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Abstract:  Approximations for small values of x to the pdf f(x) and cdf F(x) of a linear combination of independent chi-square or gamma random variables are given.  The approximations are by functions of the form cx(e-(x.  Error bounds are given that allow one to determine intervals for which the approximations hold with a given degree of precision.

1.  Introduction.

Linear combinations of independent chi-square and gamma random variables arise in a variety of situations.  For example, if Q is a positive definite quadratic form in variables with a multivariate normal distribution with mean zero, then the distribution of Q is a linear combination of independent chi-square random variables [4, pp. 149-153].  One instance of this is the variance in components of variance models [2, 11].  Aside from including linear combinations of chi-square random variables, sums of independent gamma random variables have found application in other modeling situations [1, 6, 12].  

In some special cases the density and distribution functions of such linear combinations can be expressed in terms of functions available in mathematical software, e.g. Bessel functions or single variable hypergeometric functions.  In the general case the density function can be expressed in terms of multivariable hypergeometric functions [Mathai, p. 596].  However, these functions are often not available on mathematical software.  

A number of useful approximations to linear combinations of independent (2 or gamma random variables have been established [6, 8-10, 12-14].  The Satterthwaite approximation [9, 10, 13] approximates a linear combination of independent (2 random variables by the multiple of another (2 random variable that has the same mean and variance.  This approximation is best for values whose magnitude is on the order of the mean of the distribution.

In contrast, this paper gives approximations to the probability density function (pdf) f(x) and cumulative distribution function (cdf) F(x) of linear combinations of independent (2 or gamma random variables that are good for small values of x, see (1.6) and (1.7) below.  Theorem 1 gives error bounds for these approximations which allow one to find a range of values of x for which these approximations hold with a given degree of precision.  Since (2 random variables are special cases of gamma random variables, the approximations are stated for sums of gamma random variables.  An example in section 3 illustrates the application of these approximations with a linear combination of (2 random variables.  A previous paper [5] considered the special case of sums of exponential random variables.  
In the following ((x;(,() denotes the pdf of a gamma random variable with shape parameter ( > 0 and scale parameter ( > 0, i.e. ((x;(,() = ((x(‑1e-(x/((() for x > 0 and ((x;(,() = 0 for x < 0.  Let S = T1 + ( + Tn be the sum of independent gamma random variables T1, …, Tn where Tj has parameters j and (j.  Let  = (1,...,n) and ( = (1,...,n) be the vectors of shape and scale parameters of the Tj.  The pdf and cdf of S are

(1.1)

f(x;,()   =   ((x;1,(1) * ((x;2,(2) * ( * ((x;n,(n)

(1.2)

F(x;,()   =    eq \i(0,x, )f(s;,()ds   =   f(x;,() * 1

where * denotes convolution:
(1.3)

g(x) * p(x)   =   eq \I(0,x, )g(x-s)p(s)ds   =   x  \eq \i(0,1, )g(x(1-u)) p(xu) du 

for x ( 0.  If all the (j are equal, say ( = ((, …, (), then 

(1.4)

f(x;,()   =   ((x;||,()   =    \eq \f((|a|x|a|-1e-(x,((|a|))
where

(1.5)

||   =   1 + ... + n
is the sum of the shape parameters [3 , p. 46]. 

The object of this paper is to give error bounds for the following approximations which are good for small x.  

(1.6)
f(x;,()   (    eq \f((x||-1e-(x,((||))
(1.7)
F(x;,()   (    eq \f((x||e-(x,((|| + 1))   
where

(1.8)

(   =    eq \f(a1(1 + … + an(n,| a |)
is the weighted mean of the scale parameters ( = (1,...,n) using the shape parameters  = (1,...,n) as weights, 
(1.9)

(   =    eq \f(|(| (,|(| + 1) 

is the analogous weighted mean of the scale parameters ( = (1,...,n,0) using the shape parameters  = (1,...,n,1) as weights and

(1.10)

(   =   ((1)1((2)2(((n)n
The approximations (1.6) and (1.7) say f(x;,() and F(x;,() are approximately proportional to gamma pdf's for small values of x.  

