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Frank Massey

This report is concerned with continuous time Markov processes where the transition rates out of one group of states (the "fast" states) are large compared to the transition rates out of the other group (the "slow" states).  For basic properties of Markov processes, see Brémaud [1].  The slow states will be numbered 1, 2, …, n and the fast states will be numbered n + 1, …, n + m, so the total number of states is n + m.  The letters i, j, k, n + i, n + j, etc will be used to denote states.  We use the following notation for the transition rates between states in the two groups.

aij
=   transition rate from i to j where 1 ( i, j ( n and j ( i.  Note that aij ( 0.

ai
=    eq \i\su(j ( i,, )aij   =   total transition rate from i to states j where 1 ( j ( n and j ( i.

bij
=   transition rate from i to n + j where 1 ( i ( n and 1 ( j ( m.  Note that bij ( 0.

bi
=    eq \i\su(j ( i,, )bij   =   total transition rate from i to states n + j with 1 ( j ( m.

xcivij
=   transition rate from n + i to n + j where 1 ( i, j ( m and j ( i.

x
=   a positive real number.

vij
=   probability of a transition from n + i to n + j where 1 ( i, j ( m and j ( i.  Note that vij ( 0.

xcirij
=   transition rate from n + i to j where 1 ( i ( m and 1 ( j ( n.

rij
=   probability of a transition from n +i to j where 1 ( i ( m and 1 ( j ( n.  Note that rij ( 0.

xci
=   total transition rate from n + i to states j with 1 ( j ( n + m and j ( n + i.  Note that ci ( 0.

The probabilities vij and rij satisfy
(1)

 eq \i\su(j ( i,, )vij  +   eq \i\su(j = 1,n, )rij   =   1
The diagram at the right illustrates the transition rates between states in the two groups.
We are interested in the limiting behavior of the Markov process when x ( (.  This should be a good approximation to the behavior of the Markov process when the transition rates out of states n + 1, …, n + m are large compared to the transition rates out of states 1, …, n.  
The behavior of the Markov process is described by the probabilities of being in the various states at various times.   Let

ui   =   ui(t)   =   probability of being in state i at time t

u   =   u(t)   =   (u1(t), …, un+m(t))   =   vector of probabilities of being in the various states at time t
ui(t) = ux,i(t) and u(t) = ux(t) also depend on x, but we suppress x for simplicity.  The probabilities u(t) satisfy Kolmogorov's forward equation
(2)

 \eq \f(du,dt)   =   - uQx



where Qx is the generator matrix of the Markov process given by

Qx   =    eq \b(\a\al(a1 + b1        - a12               |  - b11         - b12,                                         |,                                         |,                                         |,-------------------------------|-----------------------------,- xc1r11      - xc1r12            |   xc1       -xc1v12          ,                                         |,                                         |))   =    eq \b(\a\al(     A      - B,- xCR    xCV))   =    eq \b(\a\al(Qx\L(,)11   Qx\L(,)12,Qx\L(,)21   Qx\L(,)22))
where the submatrices A, B, C, V and R are given by 

A   =      eq \b(\a\al(a1 + b1        - a12     …            - a1n,  - a21         a2 + b2  …            - a2n,                                         ,                                         ,                                         ))

B   =    eq \b(\a\al(  - b11        - b12     …            - b1m,  - b21        - b22     …            - b2m,                                         ,                                         ,                                         )) 

R   =    eq \b(\a\al(  - r11        - r12     …         - r1n,  - r21        - r22  …            - r2n,                                         ,                                         ,                                         ))

C   =    eq \b(\a\al(c1   0   …         0,0    c2   …        0, , , )) 


V   =    eq \b(\a\al(    1           - v12     …         - v1m,  - v21          1     …            - v2m,                                         ,                                         ,                                         )) 
The solution to (2) is given by

(3)

u(t)   =   u(0)e-tQx   =   u(0)P(t)
where P(t) is the transition matrix of the Markov process


