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2.8  Floating point numbers and round-off errors. 

Round-off errors are due to the fact that people, calculators, and computers usually do not keep track of or store 

numbers exactly in the course of a series of calculations.  Scientific and engineering computations are often done 

with numbers expressed in floating point form.  A number x is expressed in decimal floating point form if it is 

written as a signed number with magnitude between 1 and 10 multiplied by an integral power of 10.  In other 

words we write x =  d1.d2
dj

  10
q
 where the dj are decimal digits with d1  0.   

Example 1.   

168,500 has floating point representation 1.685  10
5
 

0.0378462 has floating point representation 3.78462  10
-2

 

- 0.00746 has floating point representation - 7.46  10
-3

 

1/3 has floating point representation 3.333….  10
-1

 

The number   d1.d2
dj

  is called the mantissa while the power q is called the exponent.  Actually, computers 

often use base 2 for their representation of floating point numbers, but most of the important issues with round 

off errors are present with base 10.  So, for simplicity, we restrict our attention to base 10. 

Note that q is the largest integer such that 10
q
  | x | which implies 

(1) q   =    log10 | x |  

Then the mantissa  d1.d2
dj

 is equal to 10
-q

x.  Here  y  denotes the floor of y which is the largest 

integer not exceeding y. 

Note that in the case of 1/3 = 3.333….  10
-1

 one needs an infinite number of digits in the mantissa to represent 

1/3 exactly.  It is usually impossible to keep track of an infinite number of digits in the course of a series of 

computations, so people and computers usually do calculations keeping only a certain fixed number of digits of 

the mantissa at each step.  This is called the number of digits of precision in the computations.  Much of today's 

software does computations with at least 15 decimal digits of precision.  We will assume a number x is rounded 

to xa, although some computers chop x to get xa.   

Example 2.  If a computation is done is using seven decimal digits of precision, then the number x = 1/3 would 

be approximated by xa = 3.333333  10
-1

 = 0.3333333.  The absolute error between the number x = 1/3 and 

xa = 0.3333333 is 1/3  10
-7

 and the relative error is 10
-7

.   

In general, the term round-off error refers to the error that one makes by replacing a number with its floating 

point approximation rounded off to a certain number of digits.  The size of a round-off error will vary.  

However, there is a close connection between the relative error of the round-off error and the number of digits of 

precision; see Proposition 1 below. 
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To make this more precise suppose x =  d1.d2
dj

  10
q
 in floating point form.  Then if x > 0 

(2) round(x, p) =    



d1.d2

dp-1dp  10q                            if dp+1 < 5

d1.d2
dp-1(dp+1)  10q                      if  dp+1  5  and  dp <  9

d1.d2
ds-1(ds+1)00  10q               if dp+1  5 and ds < 9 and ds+1 =  = dp = 9

1.00  10q+1                                    if  dp+1  5  and d1 =  = dp = 9

 

denotes x rounded to p decimal places.  If x < 0 then round(x, p) = - round( -x, p).   

Example 3.  If x = 1.685  10
5
 and we round x to 3 decimal places we get 1.68  10

5
.   

On most calculators and computers the numbers are rounded-off to the same number of digits after each 

operation and to say that a computation is done with p decimal digits of precision means that the inputs and the 

result of each arithmetic operation are rounded to p digits.   There is the following connection between the 

number of significant decimal digits and a bound on the relative error.   

Proposition 1  Suppose x =  d1.d2
dj

  10
q
 in floating point form and let xa = round(x, p) be the 

approximation to x obtained by rounding x to p decimal places.  Then the absolute error is no more than 

5  10
q-p

 and both relative errors  t and  a are no more than 5  10
-p

. 

Proof.   We shall suppose x is positive; the case where x is negative follows from the case where x is positive 

and the fact that round(x, p) = - round( -x, p).  One has   = | x - xa |  0.005  10
q
 where there are p-1 zeros 

between the decimal point and the 5.  This is because we decrease x by no more than this amount to get xa if we 

round x down to get xa and we increase x by no more than this amount if we round up.  Note that 

0.005  10
q
 = 5  10

q-p
.  So      5  10

q-p
.  Also 10

q
  | x | and 10

q
  | xa |.  So 

 t =   / | x |   5  10
q-p

 / 10
q
  =  5  10

-p
, and similarly for  a.  // 

round(x, p) can be expressed in terms of the chop operation. 

chop(x, p)    =     d1.d2
dp   10

q
    =    10

q-p+1
  10

p-q-1
 x  

denotes x chopped off to p digits.   If x < 0 then chop(x, p) = - chop(-x, p).  If x > 0 then 

 round(x, p) =   chop(  x + ( 5  10
q-p

 ), p) 

In analysis of round-off errors it is often convenient to work with the machine . 

(3) Machine    =  the smallest number which when added to 1 using the given computational 

method gives a result larger than 1. 

If the computations are done with p decimal digits of precision then  = 5  10
-p

.  Note that Proposition 1 says 

that the relative error between a number and the approximation obtained by rounding it off to p decimal places is 

no more than .  The round-off error in storing a measured value in the computer is usually much smaller than 

the error in measurement.  However, it is possible for the round-off error in arithmetic computations to be larger 

than the error due to the error in measurement.  We shall see some examples in the next section. 