Remark 1.  Since es ( 1 for small s, the approximations (1.6) and (1.7) can be simplified to f(x;,() ( (x||-1/((||) and F(x;,() ( (x||/((|| + 1).  However, these approximations are not as good as (1.6) and (1.7).  See the example in section 3.
f(x;,() and F(x;,() have similar structure if we introduce the function E(x;,() defined by
(1.11)

E(x;,()   =    eq \f(1,((1)((2)(((n)) (x1-1e-(1x) * (x2-1e-(2x) * ( * (xn-1e-(nx)

Then f(x;,() = (E(x;,() and F(x;,() = (E(x;,() where  = (1,...,n,1) and ( = (1,...,n,0).  The following error bounds for the approximations (1.6) and (1.7) are useful for determining a range of values of x for which they hold with a given degree of precision.

Theorem 1.  Let  = (1,...,n) be a vector of positive real numbers and ( = (1,...,n) be a vector of real numbers.  Let | ( |, ( and ( be given by (1.5), (1.8) and (1.9).  Let ( = ( ‑ min{1,...,n}, (2  =   EQ \F(1,|a|) \I\su(j=1,n, )aj((j - ()2 be the weighted variance of the (j where we use the j as weights and (2  =   EQ \F(1,|a| + 1) \b(\I\su(j=1,n, )aj((j - ()2 + (2) be the corresponding variance for ( = (1,...,n,0) using  = (1,...,n,1) as weights.  Let ((x) = (2x2e(x/(2||+2) and ((x) = (2x2e(x/(2||+4).  Then for x ( 0 one has
(1.12)
 eq \f(x||-1e-(x,((||))   (   E(x;,()   (   (1 + ((x))  eq \f(x||-1e-(x,((||))
If, in addition, the (j are all positive and (( is given by (1.10), then for x ( 0 one has
(1.13)
 eq \f((x||-1e-(x,((||))   (   f(x;,()   (   (1 + ((x))  eq \f((x||-1e-(x,((||))
(1.14)
 eq \f((x||e-(x,((|| + 1))   (   F(x;,()   (   (1 + ((x))  eq \f((x||e-(x,((|| + 1))

Remark 2.  In the proof of Theorem 1 we shall also show  

(1.15)
(1 – (x)  eq \f(x||-1,((||))   (   E(x;,()   (    eq \f(x||-1,((||))
(1.16)
(1 – (x)  eq \f((x||-1,((||))   (   f(x;,()   (    eq \f((x||-1,((||))
(1.18)
(1 – (x)  eq \f((x||,((|| + 1))   (   F(x;,()   (    eq \f((x||,((|| + 1))
which allows one to give error bounds for the simplified approximations in Remark 1.


Remark 3.  The following alternative formula for (2 is sometime useful in computations: (2  =  |(| [ (|(| + 1)(2 + (2]/(|(| + 1)2.  

The proof of Theorem 1 is in the next section along with some preliminary results.  Section 3 has an example that illustrates the application of the approximations (1.6) and (1.7) and error bounds (1.13) and (1.14) to a linear combination of (2 random variables and a comparison of these approximations with the Satterthwaite approximation.  
2.  Proof of Theorem 1.


The proof of Theorem 1 requires some preliminary results which we discuss first.  The following two formulas involving multiple convolutions are useful.  

Proposition 2.  Let f1(x), ..., fn(x) be defined for positive x and integrable on bounded intervals and ( be a real number.  Then

(2.1)

[e(xf1(x)] * * [e(xfn(x)]   =   e(x [f1(x) * * fn(x)]

(2.2)

f1(x) * * fn(x)   =   xn-1 eq \I((,, )f1(x(1-u1)) f2(x(u1-u2)) … fn-1(x(un-2-un-1)) fn(xun-1) du 
where du = du1…dun-1 and

(2.3)

(   =   {(u1,…,un‑1):  0 ( u1 ( 1,  0 ( u2 ( u1,…, 0 ( un-1 ( un-2}

Proof.  The case n = 2 for (2.1) is a straightforward computation from the definition (1.3).  The general case is easily proved by induction.  The case n = 2 for (2.2) is just the second integral in (1.3).  The general case is proved by induction as follows.  Assume (2.2) is true for n.  Using this and the associativity of convolution one has 


f1(x) * * fn+1(x)   =   f1(x) * * fn-1(x) * (fn(x) * fn+1(x))

