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Abstract:  Consider a radioactive decay chain X1    Xn  and let Nn(t) be the amount of Xn at time t.  This paper establishes error bounds for small and intermediate time approximations to Nn(t) including the power-law approximation Nn(t) ( Ctm-1 for (m+1 << t << (m where (j is the jth largest half-life.  The approximations shed light on the qualitative behavior of Nn(t) and are useful for reducing the roundoff error when computing Nn(t) for small t which is a problem with the usual formula.  The error bounds allow one to find the range of t for which these approximations can be used with a given degree of precision.
1.  Introduction.


This paper is concerned with radioactive decay chains X1  X2    Xn  where a fraction bj of the nuclide Xj decays into Xj+1 with decay constant j and half-life Tj = ln(2)/(j.  The remaining fraction 1 ‑ bj of Xj decays with the same decay constant (j into a nuclide other than Xj+1.  If Xn is stable then (n = 0.  Let Nj(t) be that portion of the amount of Xj present at time t that has been produced by decays following the chain.  The Nj(t) satisfy the radioactive decay equations [1, p. 172]:

dN1/dt   =   - 1N1

(1)

dNj/dt   =   bj-1j‑1Nj‑1  -  jNj
for j ( 2;
If Nj(0) = 0 for j ( 2 then Nn(t) is given by

Nn(t)   =   N1(0)anEn(t;1,...,n)
(2)
where

an   =   b1b2(bn-112(n-1
(3)
and the function Er(t;(1,...,(r) is the convolution of exponential functions e‑(jt, i.e.

Er(t;(1,...,(r)   =   e‑(1t *  * e‑(rt
(4)
Here * denotes convolution, i.e. eq g(t) * h(t) = \I(0,t,g(s)h(t-s)ds) for t ( 0.  Er(t;(1,...,(r) is a symmetric function of the (j since convolution is commutative and associative.  If the (j are distinct, one has
Er(t;(1,...,(r)   =     EQ \I\su(j=1,r, Cje-(jt)
(5)

Cj  =   EQ \I\pr(\O(i=1,i(j),r, ((i-(j)-1)
(6)

The formula (2) coupled with (5) was originally established by Bateman [2] using Laplace transforms.  Since then a number of other interesting derivations of (2) have been given [3-9].  When some of the (j are equal, (5) is more complicated [10-12].


The approximations in this paper address two problems with (5).  First, it is hard to see the behavior of Nn(t) from (5) except for times on the order of the largest half-life.  Second, round-off errors can be encountered when (5) is used to compute Nn(t) for times t that are small compared to the largest half-life.  
We begin by describing how the approximations in this paper fill in missing knowledge about Nn(t).  In doing this we look at three previously known properties of Nn(t).  The first of these is that Nn(t) is a log-concave function, i.e. ln[Nn(t)] is a concave function.  This is because the convolution of log‑concave functions is again log-concave [13].  In particular, if (n > 0 then Nn(t) increases from zero to a maximum and then decreases back down to zero as t goes from zero to infinity.  
The second known property of Nn(t) is that if t is small compared to all the half-lives Tj = ln(2)/(j, then
Nn(t)   (   N1(0)ant n-1/(n-1)!
(7)
This approximation is used both in applications to radioactivity (see [14, p. 24] and [15, pp. 83, 87]) and reliability (see [4, p. 291]).  The relative error in (7) is less than eq \O\ac((,_)t where eq \O\ac((,_) is the mean of 1,…,n, i.e.


 EQ \B\bc\|( Nn(t)   -   N1(0)an \f(t n-1,(n-1)!) )   (  eq \O\ac((,_)tN1(0)an  \eq \f(t n-1,(n-1)!)
(8)
This inequality follows from the following upper and lower bound for En(t) = En(t;1,...,n) 


(1 - eq \O\ac((,_)t)  \eq \f(t n-1,(n-1)!)   (   En(t)   (    \eq \f(t n-1,(n-1)!)
(9)
which is proved in [4, pp. 289 – 290].  It assumes the (j are non-negative and it implies |En(t) ‑ t n‑1/(n‑1)!| ( eq \O\ac((,_)t n/(n‑1)!.  Multiplying by N1(0)an proves (8).  Thus, the relative error in (7) will be less than ( if t < (/eq \O\ac((,_) and (7) will be good if t is small compared to the half-lives of all of X1, …, Xn.  Another small time approximation that usually holds for a larger range of values of t than (7) is the following.
Approximation 1.  If t is small, then   Nn(t)   (   N1(0)an  \eq \f(t n-1e-\O\ac((,_)t,(n-1)!)
(10)

We have not seen precisely this approximation in the literature, but there are similar ones.  For example, [4, p. 291] considers the case (n = 0 and uses the mean of (1,…,(n‑1 instead of eq \O\ac((,_) in the exponent.  In [16, p. 12] an example is considered where n = 2 and (1 and (2 are close to together and which uses 2 instead of eq \O\ac((,_) in the exponent; see Example 2 in section 4.  Theorem 1 in Section 2 has an error bound for Approximation 1 that shows that the smaller the variance of the (j is the larger the interval t < t* is for which (10) holds with a given degree of precision.
The third known property of Nn(t) is its large time behavior.  If Tp = ln(2)/(p is the largest half-life (where p is between 1 and n) and if t is large compared to all the half-lives except Tp, then (5) implies Nn(t) ( N1(0)anCpe‑pt.  In [17, Theorem 3] this is extended as follows.  Let Tq = ln(2)/(q be the second largest half-life and ( =  EQ \I\pr(j ( J,, (lj - lp)-1) where J = {j: 1 ( j ( n and j ( p, q}.  If t is large compared to the third largest half life, then Nn(t) ( N1(0)an(-1E2(t;(p,(q) where E2(t;(p,(q) = (e‑(pt ‑ e‑(qt)/((q ‑ (p).  Implicit in this approximation is the fact that the value (n of t where Nn(t) is a maximum is close to the value (2 = ln((q/(p)/((q ‑ (p) of t where E2(t;(p,(q) is maximum, i.e. one has
Approximation 2.  If (2 ≪ (3 then (n  (  (2.
Theorem 2 in Section 2 gives an error bound for this approximation.  This approximation, along with the others in this paper, is illustrated in Example 1 in Section 4.