P(t)   =   e-tQx   =    eq \b(\a\al(p11(t) …             p(t)1\L(,)n+m,. . .,p(t)n+m\L(,)n+m …     p(t)n+m\L(,)n+m))
and the entries pij(t) of P(t) are transition probabilities:


pij(t)   =   probability of being in state j at time t if one is in state i at time 0
The matrix exponential appearing on the right side is defined by


e-tQx   =    eq \i\su(n = 0,(, )(-t)nQxn 
For properties of the exponential of a matrix, see Kato [2, ch. 9].  In particular, Kato shows [2, p. 504, Theorem 2.16] the following

Suppose Q and Qx are square matrices for each x > 0 that satisfy the following.
i.
There exist numbers M and ( such that

|| e-tQ ||   (   Me(t

for t > 0

|| e-tQx ||   (   Me(t

for t > 0

ii.
There exists a number s > 0 such that

(Qx + sI)-1   (   (Qx + sI)-1

as x ( (
Under these assumptions one has

e-tQx   (   e-tQ

as x ( (
For the transition matrix P(t) of a Markov process one has


|| P(t) ||   (   1

where the norm is the maximum of the sums of the absolute values of the rows.
In our case we are going to apply this theorem not to all of Qx, but just the submatrix Qx,11 in the upper left corner of Qx.
Theorem 1.  Suppose for 1 ( i ( m it is possible to go from any state n + i to one of the states j for 1 ( j ( n.  Then V is invertible.  Let s > 0 and F = V-1R.  Then A – BF + sI and Qx + sI are invertible and (Qx + sI)-1 (  eq \b(\a\al(  (A – BF + sI)-1      0,F(A – BF + sI)-1      0)) as x ( (.  Therefore, e-tQx ( S(t) as x ( ( where 


S(t)   =    eq \b(\a\al(  e-t(A – BF)      0,Fe-t(A – BF)      0))
Proof.  For the discrete time Markov chain with transition matrix H = I – V, the states are all transient.  It is known Brémaud [1, p. 97, Theorem 1.1] that the series  eq \i\su(n = 0,(, )Hn converges and is the inverse of I – H = V.  Qx + sI =   eq \b(\a\al( A + sI           - B,- xCR      xCV + sI))  =   eq \b(\a\al(    U             - B,- xCR      xCV + W)) where U = A + sI and W = sI.  A – BF is the generator matrix of a Markov process on the states 1, …, n, so A ‑ BF + sI = U – BF is invertible.  The rest of Theorem 1 follows from Proposition 3 below.  (
Proposition 2.  Suppose Y  =   eq \b(\a\al(  U     - B,- R        V)) where U is an n(n matrix, B is an n(m matrix, R is an m(n matrix, V is an invertible m(m matrix and U – BF is invertible where F = V‑1R.  Then Y is invertible and 

Y-1   =    eq \b(\a\al(  (U – BF)-1      0,F(U – BF)-1      0))  eq \b(\a\al( I     B, 0     I))  eq \b(\a\al( I       0, 0     V-1))
Proof.  One has 


Y   =    eq \b(\a\al(  U     - B,- R        V))   =    eq \b(\a\al(I     0,0     V))  eq \b(\a\al(  U     - B,- F        I))   =    eq \b(\a\al(I     0,0     V))  eq \b(\a\al(I    - B,0      I))  eq \b(\a\al(U - BF      0,   - F          I)) 


     =    eq \b(\a\al(I     0,0     V))  eq \b(\a\al(I    - B,0      I))  eq \b(\a\al(U - BF      0,     0          I))  eq \b(\a\al(  I      0,- F      I))
So


Y-1   =    eq \b(\a\al(  I      0,- F      I))-1  eq \b(\a\al(U - BF      0,     0          I))-1  eq \b(\a\al(I    - B,0      I))-1  eq \b(\a\al(I     0,0     V))-1 