=   xn-1 eq \I((,, )f1(x(1-u1)) f2(x(u1-u2)) … fn-1(x(un-2-un-1)) (fn * fn+1)(xun-1) du 
Using the left integral in (1.3) and making the change of variables s = xun one has

(fn * fn+1)(xun-1)   =   eq \I(0,xun-1, )fn(xun-1-s) fn+1(s)ds   =   x eq \I(0,un-1, )fn(x(un-1-un)) fn+1(xun) dun 
Substituting into the above gives

f1(x) * * fn+1(x)   =   xn eq \I((,, )eq \I(0,un-1, )f1(x(1-u1)) f2(x(u1-u2)) … fn-1(x(un-2-un-1)) fn(x(un-1-un))fn+1(xun)dun du 
which proves (2.2) for n + 1.  (
The following representation of E(x;,() is one ingredient in the proof of Theorem 1.

Theorem 3.  Let  = (1,...,n) be a vector of positive real numbers, ( = (1,...,n) be a vector of real numbers, E(x;,() be defined by (1.13), u = (u1,…,un-1), u0 = 1, un = 0 and b = ((1)((2) … ((n).  Then
(2.4)

E(x;,()   =   x||-1H(x;,) 

where

(2.5)

H(x;,)   =    EQ \I((,, )h(u;) e-x((#u) du  
(2.6)

h(u;)   =   b-1 (u0 - u1)1-1(u1 - u2)2-1…(un-1-un)n-1
(2.7)

(#u   =   (1(u0-u1) + (2(u1-u2) + (3(u2-u3) + … + (n‑1(un-2-un-1) + (n(un-1-un)

Proof.  Applying (2.2) with fj(x) = xj-1e-(jx/((j) gives


E(x;,()   =   xn-1b-1eq \I((,, )((x(u0 - u1))1-1e-(1x(u0 - u1)(x(u1 - u2))2-1e-(2x(u1 - u2)…(x(un-1-un))n-1e-(nx(un-1 - un) du
The theorem follows from this.  (
The other ingredient in the proof of Theorem 1 is the following.

Proposition 4.  Let  = (1,...,n) be a vector of positive real numbers, ( = (1,...,n) be a vector of real numbers, ( be given by (1.7), (2 be as in Theorem 1 and h(u) = h(u;) be given by (2.6).  Then h(u) > 0 for u ( (  and

(2.8)

 EQ \I((,, h(u) du)   =    eq \f(1,(( |a| ))
(2.9)

 EQ \I((,, h(u) ((#u) du)   =    eq \f((,(( |a| ))
(2.10)

 EQ \I((,, h(u) ((#u)2 du)   =    eq \f(1,((|a|)) eq \b((2  +  \f((2,|a| + 1))
Proof.  If one takes ( = ((,…,() to be a vector of identical positive numbers, then it follows from (1.4) and the relation f(x;(,() = ((E(x;(,() that E(x;(,((,…,()) = x|(|-1e-(x/((|(|).  However, by (2.4) and (2.5) one has E(x;(,((,…,()) = x|(|-1e-(x  EQ \I((,, h(u) du).  Combining proves (2.8).  To prove (2.9), note that  EQ \I((,, h(u) (uj-1 - uj) du) =  EQ \I((,, )h(u; + 1j)((j+1)/((j) du where 1j = (0,…,0,1,0,…,0) is the vector with a 1 in the jth coordinate and 0 elsewhere.  One has ((j+1)/((j) = j and  EQ \I((,, )h(u; + 1j) du = 1/(( || + 1 ) by (2.8).  So  EQ \I((,, h(u) (uj-1 - uj) du) = j/(( || + 1 ).  Multiplying by (j, summing on j and using (( || + 1 ) = || ((||) proves (2.9).  Finally, we prove (2.10).  Note that if j ( k one has  EQ \I((,, )h(u)(uj-1 - uj)(uk-1 – uk) du =  EQ \I((,, )h(u;+1j+1k)((aj+1)((ak+1)/[((aj)((ak)] du.  By (2.8) one has  EQ \I((,, )h(u;+1j+1k) du = 1/((|| + 2).  So  EQ \I((,, )h(u)(uj-1 - uj)(uk-1 – uk) du = jk/((|| + 2).  Also,  EQ \I((,, )h(u)(uj-1 - uj)2 du =  EQ \I((,, )h(u;+21j)((aj+2)/((aj) du.  By (2.8) one has  EQ \I((,, )h(u;+21j) du = 1/((|| + 2).  So  EQ \I((,, )h(u)(uj-1 - uj)2 du = j(j+1)/((|| + 2).  One has 
 EQ \I((,, )h(u)((#u)2du   =    \eq \i\su(j = 1,n, ) (j2 EQ \I((,, )h(u)(uj-1 – uj)2du  +  2  \eq  \i\su(j = 1,n, )\i\su(k = 1,j - 1, ) (j(k  EQ \I((,, )h(u)(uj-1 – uj)(uk-1– uk)du
Combining with the previous formulas for the integrals on the left one obtains