To summarize, the behavior of Nn(t) for "small" t and "large" t and its log-concavity is known.  The remaining approximations in this paper shed light on the behavior of Nn(t) for values of t between small t and large t.  To state these approximations we sort the decay constants (j and half-lives Tj in order.  Let


 \eq \b\rc\}(\a\al(1 ( (2 ( …  ( n be the values 1\L(,) … \L(,) n arranged in increasing order       , ,S1 ( S2 ( …  ( Sn be the values T1\L(,) … \L(,) Tn arranged in decreasing order, ,am  =  \f(b1b2(bn-112(m,n)   with  \f(1,n)  replaced by one if n = 0, ,En(t)   =   En(t;1,...,n)   =   En(t;1,...,n)))
(11)

If m = n this definition of am is consistent with (3).  Thus, Sm = ln(2)/(m is the mth largest half-life.  In particular, S1 = Tp is the largest half-life and S2 = Tq is the second largest half-life.  This next approximation generalizes (7) in that it says Nn(t) is approximately proportional to tm-1 in a sufficiently large interval between the (m + 1)st largest half-life and the mth half-life, i.e. 

Approximation 3.  Suppose Sm+1 ≪ Sm for some integer m in the range 2 ( m ( n-1.  Then for Sm+1 ≪ t ≪ Sm one has


Nn(t)   (   N1(0)am  \eq \f(t m-1,(m-1)!)
(12)

The approximation (7) can be regarded as the special case of Approximation 3 when m = n .  With radioactive decay chains there is often a number of intervals where this approximation is applicable because successive half-lives are often spaced quite far apart.  In order to see why Approximation 3 is reasonable, note that for times that are small compared to Sm one has e‑jt ( 1 for 1 ( j ( m.  On the other hand, for times that are large compared to Sm+1 convolution with (je‑jt is similar to convolution with the delta function ( for m + 1 ( j ( n.  So m+1(nEn(t) ( 1*1*…*1*(*(*…*( = tm-1/(m-1)!.  Multiplying by N1(0)am gives Approximation 3.  Theorem 3 in Section 2 gives an error bound for this approximation.


It follows from approximation (7) and Approximation 3 that as t goes from zero to times that are large with respect to S3, but small compared to S2, the function Nn(t) goes from approximately proportional to tn-1 to approximately proportional to t where a power of t is lost each time t crosses a half-life.  

To describe the behavior of Nn(t) in intervals containing a half-life one can use blended power functions of which the simplest are the following Gm(t).


Gm(t)   =    EQ \F(tm-1,(m-1)!) * e‑t   =   Em+1(t;1,0,...,0)   =    EQ \I\su(j=0,n-1, ) EQ \F( (-1)n-1-jtj, j!) + (-1)ne-t
(13)
The second equality uses tm‑1/(m‑1)! = 1*1*…*1.   Since g(t) * 1 =  EQ \I(0,t, g(s)ds), it follows that Gm(t) can be obtained by starting with e‑t and integrating m times from 0 to t.  In particular, Gm(t) is increasing in t for m ( 1 and concave upward in t for m ( 2.  It follows from (9) that Gm(t) ( tm/m! for small t, and it follows from the sum on the right of (13) that  Gm(t) ( tm‑1/(m‑1)! for large t.  So Gm(t) interpolates between tm/m! for small t and tm‑1/(m‑1)! for large t.  The following approximation shows how the approximate behavior of Nn(t) goes from N1(0)am+1tm/m! to N1(0)amtm‑1/(m-1)! as t goes from an interval of the form Sm+2 ≪ t ≪ Sm+1 to an interval of the form Sm+1 ≪ t ≪ Sm.  
Approximation 4.  For t << Sn-1 one has

Nn(t)   (   N1(0)an(n)1-nGn-1(nt)
(14)
If Sm+2 << Sm for some integer m satisfying 1 ( m ( n – 2, then for Sm+2 << t << Sm one has


Nn(t)   (   N1(0)am+1(m+1)-mGm(m+1t)
(15)
Note that (14) can be regarded as the special case of (15) when m = n - 1.  To see why (15) is reasonable, note that for times that are small compared to Sm one has e‑jt ( 1 for 1 ( j ( m.  If, in addition to time being small compared to Sm, time is also large compared to Sm+2 then convolution with (je‑jt is similar to convolution with the delta function ( for m + 2 ( j ( n.  So m+2(nEn(t) ( 1*1*…*1*e‑m+1t *(*(*…*( = [tm‑1/(m‑1)!] * e‑m+1t = (m+1)‑mGm(m+1t).  Multiplying by N1(0)am+1 gives (15).  Approximation 4 is actually the special case of the more general Approximation 5 in Section 2 with m = n – 1 in (22) and r = m + 1 in (23).  Approximation 5 applies when two or more of the half-lives are relatively close together while Approximation 4 only applies if the half-life Sm+1 is relatively far from Sm+2 and Sm.  To see the connection between Approximations 4 and 5, note that in Approximation 5 the function H1,m(t;m+1) is equal to (m+1)-mGm(m+1t).  Therefore, the error bound for Approximation 5 in Theorem 4 in Section 2 applies to Approximation 4. 
We noted earlier that round-off errors can be a problem when computing Nn(t) using (5).  To see the cause of this, note that if (11) holds then (5) becomes En(t)  =  EQ \I\su(j=1,n, gje-(jt) where gj = [(1‑j)…(j‑1‑j)(j+1‑j)…(n-j)]-1.  If t ( 1/(1, then g1e‑(1t > [e2…n]-1.  On the other hand (9) implies En(t) ( tn‑1/(n‑1)!.  If one lets K(t) = g1e-(1t/En(t) be the ratio of the first term in the preceding sum to the result of the sum then

K(t)   >    \eq \f((n-1)!,e(t2)…(tn-1))
(16)
If one uses floating point arithmetic to compute En(t), there will be a loss of precision on the order of K(t).  In radioactive decay chains one sometimes wants to compute En(t) for times t which are small compared to 1/2, in which case K(t) will be large.  If K(t) is sufficiently large one will not get an accurate answer computing En(t) using (5).  See Example 1 in section 4 for a concrete example.
To summarize, Approximations 3, 4 and 5 describe the approximate behavior Nn(t) for intermediate values of t, i.e. values of t between those which are small with respect to all the half-lives and those which are "almost large, i.e. large with respect to the third largest half-life, but still small with respect to the second largest half-life.  Approximations prior to this paper only hold for small and large t, so Approximations 3 – 5 fill in an important gap in the knowledge of the behavior of Nn(t).  These approximations can also be a remedy to round-off errors when (5) is used for small t.  Section 2 contains error bounds for these approximations while Section 3 contains similar approximations for En(t), along with proofs of the error bounds.  Section 4 illustrates these approximations with some specific decay chains.  
Nn(t) is related to the probability density function


