Convolutions of Unimodal Functions

Frank Massey

A unimodal function is one that has a single local maximum.  The convolution of two unimodal functions is not always unimodal.  Ibragimov [1] showed that if one of the two functions is log concave their convolution is unimodal.  Furthermore, if both are log concave, so is their convolution.  These notes are based on chapter 1 of S. Dharmadhikari and J.D. Kumar [2].
1.
Some defintions and assumptions.

Standing Assumption.  Unless stated otherwise all functions are implicitly assumed to map R into (-(, (] and to be measurable.

Definition 1.1:  A function is a locally integrable if it is integrable over every bounded set.  It is locally bounded if it bounded on every bounded set.  It is locally absolutely continuous if it is absolutely continuous of every bounded set.

2.
Unimodal Functions.
Different sources have slightly different definitions for a unimodal function.  We shall use the following.

Definition 2.1:  A mode of a function f is a number a such that 

a.
f is non-decreasing on (-(, a]

b.
f is non-increasing on [a, ()

f is unimodal if it has a mode.  f is strictly unimodal if it has a single mode.

If a is a mode for f then f(x) ( f(a) for all x.  The set of modes for f form an interval and f is constant on this interval.

Given a locally integrable function f, let F be an indefinite integral of f, i.e. F is locally absolutely continuous and F′(x) = f(x) a.e.  For example, one could take  EQ F(x) = \I(0,x, f(x) dx).  Then a is a mode if and only if F is convex on (-(, a] and F is concave on [a, ().

Proposition 2.1.  Suppose f is continuous everywhere.  Then one of the following is true.

a.
f is non-decreasing

b.
f is non-increasing

c.
f has a local maximum or a local minimum

Proof.  Suppose f has neither a local maximum or a local minimum.

We first show if [a, d] is any closed bounded interval then f is either non-decreasing on [a, d] or non‑increasing on [a, d].  With out loss of generality we may suppose f(a) ( f(d).  We shall show that f is non‑decreasing on [a, d].  Suppose not.  Then there is b and c such that a ( b < c ( d and f(b) > f(c).  If f(b) is not in the open interval (f(a), f(d)) then there would be a local maximum or minimum in [a, d].  The same is true for f(c).  So both f(b) and f(c) are in (f(a), f(d)).  Since f(a) < f(b) > f(c), it follows that there is local maximum in [a, c].

So f is monotone on any closed, bounded interval.  Pick two points a and b with a < b such that f(a) and f(b) are different.  With out loss of generality we may suppose f(a) < f(b).  We shall show that f is non-decreasing everywhere.  Let x and y be any two values.  Pick a closed bounded interval that contains a, b, x and y.  Then f is monotone on this interval.  f must be non-decreasing on this interval since f(a) < f(b).  So f(x) ( f(y).  //

Proposition 2.2.  Suppose {fn} is a sequence of integrable, unimodal functions and fn ( f in L1.  Then f is unimodal.

Proof.   Let (n be a mode of fn.  By dropping to a subsequence if necessary we may assume fn ( f  a.e. and (n converges to a value (, if we allow (( as values of (.  So there is a set E such that R \ E has measure 0 and fn(x) ( f(x) if x ( E.  Suppose x < y < ( and x, y ( E.  Then there is an n such that  x < y < (n if n ( N.  So fn(x) ( fn(y) if n ( N.  Letting n (( one obtains fn(x) ( fn(y).  So f is non-decreasing on (-(, () ( E.  Similarly, f is non-decreasing on ((, () ( E.  Redefine f on R \ E  by 

f(x)  =   EQ \B\lc\{(\a\al( sup{ f(y): y < x\L(,) y ( E}                 if x < (, sup{ f(y):  y ( E}                          if x = (, sup{ f(y): x < y\L(,) y ( E}                 if x > ())  

Then f is still non‑decreasing for x ( (, and non-increasing for x ( (.  ( must be finite since f is integrable.  So ( is a mode and f is unimodal.  //

3.
Convolutions.
Definition 3.1.  The convolution f * g of functions f and g is defined by

(3.1)
(f * g)(x)   =    EQ \I(-(,(, f(y)g(x-y) dy)   =    EQ \I(-(,(, f(x-y)g(y) dy)
f * g is defined for those x for which f(y)g(x-y) is an integrable function of y.  Convolution is commutative, i.e. f * g = g * f.

