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1.
Introduction

These notes are concerned with the asymptotic behavior of convolutions of functions.

If f and g are functions defined for t ( 0 and integrable over (0, T) for every T, then their convolution f * g is defined by 
(1)

(f * g)(t)   =   eq \I(0,t,f(s) g(t-s)ds)   =   eq \I(0,t,f(t - s) g(s)ds)
If f and g are integrable on (0,T) for every finite T then the integral in (1) is defined for a.a.t. and f * g is also integrable on (0,T) for every T.

Two functions f(t) and g(t) are asymptotic as t ( ( if 

(2)

 \eq \o(lim,t ( ()   \eq \f(f(t),g(t))   =   1

If this is true we write f(t) ~ g(t) as t ( (.  Note that (2) includes the fact that there is some interval a < t < ( for which f(t) and g(t) are both defined and g(t) ( 0. 

The question we are interested in is the following.  Given two functions f and g, find a simpler function h such that (f * g) ~ h.  It seems like there is no general theorem that is useful for all types of f and g, but we shall see some theorems that apply to broad classes of functions along with some particular results for power functions.

In section 2 we summarize some elementary properties of convolutions, while in section 3 we collect some results on the asymptotic behavior of functions.  The remaining sections have results on the asymptotic behavior of convolutions.

2.
Convolutions

This section summarizes some elementary properties of convolutions that will be used later.  Unless stated otherwise functions are assumed to be defined for t ( 0 and integrable over (0, T) for every T.

Convolution is commutative, associative and distributes over addition.  An important special case of convolution is when g(t) = 1 for all t.  In that case

(1)

(f * 1)(t)   =   eq \I(0,t,f(s)ds)
Example 1.

(2)

 EQ \F(tn-1,(n-1)!) * 1   =    EQ \F(tn,n!)
(3)

(e-(t * 1   =   1 – e-(t
Definition 12.  A function f is of exponential growth if there exists C and ( such that

(4)

| f(t) |   (   Ce(t              for t ( 0

If f is of exponential growth then its Laplace transform L(f) is defined by

(5)

L(f)(s)   =   eq \I(0,(, e-st f(t)dt)
If f and g are of exponential growth then so is f * g.  If f satisfies (4) then L(f)(s) is defined for s > (.  Furthermore, if L(f) = L(g) then f = g.

Example 2.  

(6)

 EQ \b\lc\L(\b( \F(tn-1,(n-1)!) ))(s)   =    EQ \F(1,sn)


n = 1, 2, …,

(7)

 EQ \b\lc\L(\b( \F(tr-1,((r)) ))(s)   =    EQ \F(1,sr)



r > 0

(8)

 EQ \b\lc\L(\b( \F(tr-1e-(t,((r)) ))(s)   =    EQ \F(1,(s+()r)


r > 0

Laplace transforms transform convolution into regular multiplication of functions, i.e. if f and g are of exponential growth then

(9)

L(f * g)   =   L(f)L(g)

This is useful for computing certain convolutions.  

Example 3.  It follows from (8) and (9) that

(10)

 EQ \F(tq-1e-(t,((q))  *   EQ \F(tr-1e-(t,((r))   =    EQ \F(tq+r-1e-(t,((q+r))


q, r > 0

In particular,

(11)

 EQ \F(tn-1e-(t,(n-1)!)   =   e-(t * e-(t * … * e-(t

e-(t appears n times on the right
Another useful property of convolutions is 

(12)

e(t (f * g)   =   (e(tf) * (e(tg)

Convolutions arise in a number of situations.  Two of particular interest are the following.