       =    eq \b(\a\al(I      0,F      I))  eq \b(\a\al(  (U – BF)-1      0,         0              I))  eq \b(\a\al(I     B,0     I))  eq \b(\a\al(I      0,0     V-1))
       =    eq \b(\a\al(  (U – BF)-1      0,F(U – BF)-1      I))  eq \b(\a\al(I     B,0     I))  eq \b(\a\al(I      0,0     V-1))
(
Proposition 3.  Suppose Tx  =   eq \b(\a\al(    U             - B,- xCR      xCV + W)) where U is an n(n matrix, B is an n(m matrix, x is a positive integer, C is an invertible m(m matrix, R is an m(n matrix, V is an invertible m(m matrix, W is a m(m matrix and U – BF is invertible where F = V‑1R.  Then Tx is invertible for sufficiently large x and 


(Tx)-1   (    eq \b(\a\al(  (U – BF)-1      0,F(U – BF)-1      0)) 

as x ( (
Proof.  Note that


Tx   =    eq \b(\a\al(    U             - B,- xCR      xCV + W))   =    eq \b(\a\al(I      0,0     xC))  eq \b(\a\al(  U         - B,- R      V + x-1C-1w))   =    eq \b(\a\al(I      0,0     xC)) Sx
where  Sx  =   eq \b(\a\al(  U         - B,- R      V + x-1C-1w)).  As x ( ( one has Sx (  eq \b(\a\al(  U     - B,- R        V)) which is invertible by Proposition 2.  Therefore, Sx is invertible for large x and, by Proposition 2, one has 


(Sx)-1   (    eq \b(\a\al(  (U – BF)-1      0,F(U – BF)-1      0))  eq \b(\a\al( I     B, 0     I))  eq \b(\a\al( I       0, 0     V-1))
Therefore Tx is invertible for large x and


(Tx)-1   =   (Sx)-1  eq \b(\a\al(I      0,0     xC))-1   =   (Sx)-1  eq \b(\a\al(I        0,0     x-1C-1)) 

As x ( ( one has


(Tx)-1   (    eq \b(\a\al(  (U – BF)-1      0,F(U – BF)-1      0))  eq \b(\a\al( I     B, 0     I))  eq \b(\a\al( I       0, 0     V-1))  eq \b(\a\al(I     0,0     0))
      =    eq \b(\a\al(  (U – BF)-1      0,F(U – BF)-1      0))
(
Appendix.  Interpretation of the Matrix F
Let


fij   =   Pr{ hit j before 1, …, j -1, j + 1, …, n | start at n + i }


      =    eq \i\su(n = 1,(, )f eq \o(ij,(())
where


f eq \o(ij,(())   =   Pr{X( = j; X( ( k for 1 ( ( ( ( - 1, k = 1, …, n | X0 = n + i}


F   =   (fij:  i = 1, …, m; j = 1, …, n)   =    eq \b(\a\al(f11        f12     …         f1n,f21        f22  …            f2n,  .  .  .                         ,  .  .  .                             ,fm1        fm2     …         fmn))
Note that

(1)

 eq \b\lc\{(\a\al(f1j   =               v12f2j + v13f3j + … + v1mfmj + r1j, ,f2j   =   v21f1j             + v23f3j + … + v2mfmj + r2j, ,     .     .    ., ,fmj   =   vm1f1j + vm2f2j + vm3f3j + …            + rmj))
or


f●j   =   (I – V)f●j + r●j 


Vf●j   =   r●j 


f●j   =   V-1r●j 


F   =   V-1R
If we sum (1) from j = 1 to j = n we get 

(2)

 eq \b\lc\{(\a\al(f1●   =               v12f2● + v13f3● + … + v1mfm● + 1, ,f2●   =   v21f1●             + v23f3● + … + v2mfm● + 1, ,     .     .    ., ,fm●   =   vm1f1● + vm2f2● + vm3f3● + …            + 1))
Note that a solution is f1● = f2● = … = fm● = 1 and by uniqueness it is the only solution.  So

(3)

fi1 + fi2 + … + fin = 1
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