Here are two cases where f * g is defined a.e.

Proposition 3.1.
(a)
If f and g are integrable then f * g is defined a.e. and integrable and || f*g ||1 (. ||f||1 ||g||1
(b)
If f is integrable and g is bounded then f * g is defined everywhere, measurable and bounded and || f*g ||( (. ||f||1 ||g||(.

Proof.  See Dunford and Schwartz [3, p. 634]

Convolution is associative and distributive, i.e. f*(g*h) = (f*g)*h and f*(g+h) = f*g+f*h under suitable assumptions of f, g and h; see Dunford and Schwartz [3, p. 635]

Convolution with a fixed function g commutes with translations, i.e.


f(x-a) * g(x)   =   (f * g)(x-a)

(3.2)
f(x-a) * g(x-b)   =   (f * g)(x-a-b)

To state these precisely, let Ta be the translation operator by a, i.e.


(Taf)(x)   =   f(x-a)

Proposition 3.2.     (Taf) * g   =   Ta(f * g)     and     (Taf) * (Tbg)   =   Ta+b(f * g)

Proof.    [(Taf) * g](x) =  EQ \I(-(,(, (Taf)(y)g(x-y) dy) =  EQ \I(-(,(, f(y-a)g(x-y) dy) =  EQ \I(-(,(, f(u)g(x-a-u) du) = (f * g)(x‑a) = [Ta(f * g)](x) which proves the first relation.  The second relation follows from the first.  //

Convolution is a smoothing operation in the sense that f * g often has the smoothness properties of the smoother of f and g.  Here are two propositions illustrating this.

Propostion 3.3.  Suppose f is integrable and g is bounded and g is continuous a.e.  Then f * g is continuous everywhere.

Proof.  Let x be any number and let {xn} be a sequence such that xn ( x.  We shall show that (f*g)(xn) ( (f*g)(x) which will prove the proposition.  We need to show that

(3.3)
 EQ \I(-(,(, f(y)g(xn-y) dy)   (    EQ \I(-(,(, f(y)g(x-y) dy)
We shall use the dominated convergence theorem.  Since g is bounded there is a number C such that | g(x) | ( C for all x.  Therefore | f(y)g(xn-y) | ( C for all x.  The set E of discontinuities of g has measure 0.  Therefore the set x-E = {x-y: y(E} also has measure 0.  If y ( x-E then f(y)g(xn-y)( f(y)g(x-y).  So f(y)g(xn-y)( f(y)g(x-y) for a.a.y.  Therefore (3.3) holds.  // 

Propostion 3.4.  Suppose f is absolutely continuous and both f and f´ are integrable.  Suppose g is bounded.  Then f * g is locally absolutely continuous and (f * g)´ = f´ * g.

Proof.  Let h = f´ * g.  By Proposition 2.1, h is bounded and measurable.  Let  EQ H(x) = \I(0,x, h(t) dt).  Then H is locally absolutely continuous and H´ = f´ * g.  One has 

H(x)  =   EQ \I(0,x, )\I(-(,(, f´(x-y)g(y) dy) dt  =   EQ \I(-(,(, )\I(0,x, f´(x-y)g(y) dt) dy
=   EQ \I(-(,(, )[f(x-y)g(y) - f(0-y)g(y)] dy  =  (f * g)(x) - (f * g)(0)

Since f * g differs from H by a constant f * g is locally absolutely continuous and (f * g)´ = f´ * g.  //

In Appendix 1 there is a discussion of convolutions involving functions with support in an interval.  For an interesting discussion of convolutions in general, see Wikipedia [4].

4.
Log-concave functions.
The convolution of two unimodal functions is not always unimodal.  For example, the function  f(x)  =   EQ \B\lc\{(\a\al( 4x                 0 ( x < 1, 4 - 3(x-1)      1 ( x < 2, 1                    2 ( x < 4, 0                    otherwise))  is unimodal, but f*f is not; see Appendix 2.