1.
If u = f is the solution of the homogeneous equation



 \eq \f(d2u,dt2)   +   a \f(du,dt)   +   bu   =   0                  u(0)  =  0           \eq \f(du,dt)(0)  =  1

then v = f * g is the solution of the inhomogeneous equation



 \eq \f(d2v,dt2)   +   a \f(dv,dt)   +   bv   =   g                 v(0)  =  0            \eq \f(dv,dt)(0)  =  0

2.
If S and T are independent non-negative, continuous random variables with probability density functions f(t) and g(t), then the random variable S + T is also non-negative and continuous and has density function (f * g)(t)
Since convolution involves integration the convolution f * g of functions f and g that are themselves expressible in terms of elementary functions can not always be expressed in terms of elementary functions.  Even if it can, the formula for f * g may be quite complicated.  Sometimes what is of interest is the behavior of f * g for large t.  In this paper we are concerned with finding simpler functions h that are asymptotic to f * g for large t. 

3.
Asymptotic Behavior of Functions

In this section we collect some elementary properties of asymptotic behavior that will be used later.

The formula (1) in the Introduction defines asymtotic as t ( (.  We are also interested in asymptotic as t ( a+ and t ( a-.

Definition 1.  f(t) and g(t) are asymptotic as t (a+ and we write f(t) ~ g(t) as t ( a+ if 

(1)

 \eq \o(lim,t ( a+)   \eq \f(f(t),g(t))   =   1

(1) includes the fact that there is some interval a < t < b for which f(t) and g(t) are both defined and g(t) ( 0.  There is a similar definition of f(t) and g(t) being asymptotic as t ( a-.

If two functions are asymptotic then each is a good approximation to the other for t close to the limiting value.  Given a function f we often want to find a simpler function that is asymptotic to it.

Note that if f(t) ~ g(t) as t ( ( and h(t) is non-zero for large t then f(t)h(t) ~ g(t)h(t) as t ( (.  Similarly for t ( a+ and t ( a-.

Example 1.     \eq \f(antn + an-1tn-1 + … + a1t + a0,bmtm + bm-1tm-1 + … + b1t + b0)   ~    \eq \f(an,bm) tn-m       as t ( (
Theorem 1.   Assume the following.  

(2)

f(t) and g(t) are continuous for a < t ( b
(3)

f(t) ~ g(t) as t ( a+
(4)

F(t)   =    \eq \i(t,b, f(s) ds)


G(t)   =    \eq \i(t,b, g(s) ds)
(5)

G(t)   (   (          as t ( a+
Then F(t) ~ G(t) as t ( a+.

Proof.  By l'Hospital's rule



 \eq \o(lim,t ( a+)   \eq \f(F(t),G(t))   =    \eq \o(lim,t ( a+)   \eq \f(F'(t),G'(t))   =    \eq \o(lim,t ( a+)   \eq \f(- f(t),- g(t))   =   1

which proves the theorem.  (
Proposition 2.  Suppose f(t) is continuous for 0 < t ( 1, f(t) ~  \eq \f(1,t() as t ( 0+ for some ( ( 1, F(t) =  \eq \i(t,1, f(s) ds).  Then F(t) ~  \eq \f(1,((-1) t(-1) as t ( 0+ if ( > 1 and F(t) ~ - log t as t ( 0+ if ( = 1.

Proof.  We apply Theorem 1 with g(t) =  \eq \f(1,t()., a = 0 and b = 1.  Then  \eq G(t) = \f(1,((-1) t(-1) ‑ \f(1,((-1)) if ( > 1 and G(t) ~ - log t if ( = 1.  So Theorem 1 implies F(t) ~ G(t) as t ( 0+.  This proves the proposition if ( = 1.  If ( > 1 then G(t) ~  \eq \f(1,((-1) t(-1) as t ( 0+ which proves the proposition if ( > 1.  (
Proposition 3.  Assume the following.

(6)
f(t,x) and g(t,x) are defined for a < t < b and x ( ( where ((, F, () is a measure space.