 EQ \I((,, )h(u)((#u)2 du   =    \eq \i\su(j = 1,n, )  eq \f(aj(aj+1)(j2,((|a| + 2))  + 2  \eq  \i\su(j = 1,n, )\i\su(k = 1,j - 1, )  eq \f(jk(j(k,((|a| + 2))
Since ||2(2 =  \eq \i\su(j = 1,n, )aj2(i2 + 2 \eq  \i\su(j = 1,n, )\i\su(k = 1,j - 1, )jk(j(k, it follows that

 EQ \I((,, )h(u)((#u)2du   =    eq \f(1,((|a| + 2)) ||2(2  +   eq \f(1,((|a| + 2)) \eq \i\su(j = 1,n, ) j(j2 

Since   \eq \i\su(j = 1,n, )aj(i2 = ||(2 + ||(2, it follows that

 EQ \I((,, )h(u)((#u)2du   =    eq \f(1,((|a| + 2)) ||2(2  +   eq \f(1,((|a| + 2))(||(2 + ||(2)   =    eq \f(1,((|a|)) eq \b((2  +  \f((2,|a| + 1))
which proves (2.10).  (
Proof of Theorem 1.  We first prove (1.12) in the case ( = 0.  Assuming ( = 0 one has ( = ‑ min{1,...,n}.   By Taylor's formula one has e‑t = 1 ‑ t +t2e‑s/2 where s is between 0 and t.  So 1 ‑ t ( e‑t ( 1 ‑ t + (t2/2) max{1,e-t}.  Applying this with t = x((#u) and using the fact that max{1, e‑x((#u)} ( e-(x for u in (, one obtains 

1 – x((#u)   (  e‑x((#u)   (   1 ‑ x((#u) + x2((#u)2e‑(x/2

Multiplying by x||-1h(u;), integrating over ( and using (2.4) and Proposition 4 one obtains 

 eq \f((1 - (x)x||-1,((||))   (   E(x;,()   (    eq \f([1 - (x + ((2 + (2/(|a|+1)]x2e‑(x/2)x||-1,((||))
Since ( = 0, this proves (1.12) in the case ( = 0.  

One can reduce the general case of (1.12) to the case ( = 0 as follows.  Let ( = (1‑(,...,n‑() and let ((, ((, (( and (((x) be defined from ( and ( in the same way (, (, ( and ((x) are defined from ( and (.  It is not hard to see that (( = 0.  Since (1.12) is true in the case ( = 0, one has

(2.11)

 eq \f(x||-1,((||))   (   E(x;,(1‑(,...,n‑())   (   (1 +(((x))  eq \f(x||-1,((||))
It is not hard to see that (( = (, (( = ( and (((x) = ((x).  Also note that (2.1) implies E(x;,() = e-(xE(x;,(1‑(,...,n‑()).  If we multiply (2.11) by e-(x and use these fact, we obtain (1.12).
Finally, (1.13) and (1.14) follow from (1.12) since f(x;,() = (E(x;,() and F(x;,() = (E(x;,() where  = (1,...,n,1) and ( = (1,...,n,0).  (
Remark 4.  To prove (1.15) note that xj‑1e‑(jt/((j) ( xj‑1/((j).  Therefore, E(x) ( [((1)(((n)]-1[x1-1 * ( * xn-1] = x||‑1/((||) which proves the right inequality in (1.15).  The left inequality in (1.15) follows from the left inequality in (1.12) and the fact that 1 – y ( e-y for all y.  Again (1.16) and (1.17) follow from (1.15) since f(x;,() = (E(x;,() and F(x;,() = (E(x;,() where  = (1,...,n,1) and ( = (1,...,n,0).  
3.  An Example.

