefore, f is not a bijection.
3) $f: \mathbb{C} \rightarrow \mathbb{R}$
$f(a+b i)=a$. We
showed f is surjective.
Is f injective?
No.

$$
\begin{aligned}
& f(6)=6 \\
& f(6-i)=6
\end{aligned}
$$

but $6 \neq 6-i$, so f is not injective, and hence not a bijection.

Warning: (domain/codomain de pendence)
Injectivity and surjectivity depend heavily on the choice of domain and codomain. For example,
$f(x)=x^{2}$ is not injective as a map from \mathbb{R} to \mathbb{R}, but it is when considered as a map from $[0, \infty)$ to \mathbb{R}.

Definition: (cardinality)
Two sets S and T are said to have the same Cardinality if \exists bijection $f: S \rightarrow T$.

