Math 300 In-Class Worksheet 14: Composition and Inverses of Functions

1) Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by the formula $f(x, y)=$ $\left(\left(x^{2}+1\right) y, x^{3}\right)$ is bijective. Then find its inverse. Carefully justify that your answer does indeed yield the inverse function.
2) (\#7, Section 6.4) For each of the following, give an example of functions $f: A \rightarrow B$ and $g: B \rightarrow C$ that satisfy the stated condition, or explain why no such example exists.
(a) The function f is a surjection, but the function $g \circ f$ is not a surjection.
(b) The function f is an injection, but the function $g \circ f$ is not an injection.
(c) The function g is a surjection, but the function $g \circ f$ is not a surjection.
(d) The function g is an injection, but the function $g \circ f$ is not an injection.
(e) The function f is not a surjection, but the function $g \circ f$ is a surjection.
(f) The function f is not an injection, but the function $g \circ f$ is an injection.
(g) The function g is not a surjection, but the function $g \circ f$ is a surjection.
(h) The function g is not an injection, but the function $g \circ f$ is an injection.
3) Define $\phi: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4}$ by

$$
\phi\left([a]_{2},[b]_{2}\right)=[2 a+b]_{4}
$$

(a) Show that ϕ is bijective.
(b) Find the inverse function of ϕ, and carefully justify that this is the inverse.
4) Prove that function composition is associative.