(7)
for each fixed t the functions x ( f(t,x) and x ( g(t,x) are integrable functions of x
(8)
f(t,x) > 0 and g(t,x) > 0 for a < t < b and x ( ( 

(9)

for every ( > 0 there is a ( > 0 such that

(10)


| g(t,x)  -  f(t,x) |    (    (f(t,x)

for a < t < a + ( and x ( ( 

Then

(11)

 \eq \i((,, f(t,x) d((x))    ~     \eq \i((,, g(t,x) d((x))

as t ( a+
Proof.  Let ( > 0 be given and choose ( > 0 so that (10) holds.  Then



 \eq \b\bc\|( \i((,, f(t,x) d((x))   -   \i((,, g(t,x) d((x)) )    (     \eq \i((,, | f(t,x)  -  g(t,x) | d((x))



   (     \eq \i((,, (f(t,x) d((x))    =    (  \eq \i((,, f(t,x) d((x))
which proves (11).  (
Inspired by the condition (9) – (10) we make the following definition.

Definition 2.  Let ( be a set and suppose f(t,x) and g(t,x) are defined for a < t < b and x ( (.  Then f(t,x) and g(t,x) are uniformly asymptotic as t (a+ and we write  \eq f(t,x) \o(~,u) g(t,x) as t ( a+ if 

(12)
g(t,x) > 0 for a < t < b and x ( ( 

(13)

for every ( > 0 there is a ( > 0 such that

(14)


| g(t,x)  -  f(t,x) |    (    (g(t,x)

for a < t < a + ( and x ( ( 

Note that (14) is equivalent to 

(15)


 \eq \b\bc\|( \f(f(t,x),g(t,x))  -  1 )    (    (


for a < t < a + ( and x ( ( 

If we let B(() denote the space of bounded functions on ( with the sup norm, then (13) and (14) are equivalent to

(16)
Let h(t) denote the function of x defined by h(t)(x) =  \eq \f(f(t,x),g(t,x)) .  There is a ( > 0 such that h(t) is in B(() for a < t < a + ( and

(17)


 \eq \o(lim,t ( a+)  h(t)   =   1

where the limit in (17) is in B(().

Using (16) and (17) it is not hard to see that  \eq \o(~,u) is symmetric and transitive.

Propostion 4.  If f(t,x)  \eq \o(~,u) g(t,x) as t ( a+ and h(t,x) > 0 for a < t < b and x ( ( then f(t,x)h(t,x)  \eq \o(~,u) g(t,x)h(t,x) as t ( a+. 

Proof.   \eq \f(f(t,x)h(t,x),g(t,x)h(t,x))  =  \f(f(t,x),g(t,x))  so (15) for f(t,x) and g(t,x) implies (15) for f(t,x)h(t,x) and g(t,x)h(t,x).  (
Proposition 5.  Suppose f(t,x) is defined for a ( t < b and x ( ( and

(18)

there is a c > 0 such that f(a,x) ( c for x ( ( 

(19)

for every ( > 0 there is a ( > 0 such that

(20)


| f(t,x)  -  f(a,x) |    (    (

for a ( t < a + ( and x ( ( 

Then f(t,x)  \eq \o(~,u) f(a,x) as t ( a+ 

Proof.  Let ( > 0.  By (19) – (20) we can choose ( > 0 so that | f(t,x) - f(a,x) | ( (c if a ( t < a + ( and x ( (.  Combining with (18) gives | f(t,x) - f(a,x) | ( (f(a,x) if a ( t < a + ( and x ( (.  (
Proposition 6.  Suppose f(t,x) is defined for a ( t ( b and x ( ( where ( ( Rn is compact and

(21)

there is a c > 0 such that f(a,x) ( c for x ( ( 

(22)

f(t,x) is continuous jointly in t and x

Then f(t,x)  \eq \o(~,u) f(a,x) as t ( a+ 

Proof.  Let ( > 0.  Since [a,b] ( ( is compact, f is uniformly continuous on [a,b] ( (.  So there is ( > 0 such that | f(t,x) - f(s,y) | ( ( if |t – s| < ( and |x – y| < (.  In particular, | f(t,x) ‑ f(a,x) | ( ( if a ( t < a + ( and x ( (.  (
4.
The Integrable Case

In the remaining sections we look at the asymptotic behavior of convolutions.  Given two functions f and g, we want to find, if possible, a simple function h such that (f * g)(t) ~ h(t) as t ( (.  It seems like there is no general theorem that is useful for all types of f and g.  So we shall look at some different classes of f and g to which individual theorems apply.

