Set Theory
(Chapter 5)

What is a set?

Unfortunately, there is no precise definition! However, set theory is basic enough to allow one to "construct" the natural numbers.

Examples of sets:

1) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
2) all functions from \mathbb{R} to \mathbb{R}
3) all stars in the universe

Almost everything you can think of is a set! However, some of us have very active imaginations.

The members of a set S will be called the elements of S. If x is an clement of S, we denote this using the symbol "x $x \in S$ ". If y is not an element of S, we write "y $\notin s$ ".

Example $1: 1 / 2 \in \mathbb{Q}$, but $1 / 2 \notin \mathbb{N}$.
$\pi \in \mathbb{R}$, but $\pi \notin \mathbb{Q}$

Notation: We may list a finite set via its elements, such as

$$
S=\left\{x_{1}, x_{2}, x_{3}\right\}
$$

We may also write a set using set builder notation:

$$
S=\left\{x_{i} \mid 1 \leq i \leq 3\right\}
$$

reads " S is the set of all x_{i} 's such that $1 \leq i \leq 3^{\prime \prime}$

Example 2 :

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}|\ln |<5\} \\
&=\{-4,-3,-2,-1,0,1,2,3,4\} \\
& T=\{\sqrt{2},\{5,8\}\} \\
& \sqrt{2} \in T \\
&\{5,8\} \in T \\
&\{\sqrt{2}\} \subseteq T
\end{aligned}
$$

Not a set: (Bertrand Russell)

Let S be the set of all sets that do not contain itself as a member.

Is $S \in S$?

More notation: If every
element of a set S is also an element of another set T, we write " $S \subseteq T$ " for " S is contained in T ".

If in addition $S \neq T$, we write "S CT" or " $S_{+}^{C} T$ " and say S is properly contained in T.

Example 3: $N \subset \mathbb{Q} \subset \mathbb{Q}$

The fact that the last containment is strict is the only part that requires proof

The empty set

The empty set is the set with no elements, denoted " \varnothing ". You can use

$$
\phi=\{x \mid x \neq x\} \text { as a }
$$ definition. By convention, $\phi \subseteq S$ for all sets S.

Operations with Sets: Let S and
T be sets, and suppose $S, T \subseteq U$ where U is called a "universal" set. We define

1) The union of S and T, denoted by "SUT", as

$$
\operatorname{SUT}=\{x \mid x \in S \text { or } x \in T\}
$$

2) The intersection of S and T, denoted by " $S \cap T$ ", as

$$
S \cap T=\{x \mid x \in S \text { and } x \in T\}
$$

3) The complement of S, denoted " S^{c} ", by

$$
S^{c}=\{x \in \cup \mid x \notin S\}
$$

4) The relative complement of s with respect to T, denoted

$$
\begin{aligned}
& \| T \backslash S^{\prime} \text { or }{ }^{\prime T-S^{\prime \prime} \text { by }} \\
& T \backslash S=\{x \in T \mid x \notin S\}
\end{aligned}
$$

Note $T \backslash S=T \cap S^{c}$

Example 4: Let

$$
\begin{aligned}
& U=\{n \in \mathbb{R}| | n \mid \leq 10\} \\
& A=\{-5,2,3,9\} \\
& B=\{-7,-1,0,2,9,10\} \\
& A \cup B=\{-7,-5,-1,0,2,3,9,10\} \\
& A \cap B=\{2,9\} \\
& B^{C}=\{-10,-9,-8,-6,-5,-4,-3,-2, \\
& 1,3,4,5,6,7,8\} \\
& A \backslash B=\{-5,3\}
\end{aligned}
$$

Cardinality and Power Sets

For a finite set S, we define the cardinality of S, denoted $"(\operatorname{ard}(S) "$ (or $|S|$ or $\# S$) to be the number of elements in s.

If T is an arbitrary set, we define the power set of T, denoted by $P(T)$, as

$$
\gamma(T)=\{R \mid R \subseteq T\}
$$

Warning a observation: The subsets of T are the elements of $P(T)$. For example, $\mathbb{Z} \subseteq \mathbb{R}$, but $\mathbb{Z} \in P(\mathbb{R})$.

