Math 300 In-Class Worksheet 13: More on Functions and Sets

1) ($\# 2$, Section 5.3) Let A, B, and C be subsets of some universal set U. As part of Theorem 5.18, we proved one of the distributive laws. Prove the other one. That is, prove that

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

2) (\#8, Section 5.3)
(a) Draw two general Venn diagrams for the sets A, B, and C. On one, shade the region that represents $A-(B-C)$, and on the other, shade the region that represents $(A-B) \cup\left(A-C^{c}\right)$. Based on the Venn diagrams, make a conjecture about the relationship between the sets $A-(B-C)$ and $(A-B) \cup\left(A-C^{c}\right)$. (Are the two sets equal? If not, is one of the sets a subset of the other set?)
(b) Prove the conjecture from Exercise (8a).
3) Define $D: \mathbb{P}_{4} \rightarrow \mathbb{P}_{3}$ by

$$
D(p(x))=p^{\prime}(x)
$$

where p^{\prime} is the derivative of p.
(a) Is I an injective function? Justify your answer.
(b) Is I a surjective function? Justify your answer.
4) Let.$a_{1} a_{2} a_{3} \ldots$ denote the usual (base-10) decimal expansion of an element in $[0,1]$. Consider $f:[0,1] \rightarrow[0,1]$ by

$$
f\left(. a_{1} a_{2} a_{3} \ldots\right)=. a_{2} a_{4} a_{6} \ldots
$$

Assuming f is well-defined,
(a) Is I an injective function? Justify your answer.
(b) Is I a surjective function? Justify your answer.