An(t)   =   An(t;1,...,n)   =   1(nEn(t;1,...,n)
(17)
of the hypoexponential random variable T = T(1 + ( + T(n; see [18, p. 284].  Here the T(j are independent exponential random variables with means 1/(j.  Hypoexponential random variables arise in various situations such as reliability [4].  The cummulative distribution function of T is Fn(t;1,...,n) = 1(nEn+1(t;1,...,n,0).  If bj = 1 for all j and N1(0) = 1 then Nn(t) = An(t)/(n if (n ( 0 and Nn(t) = Fn-1(t;1,...,n-1) if (n = 0.  So the approximations in this paper apply to An(t) and Fn(t) as well.  Recently [19-23], there have been interesting results on ordering properties of hypoexponential random variables which give inequalities involving An(t) and Sn(t) = 1 – Fn(t) for different sets of values of the (j.  These inequalities are global in t, while the ones in this paper are local.


Another approximation one might expect to be relevant is the Welch‑Satterthwaite approximation [24-25] which approximates a linear combination of chi‑square random variables by a gamma random variable with the same mean and variance.  This approximation applied to An(t;1,...,n) says An(t;1,...,n) (  \eq \f(tp-1e-t/(,(p((p)) where p =  \eq \f((2,(2) and ( =  \eq \f((2,() with ( = (1 + ( + (n and ( = ((1)2+ ( + ((n)2 and (j = 1/(j for j = 1, …, n.  However, the Welch‑Satterthwaite approximation is good for times t that are of the same order of magnitude as the largest half-life, which is different from Approximations 1 and 3 - 5 which are good for various time intervals in which t is small compared to the largest half-life.
2.  Error Bounds.

This section has error bounds for Approximations 1 – 4, along with Approximation 5 which generalizes Approximation 4.  We begin with an error bound for Approximation 1.  The proofs of the theorems in this section are postponed until sections 3.2 and 3.3.

Theorem 1.  Suppose 1,...,n are real numbers, (2), (4) and (11) hold and eq \O\ac((,_) is the mean of (1,…,(n.  Let (2 =  EQ \F(1,n) \I\su(j=1,n, )((j - \O\ac((,_))2 be the variance of (1,…,(n and ((t) = !Unexpected End of Formula.  Then for t ( 0 one has

 \eq \f(t n-1e-\O\ac((,_)t,(n-1)!)   (   En(t)   (   (1 + ((t))  \eq \f(t n-1e-\O\ac((,_)t,(n-1)!)
(18)
If 1,...,n-1 are strictly positive and (n is non-negative, then for t ( 0 one has

 EQ \B\bc\|( Nn(t)   -   N1(0)an \f(t n-1e-\O\ac((,_)t,(n-1)!) )   (   ((t)N1(0)an  \eq \f(t n-1e-\O\ac((,_)t,(n-1)!)
(19)
As one can see from (19) and the definition of ((t), if the variance of the (j is small then the interval 0 ( t < t* for which Approximation 1 holds with a given degree of precision is relatively large.  More precisely, this Theorem implies the relative error in Approximation 1 will be less than ( for  t < t* where t = t* is the solution to !Unexpected End of Formula = (.  It will be necessary to solve this equation numerically if one wants a precise value of t*.  However, if (n-1 << (n then one can estimate t* as follows.  In this case eq \O\ac((,_) ( (n/n and (2 ( (n‑1)eq \O\ac((,_)2, so the equation for t* is approximately s2es = 2(n+1)(/(n-1) where s = eq \O\ac((,_)t.  If ( is small then s will be small, so es is on the order of 1 and s2 is on the order of 2(n+1)(/(n-1) which is on the order of (, so t* is on the order of (1/2/eq \O\ac((,_).

The next theorem has an error bound for Approximation 2.  

Theorem 2.  Assume (11), (n > 0, (n = (n(1,...,n) is the value of t where En(t) and Nn(t) assume their maxima and (2 = (2(1,2) = ln(2/1)/(2 ‑ 1) is the corresponding value for E2(t;1,2).  Let eq \O\ac(',3) =  EQ \b\lc\[\rc\]( \I\su(j = 3,n, ) \f(1,mj - m1)) -1  and assume 2(2 < eq \O\ac(',3).  Then

2   <   n   <    eq \f(m\O\ac(',3) 2,m\O\ac(',3) - 2(2)  

Note that if (2 ≪ (3 then eq \O\ac(',3) is on the order of (3 and  eq \f(m\O\ac(',3),m\O\ac(',3) - 2(2) ( 1 + 2(2/eq \O\ac(',3) so that (n ( (2 with a relative error of about 2(2/eq \O\ac(',3).  The next theorem gives an error bound for Approximation 3.
Theorem 3.  Assume 1,...,n-1 are strictly positive, (n is non-negative, (2) and (11) hold and 2 ( m ( n-1.  Let  EQ \O\ac((,_)m be the mean of 1,…,m and  \eq \O\ac((,^)m+1 = \b\lc\[\rc\]((m ‑ 1) \I\su(j=m+1,n, 1/mj)) -1.  Then for t > 0 one has


 EQ \B\bc\|( Nn(t)   -   N1(0)am \f(t m-1,(m-1)!) )   (    EQ  \b\lc\[\rc\](\O\ac((,_)mt  +  \f(1,\O\ac((,^)m+1t)) N1(0)am  \eq \f(t m-1,(m-1)!)
(20)
(20) implies the relative error in Approximation 3 will be less than ( if t1 < t < t2 where t1 < t2 are the solutions of  EQ \O\ac((,_)mt + 1/( EQ  \O\ac((,^)m+1t) = (.  One must have ( ( 2( EQ  \O\ac((,_)m/\O\ac((,^)m+1)1/2 in order for t1 and t2 to be real and there exist t for which the relative error is less than (.  This will only occur if m << m+1 since  EQ \O\ac((,_)m and  EQ  \O\ac((,^)m+1 are on the order of m and m+1.  If  EQ \O\ac((,_)m EQ  \O\ac((,^)m+1  << (2 then t1 ( 1/( EQ  \O\ac((,^)m+1() and t2 ( (/ EQ \O\ac((,_)m.