In this section we illustrate the approximations (1.6) and (1.7) and their error bounds (1.13) and (1.14) with the following example.  Let

(3.1)

S   =    eq \f(1,2)M1  +  M2   =   T1  +  T2  
where M1 = 2T1 is (2(5) and M2 = T2 is (2(3).  Since a random variable that is (2(() is a gamma random variable with shape parameter ( = (/2 and scale parameter ( = ½, it follows that T1 and T2 are gamma random variables with shape parameters (1 = 5/2 and (2 = 3/2 and scale parameters (1 = 1 and (2 = ½, respectively.  So, the pdf's of T1 and T2 are f1(x) = (4/3)(‑1/2x3/2e-x and f2(x) = (2()‑1/2x1/2e‑x/2, respectively.  The pdf of S is fS(x) = f1(x1) * f2(x).  In this case the pdf of S can be expressed in terms of Bessel functions, namely, fS(x) = ( eq \r(,2)/3)[(x2 + 8x)I1(x/4) – x2I0(x/4)]e-3x/4, where In(x) is the modified Bessel function of order n.  The cdf of S is FS(x) =  eq \i(0,x, )fS(s) ds.  
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Figure 1:  Graph of fS(x)
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Figure 2:  Graph of FS(x)
The values of | ( |, (, ( and ( given by (1.5), (1.8) – (1.10) are | ( | = 4, ( = 13/16, ( = 13/20 and ( = 1/(2 eq \r(,2)).  The approximations (1.6) and (1.7) say that for small x one has
(3.2)
fS(x)   (    eq \f(x3e-13x/16,12 \r(,2))
(3.3)
FS(x)   (    eq \f(x4e-13x/20,48 \r(,2))   

The values of (, (2, (2 and the function ((x) and ((x) given in Theorem 1 are ( = 5/16, (2 = 15/128, (2 = 1257/8000, ((x) = (3/256)x2e5x/16 and ((x) = (419/32000)x2e13x/20.  Suppose a relative error of 5% is acceptable.  The solution to ((p) = 0.5 is p ( 2.10, so the inequalities (1.13) say the approximation (3.2) will be good to within 5% for 0 ( x ( 2.10.  In fact it is good to within 5% for 0 ( x ( 2.83.  The solution to ((p) = 0.5 is p ( 1.30, so the inequalities (1.14) say the approximation (3.5) will be good to within 5% for 0 ( x ( 1.30.  In fact it is good to within 5% for 0 ( x ( 1.92.

It is of interest to compare the approximations (1.6) and (1.7) with the Satterthwaite approximation which says S ( P where P is a gamma random variable with the same mean and variance as S.  One has E(S) =  eq \i\su(j=1,n, )(j/(j and ( eq \o(2,S) =  eq \i\su(j=1,n, )(j/(j2.  If we denote the shape parameter of P by ( and the scale parameter by (, then E(P) = (/( and ( eq \o(2,P) = (/(2.  Thus ( = [ eq \i\su(j=1,n, )(j/(j]2/ eq \i\su(j=1,n, )(j/(j2 and ( =  eq \i\su(j=1,n, )(j/(j/ eq \i\su(j=1,n, )(j/(j2.  For the example (3.1) one has ( = 121/34 ( 3.56 and ( = 11/17.  So the pdf of P is fP(x) = ((x(‑1e-(x/((() = cx87/34e-11x/17 where c = 1331(11/17)19/34/(4913((121/34)).  The cdf of P is FP(x) = (((, (x) where (((, x) =  eq \i(0,x, )t(-1e-t dt is the lower incomplete gamma function.  The approximation fS(x) ( fP(x) is good to within 5% for 1.68 ( x ( 15.3 and the approximation FS(x) ( FP(x) is good to within 5% for x ( 2.51.  So the fS(x) ( fP(x) is good for intermediate values of x and the approximation FS(x) ( FP(x) is good for intermediate and large values of x.  In fact the approximation (3.2) is better than the approximation fS(x) ( fP(x) for x ( 1.93 and the approximation (3.3) is better than the approximation FS(x) ( FP(x) for x ( 2.22.  