In this section we consider the case of ( * f where ( is integrable with non-zero integral.  The following theorem covers some of these situations.

Theorem 1.  Suppose ( is integrable on (0, () with  \eq \i(0,(, ((t) dt) = c with c ( 0.  Suppose f is measurable and satisfies the following.

(1)

f is bounded on (0, T) for each T > 0.

(2)

There exists T so that f(t) > 0 for t ( T.

(3)

There exists T and C so that if t ( T then 




| f(s) |   (   Cf(t)


for T ( s ( t
(4)

For each fixed s > 0 one has




 \eq \o(lim,t(()  \f(f(t-s),f(t))   =   1

Then (( * f)(t) ~ cf(t) as t ( (, i.e.

(5)

 \eq \o(lim,t(() \f((( * f)(t),f(t))   =   c
Proof.  One can reduce to the case where c = 1 by letting ( =  \eq \f((,c) .  Then  \eq \i(0,(, ((t) dt)  = 1, ( = c( and ( * f = c(( * f).  If we can show  \eq \o(lim,t(() \f((( * f)(t),f(t))  =  1 then (5) will follow.  So we can and shall assume c = 1 to begin with.

Next we show that f satisfies the following stronger version of (3).

(6)

There exists T and C so that if t ( T then  | f(s) |  (  Cf(t)  for 0 ( s ( t.

To see this choose T so that (2) and (3) hold.  By (1) there exists M such that



| f(s) |   (   M


for 0 ( s ( T
It follows from this and (3) that if 0 ( s ( T ( t then



| f(s) |   (   M   =    \eq \f(Mf(T),f(T))   (   \f(MCf(t),f(T))   =   Kf(t)

Note that K ( C.  Combining this with (3) gives




| f(s) |   (   Kf(t)


for 0 ( s ( t
if t ( T.

Now we extend f(t) to negative t by setting f(t) = 0 for t < 0.  Let T be such that (2) and (6) both hold.  Then if t ( T one has



 \eq \f((( * f)(t),f(t))    =     \eq \i(0,(,  \f(((s)f(t-s),f(t)) ds)
By assumption (6) one has for t ( T



 \eq \b\bc\|( \f(((s)f(t-s),f(t)) )    (    C | ((s) |

for 0 ( s < (.  By assumption (4) one has for fixed s



 \eq \o(lim,t(()  \f(((s)f(t-s),f(t))    =    ((s)

By the dominated convergence theorem one has



 \eq \i(0,(,  \f(((s)f(t-s),f(t)) ds)    (     \eq \i(0,(, ((s) ds)   =    1

as t ( ( which proves the theorem.  (
If f(t) is non-decreasing for T ( t < ( then (3) is satisfied with C = 1.  However, in other cases it is may be cumbersome to verify the hypothesis (3).  This is also true with the hypothesis (4), so we turn to some easier ways to verify (3) and (4).  For starters, the following theorem gives a way to verify that (4) is satisfied.

Theorem 2.  Suppose f satisfies (2) in Theorem 1 and the following.

(7)

There exists T and ( such that if t ( T then f'(t) exists and



| f'(t) |   (    eq \f((f(t),t)
Then f satisfies (4) in Theorem 1.

Proof.  Let T be such that (2) and (6) hold.  Then if s ( T one has



-  eq \f((,s)   (    eq \f(f'(s),f(s))   (    eq \f((,s)
Integrating from r to t gives



ln eq \b(\f(r,t))(   (    eq \I(r,t, \f(f'(s),f(s)) ds)   (   ln eq \b(\f(t,r))(
provided T ( r ( t.  Since  \eq \f(d,ds) [ln f(s)] =   eq \f(f'(s),f(s)) , it follows that



 eq \b(\f(r,t))(   (    eq \f(f(t),f(r))   (    eq \b(\f(t,r))(
If s ( 0 and t ( T + s then T ( t – s ( t so 



 eq \b(\f(t - s,t))(   (    eq \f(f(t),f(t - s))   (    eq \b(\f(t,t - s))(
Letting t ( ( gives (4).  (
The following propostion is almost an example.