Ibragimov [1] showed that the convolution of a log-concave function with a unimodal function is unimodal.  We show this in the next section, but first we give a short discussion of log-concave functions.

Definition 4.1.  A function f is log-concave if the following is true

a.
0 ≤ f(x) < ∞ for all x.

b.
I = {x: f(x) > 0} is an interval

c.
log[f(x)] is a concave function

From the properties of concave functions we obtain the following.

Proposition 4.1.  

(a)
If f satisfies condition a above, then the conditions b and c are equivalent to

(4.1)
[f(a)]θ [f(b)]1-θ   ≤   f(θa + (1-θ)b)                      for all a and b and 0 ≤ θ ≤ 1.

which in turn is equivalent to


f(a)f(b)   ≤   f((a + b)/2)                      for all a and b.

(b)
If f satisfies conditions a and b, then condition c is equivalent to 

(4.2)
f is locally absolutely continuous on I and f´/f is non-decreasing on I.

(c)
If f satisfies conditions a and b, is continuously differentiable and f´ is locally absolutely continuous, then condition c is equivalent to 

(4.3)
(f´)2 ≥ f´´f  for a.e. in I.

(d)
If f is log-concave, x ≤ y, u > 0, x ( I, y ( I, x-u ( I and y-u ( I then

(4.4)
 EQ \F(f(x+u),f(x))   ≥    EQ \F(f(y+u),f(y))           and                    EQ \F(f(x-u),f(x))   ≤    EQ \F(f(y-u),f(y))
(e)
If f is log-concave, then f is continuous everywhere except possibly at the ends of I.

Example 4.1.  Let r(x)  =   EQ \B\lc\{(\a\al( x          for 0 ( x, 0         for x < 0)) .  Then for x > 0 one has log[r(x)] = log(x).  So [log[r(x)]]´´ = -1/x2 < 0, so r(x) is log-concave.

It follows from (4.1) and this example that

(4.5)
aθb1-θ   ≤   θa + (1-θ)b                      if a ≥ 0, b ≥ 0 and 0 ≤ θ ≤ 1.

A non-negative function that is concave is also concave.  More precisely one has

Proposition 4.2.  Suppose 0 ≤ f(x) < ∞ for all x and f is concave.  Then f is log-concave.

Proof.  If we replace a and b in (5.2) by f(a) and f(b) the we get 

[f(a)]θ [f(b)]1-θ   ≤   θf(a) + (1-θ)f(b)

Since f is concave one has

θf(a) + (1-θ)f(b)   ≤   f(θa + (1-θ)b)

Combining gives (4.1), so f is log-concave.  //

The converse of Proposition 4.2 is not true; for example s(x) =  EQ \B\lc\{(\a\al( x2       for 0 ( x, 0        for x < 0))  is log concave, but not concave.

It is possible for a log-concave function not to be unimodal either because it is either non-decreasing for all x or non-increasing for all x.  Even if a log-concave function is unimodal then it might not be integrable since the modes might form an unbounded interval.  However if a log-concave is unimodal and the modes form a bounded interval, then it is integrable.

5.
The convolution of a log-concave function with a unimodal function.
In this section we give a proof of Ibragimov’s result that the convolution of an integrable, log-concave function with an integrable, unimodal function is again unimodal.

Proposition 5.1.  If f is integrable and unimodal and g is integrable and log concave then f * g is unimodal.

Proof.  We break the proof into three cases.  In the first two cases we place additional assumptions on f and g while the third case is the proof of the result in general.

Case 1.  The result is true if we assume in addition that f is absolutely continuous and f´ is integrable and g is never zero.

By Proposition 3.2 we may assume zero is a mode of f.  Let h = f * g.  Note that g is bounded and continuous except possibly at two points.  h is integrable, bounded and continuous by Propositions 3.1 and 3.3.  h is locally absolutely continuous and 

(5.1)
h'(x)   =    EQ \I(-(,(, f'(u)g(x-u)du)                            for a.a.x
by Proposition 3.4.  h' is continuous everywhere and (5.1) holds for all x by Proposition 3.3.  We shall show that

(5.2)
g(y)h'(x)   (   g(x)h'(y)                      if x ( y
This will prove the proposition for the following reasons.  Since h is integrable it cannot be either non-decreasing or non-increasing for all x.  By Proposition 2.1 it must have a local maximum or minimum at some point x.  At this point h'(x) = 0.  Then (5.2) implies h'(y) ( 0 for y ( x and h'(y) ( 0 for y ( x.  So x is a mode.

