Announcements

1) HW5 Q2 was incorrect, has been corrected (26) was false)
2) Next time: read 6.4
3) Second Midterm Tuesday before Thanksgiving Break
4) Extra Credit: prove that $\sqrt{33}$ is irrational (5 pts), due next Tuesday

Definition: (cardinality)
Two sets S and T are said to have the same Cardinality if \exists bijection $f: S \rightarrow T$.

Characterization of Infinite Sets

A set S is infinite if and only if S admits a bijection from itself onto a proper subset of S.

Example I \mathbb{N} and \mathbb{Z}
Show that \mathbb{N} and \mathbb{Z} have the same cardinality.

We need a bijection

$$
f: \mathbb{N} \rightarrow \mathbb{Z}
$$

Define f as

$$
f(n)=\left\{\begin{array}{c}
\frac{n}{2}, n \text { even } \\
0, n=1 \\
-\left(\frac{n-1}{2}\right), n>1, n \text { odd }
\end{array}\right.
$$

Need to check surjectivity and injectivity

Injectivity: Suppose $f(n)=f(m)$.
We want to show $n=m$ By cases:
i) both n and m even.

Then

$$
\frac{n}{2}=f(n)=f(m)=\frac{m}{2}
$$

Cancelling out the 2 's,

$$
n=m .
$$

ii) n and m both odd, $n \neq 1 \neq m$

$$
-\left(\frac{n-1}{2}\right)=f(n)=f(m)=-\left(\frac{m-1}{2}\right)
$$

So

$$
\begin{aligned}
\frac{n-1}{2} & =\frac{m-1}{2} \\
n-1 & =m-1 \\
n & =m
\end{aligned}
$$

(ii) $n \neq 1, n$ odd, m even.

$$
-\left(\frac{n-1}{2}\right)=f(n)=f(m)=\frac{m}{2}
$$

\Rightarrow an positive number equals a negative number, contradiction. So $f(n) \neq f(m)$ in this case.
(v) $n=1, m=$ anything else

$$
\begin{aligned}
& f(1)=0 \\
& f(m) \neq 0 \quad \text {, so again, } \\
& f(1)=f(m) \text { is impossible. }
\end{aligned}
$$

This completes the proof that f is injective.

Surjectivity: Solve.
We need to show that if $b \in \pi, \mathcal{F} n \in \mathbb{N}, f(n)=b$.

By cases
() $b=0, n=1$
(i) $b>0, n=2 b \in \mathbb{N}$
(ii) $b<0, n=-2 b+\mid \in \mathbb{N}$

$$
b=\underset{\text { solve }}{f(n)=-\left(\frac{n-1}{2}\right) \hat{}}
$$

This shows f is a bijection, and so Z and \mathbb{N} have the same cardinality! In particular, since $\mathbb{N} \subset \mathbb{R}$, we have shown that π is infinite.

Some Cardinality Results
We denote $|s|$ as the cardinality of S.

1) $||N|=|\Omega|=|\mathbb{Q}|$
2) $|\mathbb{R}|>|\mathbb{N}|$
3) $\left|\mathbb{R}^{2}\right|=|\mathbb{R}|$
4) $|[0,1]|=|\mathbb{R}|$
5) for any set $s,|p(s)|>|s|$

Set Operations
(Section 5,3)

Example 2: $\left(A^{c}\right)^{c}=A$
Show both $A \subseteq\left(A^{c}\right)^{c}$ and

$$
\left(A^{c}\right)^{c} \leq A
$$

1) Let $x \in A$, show $x \in\left(A^{c}\right)^{c}$.

But if $x \in A, x \notin A^{c}$

$$
\Rightarrow x \in\left(A^{c}\right)^{c}
$$

2) Let $x \in\left(A^{c}\right)^{c}$. Show $x \in A$.

But if $\left(A^{c}\right)^{c}$, then $x \notin A^{c}$.
Since any element of a set U with $A \subseteq U$ has $x \in A$ or $x \in A^{c}$
2) Let $x \in\left(A^{c}\right)^{c}$. Show $x \in A$. But if $x \in\left(A^{C}\right)^{c}$, then $x \notin A^{c}$.
Since any element of a set U with $A \subseteq U$ has $x \in A$ or $x \in A^{c}$ and $A \cap A^{c}=\phi$, we must have $x \in A$.

More on Functions
$(\operatorname{section} 6.4)$

Definition: $\left(\mathbb{P}_{n}\right)$ The set \mathbb{P}_{n} Consists of all polynomials with coefficients in \mathbb{R} whose degree is less than or equal to n.

$$
\begin{aligned}
& \mathbb{P}_{0}=\text { constant functions } \\
& \mathbb{P}_{1}=\text { lines } \\
& \mathbb{P}_{2}=\text { quadratics and lines } \\
& \mathbb{P}_{3}=\text { cubics, quadratics, and lines }
\end{aligned}
$$

$$
e+c
$$

