Oscillations

Oscillatory motion is motion that repeats itself. An object oscillates if it moves back and forth along a fixed path between two extreme positions. Oscillations are everywhere in the world around you. Examples include the vibration of a guitar string, a speaker cone or a tuning fork, the swinging of a pendulum (playground swing, grandfather clock, etc.), the oscillating air in an organ pipe, the alternating current in an electric circuit, the rotation of a neutron star (pulsars), neutrino oscillations (subatomic particle), the up and down motion of a piston in an engine, the up and down motion of an electron in an antenna, the vibration of atoms in a solid (heat), the vibration of molecules in air (sound), the vibration of electric and magnetic fields in space (light).

The Force

The dynamical trademark of all oscillatory motion is that the net force causing the motion is a restoring force. If the oscillator is displaced away from equilibrium in any direction, then the restoring force acts so as to restore the system back to equilibrium.

Definition: A simple harmonic oscillator is an oscillating system whose restoring force is a linear force – a force F that is proportional to the displacement x:

$$ F = -kx. $$

The force constant k measures the strength of the restoring force and depends on the system parameters. If you know the force constant of the system, then you can figure out everything about the motion. Examples of force constants: $k = K$ (mass on spring of spring constant K), $k = mg/L$ (pendulum of length L), $k = mg/D$ (wood on water, submerged a distance D). Simple harmonic oscillators are the prototype with which to understand all other oscillating systems.

The Motion

The motion of all mechanical systems is determined by Newton’s law of motion $F = ma$. For a simple harmonic oscillator system, the equation of motion is $-kx = ma$, or

$$ x = -(m/k) a. $$

This linear relation between position x and acceleration a is the kinematic trademark of simple harmonic motion. Note that proportionality constant (m/k) between x and a is the ratio of system parameters (m, k). The quantity m/k tells you everything about the periodic motion of a simple harmonic oscillator. Note that $\sqrt{m/k}$ has units of time: $[\text{kg/(N/m)}]^{1/2} = \text{seconds}$. The quantity $\sqrt{m/k}$ sets the scale of time for all simple harmonic motion.

How does the position $x(t)$ of a simple harmonic oscillator depend on time t? The motion equation $x = -(m/k)a$ determines the motion function $x(t)$. If you know how to take the derivative of a sine function, then you can show that

The solution of $x = -(m/k) \frac{d^2x}{dt^2}$ is $x(t) = A\sin(2\pi t/T)$ where $T = 2\pi \sqrt{m/k}$.

The \textit{amplitude} A determines the “strength” (maximum displacement) of the oscillation. The \textit{period} T is the time for one oscillation. Note that the sine function \(x(t) = A \sin(2\pi t/T) \) repeats itself whenever \(t \) increases by the amount \(T \): \(x(t+T) = x(t) \). This is the precise definition of “period”.

Essence of Simple Harmonic Motion

IF the force acting on mass \(m \) has the \textit{linear} (simple) form: \(F = -kx \)

THEN the motion of the mass will be \textit{sinusoidal} (harmonic): \(x = A \sin(2\pi t/T) \)

AND the period \(T \) depends solely on the \textit{mass/force} ratio: \(T = 2\pi \sqrt{m/k} \)

I. Pendulum

\textit{Pendulum Basics}

In lecture, you derived the famous formula for the period of a simple pendulum:

\[T = 2\pi \sqrt{L/g} \]

The derivation consists of applying Newton’s Law \(F = ma \) to a mass \(m \) suspended from a lightweight (massless) string of length \(L \) in a gravitational field of strength \(g \). The following force diagram holds the key to understanding everything about the motion of a pendulum:

The force \(F = mg\sin\theta \) is the driving force of the pendulum motion. This force is the component of gravity along the circular arc \(x \). This restoring force causes the mass to accelerate toward the equilibrium position (the vertical line). Note that the force \(F \) get larger as the displacement \(x \) gets larger. How does \(F \) depend on \(x \)? For small arcs \((x \ll L) \), the exact force law \(F = -mg\sin(x/L) \) reduces to the linear force law \(F = -mgx/L \). The minus sign indicates that the force \(F \) and the displacement \(x \) are always opposite in direction.

If you compare the pendulum force function \(F = -mgx/L \) to the general force function \(F = -kx \), you reach an important conclusion: \textit{The force constant that characterizes the pendulum system of mass \(m \) and length \(L \) is \(k = mg/L \).} Once you have the force constant, it is easy to get all the
motion properties! To get the period of the pendulum, simply substitute the pendulum constant \(k = mg/L \) into the general period formula \(T = 2\pi\sqrt{m/k} \). When you do this, note how the mass \(m \) cancels! You are left with \(T = 2\pi\sqrt{L/g} \). This is how the famous pendulum formula is derived.

A. Making a Grandfather Clock

Galileo made the first quantitative observations of pendulum motion by timing the swing of a chandelier hanging from a cathedral ceiling. He used his pulse to measure the period. His observations and theory led to the construction of the first clock by Christiaan Huygens in 1650.

It is now your turn to make a simple “grandfather clock”, also known as a *seconds pendulum*. The pendulum in a grandfather clock swings so that the time interval between the ‘tick’ and the ‘tock’ is exactly one second.