As indicated in the Introduction, if some of the half lives are close together, then it is necessary to use a generalized version of Approximation 4.  This generalization uses the following blended power functions Hp,m(t) = Hp,m(t;(1,...,(p) which generalize Gm(t) given by (13).


Hp,m(t)  =   EQ \F(tm-1,(m-1)!) * e‑(1t *  * e‑(pt  =   EQ \F(tm-1,(m-1)!) * Ep(t;(1,...,(p)  =  Ep+m(t;(1,...,(p,0,...,0)
(21)
Note that Gm(t) = H1,m(t;1) and H1,m(t;) = -mGm(t).  The blended power functions are related to the exponential moment functions Mk((1,...,(p); see [26-27].  In particular, one has Hp,m(t) = tp+m‑1Mm‑1((1t,...,(pt)/(m-1)!.  Like Gm(t), the function Hp,m(t;(1,...,(p) is increasing in t for m ( 1 and concave upward in t for m ( 2.  It follows from (9) that Hp,m(t) ( tp+m‑1/(p+m-1)! for small t.  If the (’s are strictly positive, then it follows from [17, Theorems 5 and 8] that Hp,m(t) ( tm‑1/[(1(2((p(m‑1)!] for large t, so Hp,m(t) interpolates between tp+m-1/(p+m-1)! for small t and tm‑1/[(1(2((p(m‑1)!] for large t.  The following approximations generalize Approximation 4.
Approximation 5.  For 1 ( m ( n – 1 and t << Sm one has

Nn(t)   (   N1(0)anHn-m,m(t;m+1,...,n)
(22)
If Sr+1 << Sm for some integers m and r satisfying 1 ( m < r ( n – 1, then for Sr+1 << t << Sm one has

Nn(t)   (   N1(0)arHr-m,m(t;m+1,...,r)
(23)
To see why these are reasonable, note that for times that are small compared to Sm one has e‑jt ( 1 for 1 ( j ( m.  So En(t) ( 1*1*…*1*e‑m+1t *  * e‑nt = Hn‑m,m(t;m+1,...,n).  Multiplying by N1(0)an gives (22).  If, in addition to time being small compared to Sm, time is also large compared to Sr+1 then convolution with (je‑jt is similar to convolution with the delta function ( for r+1 ( j ( n.  So r+1(nEn(t) ( 1*1*…*1*e‑m+1t *  * e‑rt*(*(*…*( = Hr-m,m(t;m+1,...,r).  Multiplying by N1(0)ar gives (23).  One has the following error bounds for these approximations.  
Theorem 4.  Assume 1,...,n-1 are strictly positive, (n is non-negative, (2), (11) and (21) hold and Hr‑m,m(t) = Hr‑m,m(t;m+1,...,r).  Let  EQ \O\ac((,_)m be the mean of 1,…,m and  ( =  EQ \I\pr(j = r+1,n, mj/(mj‑m2)) and  EQ  \O\ac((,^)r+1 =  \eq \b\lc\[\rc\]((r ‑ 1) \I\su(j=r+1,n, 1/mj)) -1.  If 1 ( m ( n –1 then for t ( 0 one has

| Nn(t)   -   N1(0)anHn-m,m(t) |   (    EQ \O\ac((,_)mtN1(0)anHn-m,m(t)
(24)
If 2 ( r ( n –1 then for t > 0 one has

| Nn(t)   -   N1(0)arHr-1,1(t) |   (     EQ  \b\lc\[\rc\](\O\ac((,_)1t  +  \f((,\O\ac((,^)r+1t)) N1(0)arHr-1,1(t)
(25)
If 2 ( m < r ( n –1 then for t > 0 one has


| Nn(t)   -   N1(0)arHr-m,m(t) |   (    EQ  \b\lc\[\rc\](\O\ac((,_)mt  +  \f(1,\O\ac((,^)r+1t)) N1(0)arHr-m,m(t)
(26)

Note that (26) is the general case while (24) corresponds to r = n and (25) corresponds to m = 1.  It follows from (24) that the relative error in (22) will be less than ( if t < (/ EQ \O\ac((,_)m and (22) will be good if t is small compared to the m longest half-lives of X1, …, Xn.  Similarly, (26) implies that in the case 2 ( m < r ( n-1 the relative error in (23) will be less than ( if t1 < t < t2 where t1 < t2 are the solutions of  EQ \O\ac((,_)mt + 1/(\O\ac((,^)r+1t) = ( and (23) will be good if t is small compared to the m largest half-lives and large compared to the n-r smallest half-lives.  
3.  Theory.

3.1  Properties of En(t).

This section contains properties of En(t) that will be used in the proofs later.  It follows from the definition of convolution using induction that

(f1 * f2 * …* fn)(t)   =   eq \I(((t),, f1(t-s1) f2(s1-s2) … fn-1(sn-2-sn-1) fn(sn-1) ds)
(27)
where  EQ \L(((t) = {(s1,…,sn‑1):  0 ( s1 ( t,  0 ( s2 ( s1,…, 0 ( sn-1 ( sn-2}) and ds = ds1…dsn-1.  The following proposition follows from several applications of (27).
Proposition 5.  Assume (4) and (1, …, (n are real numbers with mean eq \O\ac((,_) and variance (2 =  EQ \F(1,n) \I\su(j=1,n, )((j - \O\ac((,_))2.  Let s = (s1,…,sn‑1) and suppose eq \I(,,f(s) ds) = \I(((t),,f(s) ds1…dsn-1) for any function f(s) with ((t) defined as above.  Finally, suppose (#s is defined by

(#s   =   (1(t-s1) + (2(s1-s2) + (3(s2-s3) + … + (n‑1(sn-2-sn-1) + (nsn-1
(28)
Then eq \I(,, ds) = tn-1/(n-1)!,  eq \I(,, ((#s) ds) = eq \O\ac((,_)tn/(n-1)!,  eq \I(,, ((#s)2 ds) = [eq \O\ac((,_)2 + (2/(n+1)]tn+1/(n-1)! and