Proposition 3.  Suppose there exist T and r such that f(t) = tr for t > T.  Then f(t) satisfies (7) with the same T and ( = | r |.

Proof.  One has f'(t)  =  rtr-1  =   eq \f(rtr,t)  =   eq \f(rf(t),t).  Taking absolute values gives (6).

Example 1.  Let r ( 0 and f(t) = tr for t ( 0.  Then f satisfies the hypotheses of Theorem 1.  So if ( is integrable on (0, () with  \eq \i(0,(, ((t) dt) = c and c ( 0.  Then (( * f)(t) ~ cf(t) as t ( (.

The following theorem shows that for functions that satisfy (1) the conditions (2) – (4) are inherited by functions that are asymptotic as t ( (.

Theorem 4.  Suppose f and g are measurable and satisfy (1) and f(t) ~ g(t) as t ( (.  If f also satisfies (2) – (4) then so does g.  Furthermore, if ( is integrable on (0, () with  \eq \i(0,(, ((t) dt) = c and c ( 0.  Then (( * g)(t) ~ cf(t) as t ( (.

Proof.  One has 

(8)

 \eq \o(lim,t(()  \f(f(t),g(t))   =   1

Therefore, if s > 0 then



 \eq \o(lim,t(()  \f(g(t-s),g(t))   =    \eq \o(lim,t(()  \f(g(t-s),f(t-s))  \f(f(t-s),f(t))  \f(f(t),g(t))   =   1 ( 1 ( 1   =   1

so g satisfies (4).  It follows from (8) that there is a T such that g(t) ( f(t)/2 and f(t) ( g(t)/2 for t ( T.  We may assume that the same T works for f in (2) and (3).  Since f satisfies (2) it follows that g does also.  Furthermore, if T ( s ( t then



g(s)   (   2f(s)   (   2Cf(t)   (   (Cg(t)

So g satisfies (3) which finishes the proof of the first part.  From Theorem 1 it follows that (( * g)(t) ~ cg(t) as t ( (.  Since f(t) ~ g(t) as t ( (, it follows that (( * g)(t) ~ cf(t) as t ( (.  (
Corollary 5.  Suppose ( is integrable on (0, () with  \eq \i(0,(, ((t) dt) = c and c ( 0.  

(a)
If g is measurable and satisfies (1) and g(t) ~ atr as t ( ( where r ( 0 then (( * g)(t) ~ actr as t ( (.

(b)
If g(t) =  \eq \f(antn + an-1tn-1 + … + a1t + a0,bmtm + bm-1tm-1 + … + b1t + b0) with n ( m and the equation bmtm + bm‑1tm‑1 + … + b1t + b0 = 0 has no non-negative real solution then (( * g)(t) ~  \eq \f(can,bm) tn-m as t ( (.

Proof.  Part (a) follows from Theorem 4 and the fact that f(t) = atr is measurable and satisfies (1) – (4).  Part (b) follows from part (a) and the fact that g(t) ~  \eq \f(an,bm) tn-m as t ( (  (
If f(t) = tr with r < 0 then f(t) does not satisfy (3) in Theorem 1.  In cases such as this the following theorem will be used later in part of the analysis of the asymptotic behavior of ( * f.

Theorem 6.  Suppose ( is integrable on (0, () with  \eq \i(0,(, ((t) dt) = 1.  Suppose f satisfies (1), (2) and (4) and the following weakened version of (3).

(9)

There exists T and C so that if t ( T then 




| f(s) |   (   Cf(t)


for t/2 ( s ( t
Then  \eq \i(0,t/2, ((s)f(t-s) ds) ~ f(t) as t ( (.