Before you build your clock, calculate the length of a seconds pendulum.

\[
L = \underline{\text{__________________ m.}}
\]

Based on your theoretical value of \(L \), construct your clock using a piece of string and a 200-gram brass weight for the bob. Remember to measure \(L \) from the pivot point to the center of mass of the weight. Pull the pendulum \(15^\circ - 20^\circ \) away from the vertical and release. Measure the period. Remember the accurate method to measure a period: measure the time for five oscillations and then divide by five to get the period.

\[
T = \underline{\text{__________________ s.}}
\]

How well does your clock keep time, i.e. what is the time interval between the ‘tick’ and the ‘tock’?

\[
\text{Tick-Tock Time} = \underline{\text{__________________ s.}}
\]

B. Experimental Test of the Relation } T \sim \sqrt{L}

Construct a new pendulum that is exactly \(1/4 \) the length of your seconds pendulum. Use a 200-gram mass. Measure the period of this new pendulum *without using a stopwatch*. Instead, use
your homemade clock that keeps time by ‘tick-tocking’ in seconds. Hang the new pendulum right next to your seconds pendulum, but from a lower pivot so that the two weights are even. Pull both pendulum masses a small angle away from the vertical and release at the same time. Carefully observe the parallel motions.

Draw five pictures that show the position of each pendulum at five different times:

\[
\begin{array}{cccccc}
 t = 0 & 0.5 \text{ s} & 1.0 \text{ s} & 1.5 \text{ s} & 2.0 \text{ s} \\
 \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

By comparing the swing of your seconds pendulum to the swing of the 1/4 length pendulum, how many seconds does it take for the 1/4 length pendulum to complete one back and forth motion?

\[
T \text{ (1/4 Length)} = _{\text{___________}} \text{ s}.
\]

Does the temporal behavior of these two pendula swinging in parallel remind you of anything in music? Explain.

Based on your measured values of the period \(T(L)\) of a pendulum of length \(L\) and the period \(T(L/4)\) of a pendulum of length \(L/4\), can you conclude that \(T \sim \sqrt{L}\) ? Explain carefully. **Hint:** construct ratios.

C. Experimental Test of “\(T\) is independent of \(m\)”

The theoretical formula \(T = 2\pi\sqrt{L/g}\) says two amazing things:

1. The period **does not** depend on the mass of the pendulum.
2. The period does not depend on the size of the arc through which the pendulum swings.

Recall that this formula is valid for “small” oscillations or small arcs (x \ll L). Let's see if we can prove that T is insensitive to m.

Use your seconds pendulum. To insure small oscillations, keep the angle of oscillation less than 20°. Measure the period T for three different masses (m = 50 g, 100 g, 200 g). Remember to measure the time for five oscillations and then divide by five to get the period. For each mass, repeat the period measurement three times. Report the average value and the uncertainty. A reasonable measure of the uncertainty is \((T_{\text{max}} - T_{\text{min}})/2\).

<table>
<thead>
<tr>
<th>m (grams)</th>
<th>T (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>±</td>
</tr>
<tr>
<td>100</td>
<td>±</td>
</tr>
<tr>
<td>200</td>
<td>±</td>
</tr>
</tbody>
</table>

Provide a graphical display of your measured values of T (average ± uncertainty) on the following uncertainty range diagram. Draw the three horizontal line segments that represent the spread of your three T ranges.

Does your uncertainty range diagram provide experimental proof that the period of a simple pendulum is independent of the mass of the pendulum? Explain.

II. Mass – Spring Oscillator

Suspend a 50 gram weight hanger from the end of the spring. Place a 100 gram slotted brass cylinder on the hanger platform. Open Logger Pro file DisVelAcc. With the mass in the resting (equilibrium) position, zero the motion sensor [Click “Experiment” on the menu bar and select “Zero”]. Pull the weight about 10 cm away from the equilibrium position and release. Record
the oscillations with the motion sensor. If needed, change the x and t scales so that you can clearly see the sinusoidal variations.

A. x(t) and a(t) are “In Sync”. Finding T From x(t)/a(t).

The kinematic trademark of simple harmonic motion is that the position x(t) and the acceleration a(t) are proportional to each other, and opposite in direction, for *all time* \(t \):

\[
a(t) = -\omega^2 x(t).
\]

The proportionality constant between a(t) and x(t) is the square of the angular frequency \(\omega = \frac{2\pi}{T} \) of the system. When x is zero, a is zero. When x is maximum (minimum), a is minimum (maximum). If the magnitude of x doubles during a certain time interval, then the magnitude of a will double during that same time interval. Note that the velocity is completely out of sync (out of phase) with x and a. When x is zero, v is max, etc.

Examine your graphs to be a first-hand witness to this “in-sync dance” between x and a. Do your x(t) and a(t) curves satisfy the motion equation \(a(t) = -\omega^2 x(t) \)? Use the Examine Icon \([x=?]\) to find the values of x(t) and a(t) at the six times t = a, b, c, d, e, f shown below (roughly quarter-period intervals).