En(t;1,...,n)   =    EQ \I(,,e-((#s) ds)
(29)
Proof.  Apply (27) with fi(t) = 1 for i = 1, …, n to get eq \I(,, ds)  = 1*1*…*1 = tn-1/(n-1)!.  Assume s0 = t and sn = 0 and apply (27) with fj(t) = t and fi(t) = 1 for i ( j to get eq \I(,, (sj-1 – sj) ds) = 1*1*…*1*t*1*…*1 = tn/n! where we have used the fact that 1*1 = t.  Multiplying by (j and summing on j proves eq \I(,, ((#s) ds) = eq \O\ac((,_)tn/(n-1)!.  If one applies (27) with fj(t) = fk(t) = t and fi(t) = 1 if i ( j and i ( k it follows that eq \I(,,(sj-1 – sj)(sk-1 – sk) ds)  =  1*1*…*1*t*1*…*1*t*1*…*1 =  tn+1/(n+1)!.  If one applies (27) with fj(t) = t2 and fi(t) = 1 if i ( j it follows that eq \I(,,(sj-1 – sj)2 ds) = 1*1*…*1*t2*1*…*1 = 2tn+1/(n+1)! where we used the fact that t2/2 = 1*1*1.  Combining with  eq \I(,, ((#s)2 ds) =  \eq \i\su(j = 1,n, )(j2\I(,, (sj-1 – sj)2 ds) + 2  \eq  \i\su(j = 1,n, )\i\su(k = 1,j - 1, ) (j(k \I(,, (sj-1 – sj)(sk-1– sk) ds), one obtains eq \I(,, ((#s)2 ds) = (2tn+1/(n+1)!)  \eq \i\su(j = 1,n, ) \i\su(k = 1,j, )(j(k.  Since n2eq \O\ac((,_)2 =  \eq \i\su(j = 1,n, )(i2 + 2 \eq  \i\su(j = 1,n, )\i\su(k = 1,j - 1, ) (j(k and  \eq \i\su(j = 1,n, )(i2 = n(2 + neq \O\ac((,_)2, it follows that 2 \eq \i\su(j = 1,n, ) \i\su(k = 1,j, )(j(k = [n(n+1)eq \O\ac((,_)2 + n(2].  Combining with the previous formula one obtains eq \I(,, ((#s)2 ds) = [eq \O\ac((,_)2 + (2/(n+1)]tn+1/(n-1)!.  Finally, (29) is derived by applying (27) with fj(t) = e‑(jt.  (

It follows from (29) that Nn(t) = N1(0)an  EQ \I(((t),,e-((#u) ds).  A similar formula was obtained in [28, p. 13] using the exponential moment functions Mk(1,...,n) given in [26-27].  One has En(t;1,...,n) = tn-1e-1tM0((2-1)t,...,(n-1)t).
Ek(t) has the following translation property.


e(tEk(t;1,...,k)   =   Ek(t;1‑(,...,k‑()
(30)
for real numbers 1,...,k and ( which follows from (4) and the fact that e(t(f(t) * g(t)) = (e(tf(t)) * (e(tg(t)); see [17, Theorem 4].


In [17, Theorem 8] the approximation ((1-)(((p-)Ep(t)*Ek(t) ( Ek(t) for large t was established for the convolution of Ek(t) = Ek(t;1,...,k) and Ep(t) = Ep(t;(1,...,(p).  Here 1,...,k and (1,…,(p are real numbers with k ( 2 and ((2) < min{(1,...,(p} with  and ((2) being the smallest and second smallest of 1,...,k.  Furthermore, one has the error bound


Ek(t)  EQ  \b\lc\[\rc\](1 –  \f((,(t))    (    ((1-)(((p-)Ep(t)*Ek(t)    (    Ek(t)
(31)
with  EQ ( = \b\lc\[\rc\]((k ‑ 1) \I\su(j=1,p, ((j‑a)-1)) -1 and ( =  EQ \I\pr(j=1,p, ((j-()/((j-((2))).
3.2  Small values of t.

We begin with the proof of Theorem 1.
Proof of Theorem 1.  From (30) it follows that En(t) = e- \eq \O\ac((,_)tEn(t;1‑eq \O\ac((,_),...,n‑eq \O\ac((,_)).  Using this one can reduce (18) to the case that eq \O\ac((,_) = 0 which we shall now assume.  The rest of the proof uses (29).  By Taylor's formula one has e‑x = 1 ‑ x +x2e‑(/2 where ( is between 0 and x.  So 1 ‑ x ( e‑x ( 1 ‑ x + (x2/2) max{1,e-x}.  Applying this with x = (#s where (#s is given by (28) and using the fact that max{1, e‑((#s)} ( e-(1t for s in ((t), one obtains 1 ‑ (#s ( e‑((#s) ( 1 ‑ (#s + ((#s)2e-(1t/2.  Integrating over ((t) and using Proposition 5 one obtains (1 ‑ eq \O\ac((,_)t)tn-1/(n-1)!  (  En(t)  (  (1 ‑ eq \O\ac((,_)t + (\O\ac((,_)2 + (2/(n+1))t2e (1t)tn-1/(n-1)!.  Since eq \O\ac((,_) = 0, this proves (18) which in turn implies |En(t) ‑ t n‑1e‑ \eq \O\ac((,_)t/(n‑1)!| ( ((t)t n‑1e- \eq \O\ac((,_)t/(n‑1)!.  Multiplying by N1(0)an proves (19).  (

Before going on to approximations to En(t) for intermediate values of t we consider a related radioactive decay problem where new X1 is being produced at a rate f(t) from a source outside the chain so one has f(t)  X1  X2    Xn  and the first equation in (1) becomes dN1/dt = f(t) ‑ 1N1.  We assume all the Nj(0) are zero in which case


Nn(t)   =   anEn(t;1,...,n) * f(t)

where an was defined in (3)  This formula can be proved using Laplace transforms.  For this Nn(t) one has the small time approximation


Nn(t)   (   an  EQ \F(tn‑1,(n-1)!) * f(t)
which follows from the following theorem.  This theorem is also used in of the proof of (24) in Theorem 4 and Theorem 7 below.