Proof.  Extend f(t) to negative t by setting f(t) = 0 for t < 0.  Then 



 \eq \f(\i(0,t/2, ((s)f(t-s) ds),f(t))    =     \eq \i(0,t/2,  \f(((s)f(t-s),f(t)) ds)    =     \eq \i(0,(, ((s)g(t,s) ds)
where



g(t,s)    =     \eq \b\lc\{( \a\al( \f(f(t-s),f(t))                  if 0 ( s < t/2, , 0                        if t/2 ( s < () )
By assumption (9) one has for t ( T



| ((s)g(t,s) |    (    C | ((s) |

for 0 ( s < (.  By assumption (4) one has for fixed s



 \eq \o(lim,t(()  ((s)g(t,s)    =    ((s)

By the dominated convergence theorem one has



 \eq \i(0,(, ((s)g(t,s) ds)    (     \eq \i(0,(, ((s) ds)   =    1

as t ( ( which proves the theorem.  (
5.
Convolutions of functions asymptotic to powers of t
In the previous section we showed that under certain conditions on f one has (( * f)(t) ~ cf(t) as t ( ( if ( is integrable on (0, () with  \eq \i(0,(, ((t) dt) = c with c ( 0.  In particular, this was true if f is measurable, bounded on bounded intervals and f(t) ~ atr as t ( ( where r ( 0.  Now we want to consider cases where r may be negative or ( may be non-integrable.  Our goal is to determine the asymptotic behavior of ( * f where

(1)

((t)   ~   tq



f(t)   ~   tr
as t ( (.  Sometimes it is convenient to let ( = - q and ( = - r and write this instead as

(2)

((t)   ~    \eq \f(1,t()



f(t)   ~    \eq \f(1,t()
We begin with a special case.

Proposition 1.  Let ( ( ( ( 1 and



((t)   =    \eq \f(1,(t+1)()



f(t)   =    \eq \f(1,(t+1)()
Then as t ( ( 

(3)

(( * f)(t)    ~     \eq \b\lc\{(\a\al( \f(1,((-1)t()                        if ( > ( ( 1, , \f(2,((-1)t()                        if ( =( > 1, , \f(2 log t,t)                         if ( = ( = 1))
Proof.  One has


(( * f)(t)   =    \eq \i(0,t, \f(1,(s+1)((t - s +1)() ds)   =    \eq \i(0,t/2, \f(1,(s+1)((t - s +1)() ds)   +    \eq \i(t/2,t, \f(1,(s+1)((t - s +1)() ds)


     =    \eq \i(0,t/2, \f(1,(s+1)((t - s +1)() ds)   +    \eq \i(0,t/2, \f(1,(r+1)((t - r +1)() dr)   =   F(t,(,() + F(t,(,()

where we made the substitution r = t – s and


F(t,(,()   =    \eq \i(0,t/2, \f(1,(s+1)((t - s +1)() ds)   =    \eq \i(0,1/2, \f(t,(tv+1)((t - tv + 1)() dv)
    =    \eq \f(1,t(+(-1)  \i(0,1/2, \f(1,(v + \f(1,t))((1 + \f(1,t) - v)() dv)   =    \eq \f(h\b(\f(1,t)),t(+(-1)
where we made the substitution s = tv and


h(x)   =    \eq \i(0,1/2, \f(1,(v + x)((1 + x - v)() dv)   

Using Propositions 2 and 6 of section 3 one has



h(x)   ~    \eq \i(0,1/2, \f(1,(v + x)((1 - v)() dv)   ~    \eq \i(0,1/2, \f(1,(v + x)((1 - x - v)() dv)
Making the substitution y = v + x one has


 \eq \i(0,1/2, \f(1,(v + x)((1 - x - v)() dv)   =    \eq \i(x,\f(1,2) + x, \f(1,y((1 - y)() dy)    =    \eq \i(x,1/4, \f(1,y((1 - y)() dy)    +     \eq \i(1/4,\f(1,2) + x, \f(1,y((1 - y)() dy)
By the dominated convergence theorem one has as x ( 0+


 \eq \i(1/4,\f(1,2) + x, \f(1,y((1 - y)() dy)    (     \eq \i(1/4,1/2, \f(1,y((1 - y)() dy)
By Proposition 2 of section 3, one has as x ( 0+