As another comparison between the approximation (3.3) and FS(x) ( FP(x), consider approximating the value of x such that FS(x) such that FS(x) = 0.05.  The true value is (FS)‑1(0.05) = 1.80.  If one uses (3.3) to approximate FS(x), then the solution to  eq \f(x4e-13x/20,48 \r(,2)) = 0.05 is xA = 1.82 which differs from (FS)‑1(0.05) by 1.5%.  Using the Satterthwaite approximation FS(x) ( FP(x), the solution to FP(x) = 0.05 is 1.72 which differs from (FS)‑1(0.05) by 4.1%.  So the approximation (3.3) is somewhat better than the Satterthwaite approximation in this regard.

It is also of interest to compare the approximations (3.2) and (3.3) with the simplified approximations in Remark 1, i.e. by replacing the exponentials in (3.2) and (3.3) by 1, i.e.

(3.4)
fS(x)   (    eq \f(x3,12 \r(,2))
(3.5)
FS(x)   (     eq \f(x4,48 \r(,2))   

The inequality (1.16) says the approximation (3.4) will be good to within 5% for 0 ( x ( 0.05/( = 0.061.  In fact it is good to within 5% for 0 ( x ( 0.063.  This is a significantly smaller range that for the approximation (3.2).  The inequality (1.17) says the approximation (3.5) will be good to within 5% for 0 ( x ( 0.05/(  = 0.076.  In fact it is good to within 5% for 0 ( x ( 0.079.  Again this is a smaller range than for the approximation (3.3).  So the gamma type approximations (3.2) and (3.3) are substantially better than the simple power approximations (3.4) and (3.4).

4.  Conclusions.

This paper has presented approximations to the pdf f(x) and cdf F(x) of a linear combination of independent (2 or gamma random variables which are good for small values of x.  Error bounds were given that can be used to find intervals in which the approximations hold with a given degree of precision.  The example in section 3 shows that these approximations complement the well-known Satterthwaite approximation which is good for intermediate and (for the cdf) large values of x.
References
[1]
M.-S. Alouini, A. Abdi, M. Kaveh,  Sum of Gamma Variates and Performance of Wireless Communication Systems Over Nakagami-Fading Channels,  IEEE Transactions on Vehicular Technology, 50  (2001), 1471-1480.
[2]
R. K. Burdick, F. A. Graybill, Confidence Intervals on Variance Components, Marcel Dekker, New York, 1992.
[3]
W. Feller,  An Introduction to Probability Theory and its Applications, vol. II,  Wiley, New York, 1966.

[4]
N. Johnson, S. Kotz, Continuous Univariate Distributions – 2.  Houghton Mifflin, Boston, 1970.
[5]
F. Massey, J. Prentis, Power Law Approximations for Radioactive Decay Chains, Applied Mathematics and Computation,  245 (2014), 135-144. 

[6]
A. M. Mathai,  Storage Capacity of a Dam with Gamma Type Inputs,  Ann. Inst. Statist. Meth.,  34 (1982), Part A, 591-597.
[7]
A. M. Mathai, R. K. Saxena,  The H-functions with Applications in Statistics and Other Disciplines, Wiley, New York, 1978. 
[8]
P. G. Moschopoulos,  The Distribution of the Sum of Independent Gamma Random Variables,  Ann. Inst. Statist. Math., 37 (1985), Part A, 541-544.
[9]
F.E. Satterthwaite, Synthesis of Variance, Psychometrika, 6 (1941), 309-316.
[10]
F.E. Satterthwaite, An Approximate Distribution of Estimates of Variance Components, Biometrics Bulletin, 2 (1946), 110–114, doi:10.2307/3002019.
[11]
S. R. Searle, G. Casella, C. E. McCulloch, Variance Components, Wiley, New York, 1992.
[12]
C. H. Sim,  Point processes with correlated gamma interarrival times,  Statistics & Probability Letters,  15 (1992), 135-141.

[13]
H. F. Smith, The problem of comparing the results of two experiments with unequal errors,  J. of the Cound. of Scient. and Indust. Res., 9 (1936), 211-212.
[14]
B.L. Welch, The generalization of "student's" problem when several different population variances are involved, Biometrika, 34 (1947), 28–35.
15