Theorem 6.  Assume 1,...,n are non-negative, (4) and (11) hold, f(t) ( 0 for t ( 0 and 1 ( m ( n‑1.  Let eq \O\ac((,_) be the mean of 1,…,n,  EQ \O\ac((,_)m be the mean of 1,…,m and En(t) = En(t;1,...,n) and En‑m(t) = En‑m(t;m+1,...,n).  Then for t ( 0 one has

e- \eq \O\ac((,_)t [f(t) *  EQ \F(tn‑1,(n-1)!)]   (   En(t)*f(t)   (   f(t) *  EQ \F(tn‑1,(n-1)!)
(32)

(1 -  EQ \O\ac((,_)mt) [En‑m(t) *  EQ \F(tm‑1,(m-1)!)]   ≤   e- \eq \O\ac((,_)mt [En‑m(t) *  EQ \F(tm‑1,(m-1)!)]   ≤   En(t)   ≤   En‑m(t) *  EQ \F(tm‑1,(m-1)!)
(33)
Remark.  By (21) one has En‑m(t) * tm‑1/(m‑1)! = Hn‑m,m(t;m+1,...,n).
Proof.  For simplicity of notation let ( = eq \O\ac((,_).  The right inequality in (32) is obtained by convoluting the right inequality in (9) with f(t).  Convoluting the left inequality in (18) with f(t) gives (e‑ttn‑1) * f(t)/(n‑1)!    En(t) * f(t).  Since e-t is decreasing, it follows that e‑t (tn‑1 * f(t))  (e‑ttn‑1) * f(t).  Combining this with the preceding gives the left inequality of (32).  Using (4) and the fact that En(t) is a symmetric function of the (’s one has En(t) = En(t;1,...,n) = Em(t;1,...,m)*En‑m(t).  If one applies (32) with En(t) = Em(t;1,...,m) and f(t) = En‑m(t;m+1,...,n) one obtains right and middle inequalities of (33).  The left inequality in (33) follows from the fact that 1 - x ( e-x.  (
3.3  Intermediate and large values of t.


The following theorem which provides error bounds for approximations to En(t) for intermediate values of t is the basis for the proofs of Thoerem 3 and (25) and (26) in Theorem 4.  Note that (35) is the special case of (36) when m = 1.

Theorem 7.  Assume 1,...,n are non-negative, (4), (11) and (21) hold, m,_) EQ m
 is the mean of 1,…,m and  EQ  \O\ac((,^)r+1 =  \eq \b\lc\[\rc\]((r ‑ 1) \I\su(j=r+1,n, 1/mj)) -1.  Let Hr‑m,m(t) = Hr‑m,m(t;m+1,...,r) and ( =  EQ \I\pr(j = r+1,n, mj/(mj‑m2)).  For (34) assume 2 ( m ( n-1 and (m+1 > 0.  For (35) assume 1 < r < n and (r+1 > 0.  For (36) assume 2 ( m < r < n and (r+1 > 0.  Then for t > 0 one has


e-eq \O\ac(m,_)m t  EQ  \b\lc\[\rc\](1 - \f(1,\O\ac(m,^)m+1t))  \eq \f(t m-1,(m-1)!)   (   m+1(nEn(t)   (    \eq \f(t m-1,(m-1)!)
(34)

e-(1t  EQ  \b\lc\[\rc\](1 - \f((,\O\ac(m,^)r+1t)) Hr-1,1(t)   (   r+1(nEn(t)   (   Hr-1,1(t)
(35)

e-eq \O\ac(m,_)m t  EQ  \b\lc\[\rc\](1 - \f(1,\O\ac(m,^)r+1t)) Hr-m,m(t)   (   r+1(nEn(t)   (   Hr-m,m(t)
(36)
Proof.  Let ( =  EQ \O\ac((,_)m and ( =  EQ  \O\ac((,^)r+1.  By (33) one has e-tg(t) ( En(t) ( g(t) where g(t) = En‑m(t;m+1,...,n) * tm‑1/(m‑1)!.  To prove (34) we apply (31) with Ep(t;(1,...,(p) = En‑m(t;m+1,...,n) and Ek(t;1,...,k) = tm‑1/(m‑1)! = Em(t;0,...,0).  In this case ( = ((2) = 0, ( = 1 and ( = (, so one obtains (1 ‑ ((t)‑1)t m‑1/(m‑1)! ( m+1(ng(t) ( t m‑1/(m‑1)!.  Combining with e‑tg(t) ( En(t) ( g(t) proves (34).  To prove (35) we write g(t) = En‑r(t;r+1,...,n) * U(t) with U(t) = Er‑m(t;m+1,...,r) * tm‑1/(m‑1)! = Hr-m,m(t).  We apply (31) with En(t) = En‑r(t;r+1,...,n) and Ek(t) = U(t).  In this case ( = ((2) = 0, ( = 1 and ( = (, so one obtains (1 ‑ 1/((t))Hr‑m,m(t) ( r+1(ng(t) ( Hr‑m,m(t).  Combining with e‑tg(t) ( En(t) ( g(t) proves (36).  The proof of (35) is essentially the same as the proof of (36) with m = 1.  The difference is that ((2) = (2 instead of ((2) = 0 so that ( =  EQ \I\pr(j = r+1,n, mj/(mj‑m2)) instead of ( = 1.  (
Proof of Theorem 3.  Let ( =  EQ \O\ac((,_)m, ( =  EQ  \O\ac((,^)m+1, and M(t) = N1(0)amtm‑1/(m-1)!.  Apply (34) in Theorem 7 and note that 1 - (t ( e-t and (1 - (t – 1/((t)) ( (1-(t)(1 – 1/((t)) to obtain (1 ‑ (t ‑ 1/((t))t m‑1/(m‑1)! ( m+1(nEn(t) ( t m-1/(m-1)!.  Multiply by N1(0)am to get (1 ‑ (t ‑ 1/((t))M(t) ( P(t) ( M(t) where P(t) = N1(0)b1(bn-11(nEn(t)/(n.  Since 1(n = (1((n one has P(t) = Nn(t).  So (1 ‑ (t ‑ 1/((t))M(t) ( Nn(t) ( M(t) and Theorem 3 follows.  (
Proof of Theorem 4.  Let ( =  EQ \O\ac((,_)m, ( =  EQ  \O\ac((,^)r+1 and M(t) = N1(0)arHr‑m,m(t).  Inequality (33) of Theorem 6 implies eq |En(t) ‑ Hn‑m,m(t)| ( tHn‑m,m(t).  Multiplying by N1(0)an proves (24).  Apply (36) of Theorem 7 and note that 1 ‑ t ( e-t and (1 ‑ t ‑ 1/((t)) ( (1 ‑ t)(1 –1/((t)) to obtain (1 ‑ t ‑ 1/((t))Hr‑m,m(t) ( r+1(nEn(t) ( Hr‑m,m(t).  Multiply by N1(0)ar to get (1 ‑ t ‑ 1/((t))M(t) ( P(t) ( M(t) where P(t) = N1(0)b1(bn-11(nEn(t)/(n = Nn(t).  So (1 ‑ t ‑ 1/((t))M(t) ( Nn(t) ( M(t) and (26) follows.  The proof of (25) is essentially the same as the proof of (26) except this time we apply (35) of Theorem 7 which leads to (1 ‑ t ‑ (/((t))Hr-1,1(t) ( r+1(nEn(t) ( Hr-1,1(t) by the same argument as in the proof of (26).  From this the rest of the proof of (25) proceeds as in the proof of (26).  (
Finally, we turn to the proof of Theorem 2, which actually is concerned with relatively large values of t.  Let k((1,...,(k) be the value of t where Ek(t;(1,...,(k) is maximum in 0 ( t < ( if all (j > 0.  This is a symmetric function of (1,...,(k since Ek(t;(1,...,(k) is.  Note that 1(() = 0 and 2((1,(2) = ln((2/(1)/((2‑(1).  We begin by showing k((1,...,(k) increases with k.  
Proposition 8.  Assume (1,...,(k are positive real numbers, (17) and k ( 2, Ek(t) = Ek(t;(1,...,(k), Ak(t) = Ak(t;(1,...,(k)  and Ak-1(t) = Ak-1(t;(1,...,(k-1) and k = k((1,...,(k).  Then the following are true for t > 0.
(a)
 \eq \f(dAk,dt)   =   k(Ak‑1(t) – Ak(t))
(b)
If t ( k then Ak(t) ( Ak‑1(t) and Ak(t) is increasing.  If t ( k then Ak(t) ( Ak‑1(t) and Ak(t) is decreasing.
(c)
k((1,...,(k) ( k-1((1,...,(k-1)

