Announcements

1) Reading for Tuesday : Section 3.3

Definition : (divisors, multiples)

Definition:
$$(Zp)$$
 Let p be a
prime number. Then Zp
is the set of equivalence
classes of Z under the
equivalence relation
 MNN if $p(n-m)$

In fact, this definition works just fine if p is not a prime!

IF KEIN, ZK is the Set of equivalence classes of integers under $m \sim n$ if k | (n-m).

Proof that this is an equivalence relation:

Symmetr, Reflexivity, Transitivity

KG IN.

Symmetry: Suppose
$$m, n \in \mathbb{Z}$$

and $m \vee n$. Is $n \vee m^2$.
Well, $m \vee n$ means $k \mid (n-m)$,
and $n \vee m$ means $k \mid (m-n)$.
But if $k \mid (n-m)$, then
 $m-n = (-1)(n-m)$, and so
 $k \mid (m-n)$.

Transitivity: Let m, n, jEZ. Suppose MNN, NNJ. Is ~~~) ? If $m \sim n$, then $k \mid (n-m)$, and if n~j, then k(j-n). We want to show that also k | (j-m)We have __D j-m=j(-n+n)-m= (j-n) + (n-m)

More Methods of Proof
(Section 3.2)
The Contrapositive: recall that
For a statement
$$P \Rightarrow Q$$
,
the contrapositive is the
statement $(TQ) \Rightarrow (TP)$.
These are logically equivalent
statements, so proving one
proves the other.

Example 1: Lot n, meZ. Then if nedZ, nmedZ. Prove the contrapositive: If nm & 22, then n & 22. IF nm & 222, then 2 does not divide nm. But then 2 cannot divide n. <u>[</u>]