 \eq \i(x,1/4, \f(1,y((1 - y)() dy)    ~     \eq \b\lc\{(\a\al( \f(1,((-1) x(-1)              if ( > 1, , - log x                   if ( = 1))
So as x ( 0+


h(x)    ~     \eq \b\lc\{(\a\al( \f(1,((-1) x(-1)              if ( > 1, , - log x                   if ( = 1))
So as t ( ( 

5.
Convolutions of functions asymptotic to powers of t
In the previous section we showed that under certain conditions on f one has (( * f)(t) ~ cf(t) as t ( ( if ( is integrable on (0, () with  \eq \i(0,(, ((t) dt) = c with c ( 0.  In particular, this was true if f is measurable, bounded on bounded intervals and f(t) ~ atr as t ( ( where r ( 0.  Now we want to consider cases where r may be negative or ( may be non-integrable.  Our goal is to determine the asymptotic behavior of ( * f where

(1)

((t)   ~   tq



f(t)   ~   tr
as t ( (.  Sometimes it is convenient to let ( = - q and ( = - r and write this instead as

(2)

((t)   ~    \eq \f(1,t()



f(t)   ~    \eq \f(1,t()
We begin with a special case.

Proposition 1.  Let ( ( ( ( 1 and



((t)   =    \eq \f(1,(t+1)()



f(t)   =    \eq \f(1,(t+1)()
Then as t ( ( 

(3)

(( * f)(t)    ~     \eq \b\lc\{(\a\al( \f(1,((-1)t()                        if ( > ( ( 1, , \f(2,((-1)t()                        if ( =( > 1, , \f(2 log t,t)                         if ( = ( = 1))
Proof.  One has


(( * f)(t)   =    \eq \i(0,t, \f(1,(s+1)((t - s +1)() ds)   =    \eq \i(0,t/2, \f(1,(s+1)((t - s +1)() ds)   +    \eq \i(t/2,t, \f(1,(s+1)((t - s +1)() ds)


     =    \eq \i(0,t/2, \f(1,(s+1)((t - s +1)() ds)   +    \eq \i(0,t/2, \f(1,(r+1)((t - r +1)() dr)   =   F(t,(,() + F(t,(,()

where we made the substitution r = t – s and


F(t,(,()   =    \eq \i(0,t/2, \f(1,(s+1)((t - s +1)() ds)   =    \eq \i(0,1/2, \f(t,(tv+1)((t - tv + 1)() dv)
    =    \eq \f(1,t(+(-1)  \i(0,1/2, \f(1,(v + \f(1,t))((1 + \f(1,t) - v)() dv)   =    \eq \f(h\b(\f(1,t)),t(+(-1)
where we made the substitution s = tv and


h(x)   =    \eq \i(0,1/2, \f(1,(v + x)((1 + x - v)() dv)   

Using Propositions 2 and 6 of section 3 one has



h(x)   ~    \eq \i(0,1/2, \f(1,(v + x)((1 - v)() dv)   ~    \eq \i(0,1/2, \f(1,(v + x)((1 - x - v)() dv)
Making the substitution y = v + x one has


 \eq \i(0,1/2, \f(1,(v + x)((1 - x - v)() dv)   =    \eq \i(x,\f(1,2) + x, \f(1,y((1 - y)() dy)    =    \eq \i(x,1/4, \f(1,y((1 - y)() dy)    +     \eq \i(1/4,\f(1,2) + x, \f(1,y((1 - y)() dy)
By the dominated convergence theorem one has as x ( 0+


 \eq \i(1/4,\f(1,2) + x, \f(1,y((1 - y)() dy)    (     \eq \i(1/4,1/2, \f(1,y((1 - y)() dy)
By Proposition 2 of section 3, one has as x ( 0+