Proof.  (a) follows from the fact that d(ejtEk(t))/dt = e(jtEk-1(t;1,...,j-1,j+1,...,k) which is shown in [17, Theorem 4].  (b) follows from (a).  In [17, Theorem 5] it is shown that (ke‑(kt*f(t) ( f(t) as long as f(t) is increasing.  Letting f(t) = Ak‑1(t), it follows that Ak(t) ( Ak‑1(t) as long as Ak‑1(t) is increasing.  (c) follows from this.  (
Proof of Theorem 2.  Let An(t) = An(t;1,...,n) and A2(t) = A2(t;1,2).  By Proposition 8c one has n > 2, so it remains to show n < q2, where q = (eq \O\ac(',3)/((eq \O\ac(',3)n - 2(2).  By [17, Theorem 5f] one has An‑1(t;2,...,n) < a2e-(2t where a = 3...n/[(3-2)...(n-2)].  By (31) one has a(1/b ‑ 2/(eq \O\ac(',3))A2(t) < for t ( 1/2 where b = (3-1)...(n-1)/[(3-2)...(n-2)].  Note that (j‑2)/(j‑1) > 1 ‑ 2/(j‑1).  From this it follows that 1/b > 1 ‑ 2/(eq \O\ac(',3) and aA2(t)/q < An(t) for t ( 1/2.  The solution to the equation aA2(t)/q = a2e-(2t is t = T where T = ln(1 + (x‑1)q)/(2-1) with x = 2/1 if 1 < 2 and T = q/2 = q2 if 1 = 2.  It is not hard to show that T > 1/2 in either case.  So An(T) > An‑1(T;2,...,n).  From Proposition 8b one has n < T.  In the case 1 = 2 we are done.  In the case 1 < 2 we use the fact that y ( yq is convex to conclude 1 + (x‑1)q ( xq.  So T < q ln(x)/(2-1) = q2.  (
4.  Examples.


These two examples illustrate Approximations 1 – 5 and the error bounds for them in Theorems 1 - 4.
Example 1.  The chain 238U  234Th  234mPa  234U  has half‑lives T1 = 4.47 ( 109 years, T2 =  24.1 days, T3 = 1.17 min and T4 = 2.46 ( 105 years and branching fractions b1 = b2 = 1 and b3 = 0.9984; see [29].  The corresponding decay constants (j and sorted decay constants (j (see (11)) are 1 = 1 = 1.55 ( 10-10 year-1, (2 = (3 = 0.0288 day-1, (3 = (4 = 0.592 min‑1, and 4 = 2 = 2.82 ( 10‑6 year-1.  Assume the initial amounts of 234Th, 234mPa and 234U are zero and a relative error of 2% in the approximations is acceptable.  The mean and variance of  are eq \O\ac((,_) = 0.148 min-1 and (2 = 0.0658 min-2.  (Note that eq \O\ac((,_) ( (3/4 and (2 ( 3eq \O\ac((,_)2.)