It remains to prove (5.2).  By Proposition 5.1 (d) one has


g(y)g(x-u)  (  g(x)g(y-u)                      and                   g(y)g(x+u)  (  g(x)g(y+u)

if u ( 0.  Since f'(u) ( 0 for u ( 0 and f'(u) ( 0 for u ( 0, it follows that 


g(y)f'(u)g(x-u)  (  g(x)f'(u)g(y-u)    and     g(y)f'(-u)g(x+u)  (  g(x)f'(-u)g(y+u)

if u ( 0.  Integrating gives


g(y) EQ \I(0,(, f'(u)g(x-u)du)  (  g(x) EQ \I(0,(, f'(u)g(y-u)du)    &     g(y) EQ \I(-(,0, f'(u)g(x-u)du)  (  g(x) EQ \I(-(,0, f'(u)g(y-u)du)
and (5.2) follows.  This finishes the proof of Case 1.

Case 2.  The result is true if we assume in addition that f is absolutely continuous and f´ is integrable.

We give the proof in the case that the support of g is the half infinite interval [0, ().  The proof in the other cases is similar.  We approximate g by the sequence {gn} where


gn(x)   =    EQ \B\lc\{(\a\al( g(x)                          if x ( 1/n, g(1/n)ean(x-1/n)           if x ( 1/n))
where an = max{g'((1/n)+, n}.  gn is log-concave, integrable and never zero.  One has gn(x) ( g(x) for all x.  By the dominated convergence theorem gn ( g in L1.  By case 1 f * gn is unimodal.  By Proposition 3.1 f * gn ( f * g in L1.  By Proposition 2.2 f * g is unimodal.  

Case 3.  The result is true in general.

By Proposition A3.1 there is a sequence {fn} of infinitely differentiable, integrable, unimodal functions such that fn ( f in L1.  By case 2 fn * g is unimodal.  By Proposition 3.1 fn * g ( f * g in L1.  By Proposition 2.2 f * g is unimodal.  //

6.
The convolution two log-concave functions is log-concave.
In this section we prove Ibragimov’s converse to Proposition 5.1 that if a integrable function g has the property that its convolution with any integrable unimodal function f is unimodal, then g is log-concave.  As a corollary it follows that the convolution of two integrable, log-concave functions is again log-concave. 

Proposition 6.1.  Suppose g is integrable function and f * g is unimodal for any integrable, unimodal function f, then g is log-concave.  

Proof.  We first prove the result in the case that g is also continuous.  If g is not log‑concave, then by Proposition 4.1 (a) there is x0 and a such that 


g(x0)2   ≤   g(x0-a) g(x0+a)

Without loss of generality we may assume that x0 = 0 so


g(0)2   ≤   g(-a) g(a)

This implies    EQ \F(g(0),g(-a))   ≤   EQ \F(g(a),g(0)).  It follows that there is b such that 


 EQ \F(g(0),g(-a))   <    EQ \F(b,1 - b)   <    EQ \F(g(a),g(0))
or


(1 – b)g(0)   -   bg(-a)   <   0

(6.1)


(1 – b)g(a)   -   bg(0)   >   0

Let f be defined by 


f(x)   =    EQ \B\lc\{(\a\al( b                          if -c ( x < 0, 1                          if 0 ( x < a, 1 - b                    if 1 ( x < a + c, 0                         otherwise))
where c is to be determined.  f is unimodal.  Let h = f*g.  By hypothesis h is unimodal.  One has

h(x)   =   (1-b)  EQ \I(x-a-c,x-a, g(u)du)   +   EQ \I(x-a,x, g(u)du)   +   EQ \I(x,x+c, g(u)du) 
So

h'(x)   =    bg(x+c)  +  (1-b)g(x)  - bg(x-a)  - (1-b)g(x-a-c)
So

h'(0)   =    bg(c)  +  (1-b)g(0)  - bg(-a)  - (1-b)g(-a-c)

h'(a)   =    bg(a+c)  +  (1-b)g(a)  - bg(0)  - (1-b)g(-c)

g(c), g(-a-c), g(a+c) and g(-c) all approach zero as c goes to infinity.  If follows from (6.1) that h'(0) < 0 and h'(a) > 0.  So h is not unimodal.  This is a contradiction, so g must be log-concave.

