Math 300 In-Class Worksheet 16: Prime Factorizations and Function Rules

1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0, & x \in \mathbb{Q} \\ x, & x \notin \mathbb{Q}\end{cases}
$$

a) Is f a bijection? That is, does f^{-1} define a function?
b) Compute $f^{-1}(\{2\}), f^{-1}(\{\pi\})$, and $f^{-1}([0,1])$.
c) Find the largest domain on which f is injective.
2) (\#5, Section 6.6) Prove part (2) of Theorem 6.34:

Let $f: S \rightarrow T$ be a function and let A and B be subsets of S. Then $f(A \cup B)=f(A) \cup f(B)$.
3)
4) (\#18, Section 8.2) Prove the following proposition

For all natural numbers m and n, if m and n are twin primes other than the pair 3 and 5 , then 36 divides $m n+1$ and $m n+1$ is a perfect square.

Hint: Look at several examples of twin primes. What do you notice about the number that is between the two twin primes? Set up cases based on this observation.
5) fun