Let's begin with the approximate behavior of N4(t) given by approximations known prior to this paper.  The approximation (7) says N4(t) is approximately proportional to t3 for small t, i.e. N4(t) ( N1(0)b3123t3/6.  The error bound (8) says the error is less than 2% for t < 0.02/eq \O\ac((,_) = 0.135 min which is about 12% of the smallest half-life T3.  For large time it is shown in [17, Example 2] that N4(t) is approximately proportional to E2(t;(1,(4) = (e‑(1t ‑ e‑(4t)/((4 - (1).  More precisely N4(t) ( N1(0)bE2(t;(1,(4) with an error less than 2% if t >  5 years.  
Related to this large time approximation is Approximation 2 which says the time 4 where of N4(t) is a maximum is approximately the time 2 = ln((4/(1)/((4 - (1) = 3.470579 ( 106 y where E2(t;(1,(4) is a maximum.  Theorem 2 shows that 4 ( 2 with a relative error less than  eq \f(m\O\ac(',3),m\O\ac(',3) - 2(2) < 10-6.
The other approximations introduced in this paper fill in the approximate behavior of N4(t) for times not included in the previous small and large time approximations.  For small t, Approximation 1 is better than the approximation (7), but not as simple.  In this example it says N4(t) ( N1(0)b3123t3e- \eq \O\ac((,_)t/6.  By Theorem 1 the relative error of this approximation is less than 2% if t < 1.55 min which about 33% longer than the smallest half life.  Approximations 3 and (14) of Approximation 4 provide even better small time approximations at the expense of more complicated approximating functions.  With Approximation 3 one obtains N4(t) ( N1(0)b3(1(2G3(3t) = N1(0)b3(1(2(((3t)2/2 ‑ (3t + 1 ‑ e‑3t)/((3)2.  By (24) of Theorem 4 the relative error is less than 2% for t < 0.02/ EQ \O\ac(m,_)3 = 0.02/0.00959 day-1 = 2.09 days which is about 9% of the second smallest half-life 2.  N1(0)b3(1(2G3(3t) interpolates between N1(0)b3123t3/6 for small t and N1(0)b312t2/2 for large t.
To get the behavior N4(t) for times bigger than "small t" one can use Approximations 3, 4 or 5.  Approximation 3 with m = 3 says N4(t) is approximately proportional to t2 for T3 ≪ t ≪ T2.  More precisely, N4(t) ( N1(0)b312t2/2.  Using Theorem 3, the error is less than 2% for t1 < t < t2 where t1 < t2 are the solutions of m,_) EQ 3
t + 1/( EQ  \O\ac(m,^)4t) = 0.02 where  EQ  \O\ac(m,^)4 = (4/2 = 427 day‑1.  Solving gives t1 = 2.99 hours and t2 = 1.96 days.  t1 is about 153 times larger than the smallest half-life T3 and t2 is about 8% of the second smallest half-life T2.  With m = 2, Approximation 3 and Theorem 3 give N4(t) ( N1(0)b31t with an error less than 2% for t1 < t < t2 where t1 < t2 are the solutions of  EQ \O\ac(m,_)2t + 1/( EQ  \O\ac(m,^)3t) = 0.02 where  EQ \O\ac(m,_)2 = 3.86 ( 10-9 day-1 is the mean of (1 and (2 and  EQ  \O\ac(m,^)3 = [1/(3 + 1/(4]-1 ( (3 = 0.0288 day‑1.  Solving gives t1 = 4.75 yr and t2 = 14181 yr.  t1 is about 72 times larger than the second smallest half-life T2 and t2 is about 6% of the second largest half-life T4.  
The blended power law Approximations 4 and 5 apply for larger ranges than the power law Approximations 3, but involve more complicated approximation functions.  For example, applying (15) of Approximation 4 with m = 2 gives N4(t) ( N1(0)b312G2(2t) = N1(0)b3(1((2t ‑ 1 + e-2t)/(2.  By (26) of Theorem 4 the relative error is less than 2% for t1 < t < t2 where t1 < t2 are the solutions of  EQ \O\ac(m,_)2t + 1/(\O\ac(m,^)4t) = 0.02.  Solving gives t1 = 2.81 hours and t2 = 1.42 ( 104 years.  t1 is about 144 times larger than the smallest half-life T3 and t2 is about 6% of the third smallest half-life 4.  N1(0)b312G2(2t) interpolates between N1(0)b312t2/2 for small t and N1(0)b31t for large t.
To summarize, as t goes for zero to about 14,000 years N4(t) goes from approximately proportional to t3 for t ≪ T3 to approximately proportional to t2 for T3 ≪ t ≪ T2 to approximately proportional to t for T2 ≪ t ≪ T4.  The power of t decreases by one as one goes from one interval to the next which involves crossing one of the half-lives.  Between the intervals t ≪ T3 and T3 ≪ t ≪ T2 one has N4(t) approximately proportional to G3(3t) which interpolates between (3t)3/6 for small t and (3t)2/2.  Between the intervals T3 ≪ t ≪ T2 and T2 ≪ t ≪ T4 one has N4(t) approximately proportional to G2(2t) which interpolates between (2t)2/2 for small t and 2t.  If one combines these approximations with the fact that N4(t) is approximately proportional to E2(t;(1,(4) for large t, one has a complete picture of the approximate behavior of N4(t).
It was noted earlier that another reason to use of the approximations in section 2 is when round-off error is a problem using (5).  In Example 1, consider K(t) given with (16) for t ( 1/4.  For these t one has K(t) ( 6(4/2)(4/3) = 2 ( 1016.  If the calculation of N4(t) for these t is done using (5) on a computer which has a relative error of 10-16 for each arithmetic operation, then the values of N4(t) would have a relative error of about 2 and would be meaningless.  

The following example illustrates that Approximation 1 holds for a relatively long range of time when the half-lives are close together.

Example 2.  The chain 200Pb  200Tl  has half‑lives 1 = 21 hours and 2 = 26.4 hours and branching fractions b1 = b2 = 1; see [16, p. 12].  The corresponding decay constants (j and sorted decay constants (j are 1 = 2 = 0.033 hr-1 and (2 = (1 = 0.0263 hr-1.  Approximation 1 implies N2(t) ( N1(0)1te-(1+2)t/2 with a relative error less than 2% if t < t* where t* is the solution to (2t2e(!Unexpected End of Formula - (1)t/(2(n+1)) = 0.02.  Solving numerically one obtains t* = 88.4 hrs which is about 3.3 times the largest half life.  In [16, p. 12] the approximation N2(t) ( N1(0)1te-1t is used instead which has an error less than 2% for t < 6 hours.

5.  Conclusions.


In this paper we have given approximations to the amount Nn(t) of Xn at time t in the radioactive decay chains X1  X2    Xn  .  These approximations show that Nn(t) is approximately proportional to tm-1 in a sufficiently large interval between the (m+1)st largest half life the mth largest half life and the transition from one interval of this form to the next is also described.  When combined with known small and large time approximations for Nn(t), one obtains a complete picture of the behavior of Nn(t).  These approximations can also be used to overcome the round-off errors that arises when the usual formula is used to compute Nn(t).  We established error bounds for these approximations which allow one to determine the range of values of t for which the approximations hold with a given degree of precision.  
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