Now we prove the result in general.  Let ((x) = e-x2/  EQ \R(,() and (n(x) = n((nx).  Then (n is log-concave and has integral one.  Let gn = (n*g.  Then gn is infinitely differentiable and gn ( g in L1.  If f is unimodal then so is (n*f and therefore so is gn*f = g*(n*f.  By the special case just proved, it follows that gn is log-concave and hence uni-modal.  By Proposition 2.1 g is unimodal.  We may assume g is continuous from the right everywhere.  By going to a subsequence we may assume gn ( g a.e.  So there is a set E such that R\E has measure zero and gn(x) ( g(x) if x(E.  One has 


[gn(a)]θ [gn(b)]1-θ   ≤   gn(θa + (1-θ)b)                   for all a and b and 0 ≤ θ ≤ 1.

Therefore 


[g(a)]θ [g(b)]1-θ   ≤   g(θa + (1-θ)b)              if a, b, θa+(1-θ)b(E and 0 ≤ θ ≤ 1.

Taking right hand limits it follows that this holds for all a and b and 0 ≤ θ ≤ 1.  So g is log-concave.  //

Appendix 1.
Convolutions involving functions with support in an interval.
The convolution of functions having support in an interval again has support in an interval.  More precisely, one has

Proposition A1.1.  

(a)
If f has support on [a, () and g has support on [b, () and both are locally integrable then f * g is defined a.e. and

(a)
f * g has support on [a+b, ()

(b)
if x ( a + b then (f * g)(x) =  EQ \I(a,x-b, f(y)g(x-y) dy) =  EQ \I(b,x-a, f(x-y)g(y) dy)
(c)
f * g is locally integrable

(b)
If f and g have support on [0, () and are locally integrable then f * g is defined a.e. and

(a)
f * g has support on [0, ()

(b)
if x ( 0 then (f * g)(x) =  EQ \I(0,x, f(y)g(x-y) dy) =  EQ \I(0,x, f(x-y)g(y) dy)
(c)
if f has support on (-(, c] and g has support on (-(, d] and both are locally integrable then f * g is defined a.e. and

(a)
f * g has support on (-(, c+d]

(b)
if x ( c +d then (f * g)(x) =  EQ \I(x-d,c, f(y)g(x-y) dy) =  EQ \I(x-c,d, f(x-y)g(y) dy)
(c)
f * g is locally integrable

(d)
if f has support on [a, c] and g has support on [b, d] and both are integrable then f * g is defined a.e. and

(a)
f * g has support on [a+b, c+d]

(b)
if a + b ( x ( c+d then  EQ (f * g)(x) = \I(max{a\L(,)x-d},min{x-b\L(,)c}, f(y)g(x-y) dy)  =  \I(max{b\L(,)x-c},min{x-a\L(,)d}, f(x-y)g(y) dy)
(e)
if f has support on [0, c] and g has support on [0, d] and both are integrable then f * g is defined a.e. and

(a)
f * g has support on [0, c+d]

(b)
if 0 ( x ( c+d then (f * g)(x) =  EQ \I(max{0\L(,)x-d},min{x\L(,)c}, f(y)g(x-y) dy) =  EQ \I(max{0\L(,)x-c},min{x\L(,)d}, f(x-y)g(y) dy)
Proof.  These follow from Proposition 3.1 and the definition of convolution.

