Announcements

1) Reading for Tuesday: Section 3.3

Definition: (divisors, multiples)
Let $m, n \in$ R, $m \neq 0$. We say m divides n if $\exists k \in \mathbb{Z}$ with $n=m k$. We say m is a divisor (ur factor) of n, and n is a multiple of m.

Notation: $m \mid n($ "m divides $n ")$
If $p \in \mathbb{Z}, p$ is prime if $p>1$ and the only positive divisors of p are 1 and p.

Definition: $\left(x_{p}\right)$ Let p be a prime number. Then π_{p} is the set of equivalence classes of Ω under the equivalence relation

$$
m \sim n \text { if } p \mid(n-m)
$$

In fact, this definition works just fine if p is not aprimel

If $k \in \mathbb{N}, 2_{k}$ is the Set of equivalence classes of integers under
$m \sim n$ if $k \mid(n-m)$.

Proof that this is an equivalence relation:

Symmetr, Reflexivity, Transitivity

Reflexivity: Let $m \in \pi$. Is
$m \sim m 2 \quad m-m=0$,
so $k \mid m-m=0$ for all

$$
k \in \mathbb{N}
$$

Symmetry: Suppose $m, n \in \pi$ and $m \sim n$. Is $n \sim m$? Well, $m \sim n$ means $k \mid(n-m)$, and $n \sim m$ means $k \mid(m-n)$.

But if $k \mid(n-m)$, then

$$
\begin{aligned}
& m-n=(-1)(n-m) \text {, and so } \\
& k \mid(m-n) .
\end{aligned}
$$

Transitivity: Let $m, n, j \in \mathbb{R}$.
Suppose $m \sim n$, $n \sim j$. Is $m \sim j ?$
If $m \sim n$, then $k \mid(n-m)$, and if $n \sim j$, then $K(j-n)$.

We want to show that also

$$
k \mid(j-m)
$$

We have

$$
\begin{aligned}
j-m & =j(-n+n)-m \\
& =(j-n)+(n-m)
\end{aligned}
$$

Since $k \mid(n-m)$ and $k \mid(j-n)$, $\exists \quad \ell, a \in \pi$,

$$
K_{1} l=n-m+K_{a}=j-n,
$$

So

$$
\begin{aligned}
j-m & =(j-n)+(n-m) \\
& =k a+k l \\
& =k(a+l) \text { and }
\end{aligned}
$$

$k \mid(j-m)$ and we are done!

More Methods of Proof (Section 3.2)

The Contrapositive: recall that For a statement $P \Rightarrow Q$, the contrapositive is the statement $(\neg Q) \Rightarrow(\neg P)$.

These are logically equivalent statements, so proving one proves the other.

Example 1: Lot $n, m \in Z$. Then if $n \in 2$ 亿, $n m \in 2$ 亿

Proof: Prove the contrapositive:

If $n m \notin 2 \pi$, then $n \notin 2 \pi$.
If $n m \notin 2 \pi$, then 2 does not divide nm. But then 2 cannot divide n.