 \eq \i(x,1/4, \f(1,y((1 - y)() dy)    ~     \eq \b\lc\{(\a\al( \f(1,((-1) x(-1)              if ( > 1, , - log x                   if ( = 1))
So as x ( 0+


h(x)    ~     \eq \b\lc\{(\a\al( \f(1,((-1) x(-1)              if ( > 1, , - log x                   if ( = 1))
So as t ( ( 



h \eq \b(\f(1,t))    ~     \eq \b\lc\{(\a\al( \f(t(-1,((-1))                     if ( > 1, , log t                       if ( = 1))
Then as t ( ( 



F(t,(,()    ~     \eq \b\lc\{(\a\al( \f(1,((-1)t()                      if ( > 1, , \f(log t,t()                          if ( = 1))
and (3) follows from this.  (


h \eq \b(\f(1,t))    ~     \eq \b\lc\{(\a\al( \f(t(-1,((-1))                     if ( > 1, , log t                       if ( = 1))
Then as t ( ( 



F(t,(,()    ~     \eq \b\lc\{(\a\al( \f(1,((-1)t()                      if ( > 1, , \f(log t,t()                          if ( = 1))
and (3) follows from this.  (
Returning to the general case of (2), let's write 



(( * f)(t)   =    \eq \i(0,t, ((s)f(t-s) ds)   =    \eq \i(0,t/2, ((s)f(t-s) ds)   +    \eq \i(t/2,t, ((s)f(t-s) ds)
Consider the first integral on the right.  We can write



 \eq \i(0,t/2, ((s)f(t-s) ds)    =     \eq \i(0,t/2, \f(((s),(t-s)()   \f((t-s)(,f(t-s)) ds)
If (2) holds then 



 \eq \i(0,t/2, ((s)f(t-s) ds)    ~     \eq \i(0,t/2, \f(((s),(t-s)() ds)
Making the substitution s = tv one has



 \eq \i(0,t/2, \f(((s),(t-s)() ds)    =      \eq \i(0,1/2, \f(t ((tv),(t-tv)() dv)    =     \eq \f(1,t(-1) \i(0,1/2, \f(((tv),(1-v)() dv)
Appendix 1.
Integration by Parts in the Integrable Case

As in section 3 we consider the case of ( * f where ( has integral one.  Thus we assume

(1)

( is integrable on (0, () with  \eq \i(0,(, ((t) dt) = 1

Let

(2)

S(t)   =    \eq \i(t,(, ((s) ds)
be the complementary distribution function of (.  Note that S'(t) = - ((t) and S(0) = 1.  Assume

(3)

f(t) is absolutely continuous on (0, T) for each T > 0
One has



(( * f)(t)   =    \eq \i(0,(, ((s)f(t-s) ds)
Integrate by parts letting u(s) = f(t-s) and dv = ((s)ds.  Then du = - f'(t-s) and v(s) = ‑ S(s).  This gives



(( * f)(t)   =   - f(0)S(t)  +  f(t)  -   \eq \i(0,(, S(s)f'(t-s) ds)
or

(5)

1   -    \eq \f((( * f)(t),f(t))    =     \eq \f(f(0)S(t),f(t))   +    \eq \f((S * f')(t),f(t))
We would like to show that in certain circumstances one has

(6)

 \eq \o(lim,t(() \f((( * f)(t),f(t))   =   1

One way to show this would be to have

(7)

 \eq \o(lim,t(() 

 \eq \f(S(t),f(t))    =    0

or assume f(0)  =  0

and

(8)

 \eq \o(lim,t(() 

 \eq \f((S * f')(t),f(t))    =    0

For example, suppose



f(t)   ~    \eq \f(1,tr)


((t)   ~    \eq \f(1,tr+1+()
Then



f'(t)   ~    \eq \f(1,tr+1)


S(t)   ~    \eq \f(1,tr+()
So (7) holds.  However, it is not obvious that (8) holds.  If we could show



| (S * f')(t) |   (   C | f'(t) |

and



 \eq \b\bc\|(\f(tf'(t),f(t)))   (   K

Then we would have



 \eq \b\bc\|(\f((S * f')(t),f(t)))   (    \eq \f(CD,t)
and (8) would follow.
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