Let u(x) denote the unit step function, r(x) = xu(x) denote the ramp function and s(x) = (x2/2)u(x) and c(x) = (x3/3!)u(x) be the corresponding functions for x2/2 and x3/3!.  Thus

u(x)   =   EQ \B\lc\{(\a\al( 1                 0 ( x, 0                 x < 0)) 
r(x)   =   EQ \B\lc\{(\a\al( x                 0 ( x, 0                 x < 0)) 
s(x)   =   EQ \B\lc\{(\a\al( x2/2             0 ( x, 0                 x < 0)) 
c(x)   =   EQ \B\lc\{(\a\al( x3/3!           0 ( x, 0                 x < 0)) 
It is not hard to show that


u * u   =   r                    u * r   =   s                      r * r   =   c
Using (3.2) it follows that


u(x-a)*u(x-b) = r(x-a-b)

(A1.1)
u(x-a)*r(x-b) = s(x-a-b)


r(x-a)*r(x-b) = c(x-a-b)
Appendix 2.
A unimodal function f such that f*f is not unimodal.
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Example A2.1.  Let 

f(x)   =   EQ \B\lc\{(\a\al( 4x                 0 ( x < 1, 4 - 3(x-1)      1 ( x < 2, 1                    2 ( x < 4, 0                    otherwise)) 
f is unimodal.  We shall show the f*f is not.  By Proposition A1.1 f*f has support on [0,8].  Also f*f > 0 for 0 < x < 8.  By Proposition 3.3 f*f is continuous for all x.  It suffices to show (f*f)´(3) < 0 and (f*f)´(4) > 0.  This will imply f*f has at least two local maxima, one between 0 and 3 and another between 4 and 8.  Thus f*f is not unimodal.

One can write 

(A2.1)
f(x)  =  4r(x) – 7r(x-1) + 3r(x-2) – u(x-4)

Using distributivity  and (3.1) one has 

(A2.2)
(f*f)(x)  =  16c(x) – 56c(x-1) + 73c(x-2) – 42c(x-3) + 9c(x-4) – 8s(x-4) + 14s(x‑5) – 6s(x-6) + r(x-8)

It follows that if x ( 8 one has
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(A3.3)
(f*f)´(x)  =  16s(x) – 56s(x-1) + 73s(x-2) – 42s(x-3) + 9s(x-4) – 8r(x-4) + 14r(x‑5) – 6r(x-6) + u(x-8)

So


(f*f)´(3)  =  16s(3) – 56s(2) + 73s(1) = - 3.5

and


(f*f)´(4)  =  16s(4) – 56s(3) + 73s(2) ‑ 42s(1) =  1

Appendix 3.
Approximation of unimodal functions by smooth unimodal functions.
In the proof of Proposition 5.1 it was convenient to approximate a general integrable, unimodal function by a smooth one.  That is the subject of the following

Proposition A3.1.  If f is integrable and unimodal then there is a sequence {fn} of infinitely differentiable, integrable, unimodal functions such that fn ( f in L1.

Proof.  Note that there is a sequence {fn} of integrable, unimodal functions such that fn ( f in L1 and the modes of each fn form an interval of non-zero length.  To see this, note that we may assume zero is a mode of f.  Let cn = max{ f(-1/n), f(1/n) } and let 

fn(x)  =   EQ \B\lc\{(\a\al( f(x)                 if | x | ( 1/n, cn                   if | x | < 1/n))  

Then {fn} is the desired sequence.

Thus it suffices to prove the proposition in the case where the modes of f form an interval of non-zero length and we shall assume this is true.  In fact, we can assume that the interval (-2a, 2a) consists of modes of f for some a > 0.

Let ( and ( be non-negative, infinitely differentiable functions with integral one such that ( has support in [0, 1] and ( has support in [-1, 0].  Let (n(x) = n((x) and ((x) = n((x).  Then  (n and (n are non-negative, infinitely differentiable functions with integral one such that (n has support in [0, 1/n] and (n has support in [-1/n, 0].  Let
fn(x)  =   EQ \B\lc\{(\a\al( (f*(n)(x)                  if  x ( 0, (f*(n)(x)                 if  x > 0))  

If is not hard to see that the values of fn(x) are an average of the values of f(y) for x ‑ 1/n < y <x if x ( 0 and the values of fn(x) are an average of the values of f(y) for x < y <x + 1/n if x > 0.  In particular, if n > 1/a then fn is constant on the interval [-a, a] where it has value f(0).  It is not hard to see that {fn} is the desired sequence.  //
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