Math 300 In-Class Worksheet 11: Injections, Surjections, and Bijections

1) For each of the following functions, say whether or not it is injective, surjective, or bijective and justify your response.
Hint 1: you may find it helpful to complete the square... if you forgot what that is, you can look it up.
Hint 2: after you complete the square, it could be very helpful to sketch a graph of each function, paying careful attention to the domain and co-domain in each case.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$, with the assignment rule $f(x)=x^{2}+6 x+5$.
(b) $g: \mathbb{R} \rightarrow[-4, \infty)$, with the assignment rule $g(x)=x^{2}+6 x+5$.
(c) $h:[-3, \infty) \rightarrow \mathbb{R}$, with the assignment rule $h(x)=x^{2}+6 x+5$.
(d) $i:[-3, \infty) \rightarrow[-4, \infty)$, with the assignment rule $i(x)=x^{2}+6 x+5$.
2) Let $a_{1}=5, a_{n+1}=\sqrt{a_{n}+25}$. Prove that $a_{n}<5.8$ for all $n \geq 1$. You may use a calculator to check what are the values of some square roots.
3) Suppose $f: A \rightarrow B$ and $g: X \rightarrow Y$ are bijective functions. Define a new function $h: A \times X \rightarrow B \times Y$ by $h(a, x)=(f(a), g(x))$. Prove that h is bijective.
4) (The littlest equivalence relation) Let A be any set and define the relation " \sim " on A by

$$
x \sim y \text { if and only if } x=y
$$

for all $x, y \in A$.
a) If $x \in A$, determine $\operatorname{card}([x])$
a) Prove that " \sim " is an equivalence relation.
c) Show that the function $\phi: A \rightarrow A / \sim$ given by $\phi(x)=[x]$ is a bijection.

