Announcements

1) HW \#7 due last day of classes
2) It $\# 8$ up for study purposes, not for a grade

More on Cardinality

Recall definition: two sots have the same cardinality if \exists a bijection Q mapping between them.
We showed $\operatorname{card}(\mathbb{N})=\operatorname{card}(\pi)$

Definition: A set S is said to be countably infinite if \mathcal{F} bijection $\varphi: S \rightarrow \mathbb{N}$, i.e., $\operatorname{cand}(S)=\operatorname{card}(\mathbb{N})$.

We say a set S is countable If it is either finite or countably infinite.

Example 1: (π and 2π)

$$
\begin{gathered}
\text { Define } \varphi: \pi \rightarrow 2 \pi \\
\varphi(n)=2 n .
\end{gathered}
$$

Then φ is a bijection, So 2π is countably infinite.

Theorem: Let S be countably infinite.
Then any subset of S is countable.
proof: By applying a bijection. we may reduce to $S=\mathbb{N}$.

Let T be a subset of \mathbb{N}.
If $\operatorname{card}(T)<\infty$, done.
If $\operatorname{card}(T)=\infty$, then
Th as a smallest element, n_{1}.

Define $\varphi: \mid N \rightarrow T$ inductively by

$$
\text { 1) } \varphi(1)=n_{1}
$$

2) $\varphi(2)=$ smallest element of

$$
T \backslash\left\{n_{1}\right\rangle=n_{2}
$$

3) $\varphi(3)=$ smallest element of

$$
T \backslash\left\{n_{1}, n_{2}\right\}=n_{3}
$$

In general, $\varphi(k)=$ smallest element of $T \backslash\left\{n_{1}, n_{2}, n_{3},-, n_{k-1}\right\}$. Check this is a bijection!

Theorem: (1) is countable

Proof: Pick two primes

$$
p+q, \quad p \neq q .
$$

Note: $\left\{p^{n} \mid n \in \mathbb{N}\right\}$ is infinite and a subset of N, hence countable.

Define $\varphi: \mathbb{Q} \rightarrow \pi$ by if $\frac{g}{b}$ is in lowest terms,

$$
\begin{aligned}
& \varphi\left(\frac{a}{b}\right)=p^{a} q^{b} \text { if } \frac{a}{b}>0 \\
& \varphi(0)=0 \\
& \varphi\left(\frac{a}{b}\right)=-p^{a} q^{b} \text { if } \frac{a}{b}<0
\end{aligned}
$$

With $b=1, a \in \mathbb{N}$, we get

$$
\left\{p^{n} \ln \in \mathbb{N}\right\} \subseteq Q(\mathbb{Q})
$$

$\Rightarrow \varphi(\mathbb{Q})$ is infinite.

Why is φ injective?
Unique factorization!

Theorem: $|P(s)|>|s| \forall$ sets S

Theorem: $[0,1]$ is uncountable