<table>
<thead>
<tr>
<th>t</th>
<th>x(t) (m)</th>
<th>a(t) (m/s²)</th>
<th>x(t)/a(t) (s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to the theory, \(x(t) \) and \(a(t) \) both vary in time, but the ratio \(x(t)/a(t) \) is \textit{independent} of \(t \). Based on your experimental data, what is the constant value of \(x(t)/a(t) \) that characterizes your mass-spring system?

\[
x(t)/a(t) = \frac{\text{value}}{\pm \text{error}} \text{ s}^2.
\]

Calculate the period of your oscillator from your measured value of \(x(t)/a(t) \). Remember, \(a(t) = -\omega^2 x(t) \) and \(\omega = \frac{2\pi}{T} \). Show your calculation.

\[
T = \frac{\text{value}}{\text{units}} \text{ s}.
\]

\textbf{B. Finding T from m/k}

The mass of your mass-spring system is \(m = 150 \text{ grams} \). The force constant \(k \) is equal to the spring constant of the spring in your system. Measure the value of \(k \). You have measured spring constants before. Hang a mass from the spring and measure the stretch. Repeat for several masses. Plot \(F \) versus \(x \) and find the best-fit slope. Hand in the graph. Report your \(k \) value.

\[
k = \frac{\text{value}}{\text{units}} \text{ N/m}, \quad \frac{m}{k} = \frac{\text{value}}{\text{units}^2} \text{ s}^2.
\]

Calculate the period of your oscillator from your measured value of \(\frac{m}{k} \). Show your calculation.

\[
T = \frac{\text{value}}{\text{units}} \text{ s}.
\]

\textbf{C. Summary}

You have measured the period of a mass-spring oscillator using two different methods. As a third method, measure the period directly with a stopwatch. Summarize your results by listing all three of your \(T \)-values below.

\textit{Motion Method.} Measure \(x(t) \) and \(a(t) \), compute \(x(t)/a(t) \) : \(T = \frac{\text{value}}{\text{units}} \text{ s} \).

\textit{Force Method.} Measure \(m \) and \(k \), compute \(\frac{m}{k} \) : \(T = \frac{\text{value}}{\text{units}} \text{ s} \).

\textit{Timing Method.} Measure time directly with clock : \(T = \frac{\text{value}}{\text{units}} \text{ s} \).

\textbf{III. Two-Cart System and Center of Mass}

\textbf{Where do the Carts Meet?}

Place two carts on the track. Attach a spring between the carts. Pull the carts apart so that cart 1 is at \(x_1 = 20 \text{ cm} \) and cart 2 is at \(x_2 = 100 \text{ cm} \). The \(x \) axis is defined by the meter scale fixed along the length of the track. Release the carts. Where do the carts meet?

\[
\begin{align*}
m_1 & \\
m_2 &
\end{align*}
\]
Perform this experiment using three different pairs of masses: $m_1 = m_2$, $m_1 = 2m_2$, $m_1 = 3m_2$. There is an assortment of weights that you can use to load the carts. Start the system in the same initial state (same x_1 and x_2 values) each time. There is only one quantity you have to measure: the collision point x where the carts meet. Report your results in the *Collision Point Table*.

Collision Point Table

<table>
<thead>
<tr>
<th>m_1 (kg)</th>
<th>m_2 (kg)</th>
<th>x (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Center of Mass – the Most Important Point of the System

What does the theory say about this experiment? *All* systems of particles obeys Newton’s law:

$$F_{ext} = Ma_{cm}.$$

F_{ext} is the net *external force* acting on the system, M is the total mass of all the particles in the system, and $a_{cm} = \frac{d^2x_{cm}}{dt^2}$ is the acceleration of the center of mass x_{cm} of the system. The center of mass of a system of two particles is defined by the relation:

$$x_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

In words, $F_{ext} = Ma_{cm}$ says

The center of mass of a system moves as if it were a point particle of mass M and the net external force were applied at this point.

The center of mass is indeed a very special point of the system. While the motion of each individual particle in the system is in general very complex, the motion of the center of mass point is quite simple.
Here is an amazing fact about system dynamics: *Internal forces within a system do not effect the motion of the center of mass.* All because of Newton’s *third law* $F_{12} = -F_{21}$, the internal forces cancel in pairs and only F_{ext} and not F_{int} appears in $F_{\text{ext}} = M_{\text{cm}}$. In our experiment, the system consists of two particles (cart 1 and cart 2). The spring between the carts is the *internal force*. This internal force is definitely responsible for the motion of each cart, i.e. $x_1(t)$ and $x_2(t)$, but it has absolutely no effect on the motion of the center of mass x_{cm}. There are two external forces acting on the system: gravity and friction. If the track is level, then the horizontal component of gravity is equal to zero. We can assume that friction is negligible. Thus for our system, $F_{\text{ext}} = 0$. The equation of motion $F_{\text{ext}} = M_{\text{cm}}$ reduces to $a_{\text{cm}} = 0$.

Thus Newton’s law predicts that the motion of the center of mass of the system of two carts is trivial: the point x_{cm} has zero acceleration. Initially, when the two carts are pulled apart, the center of mass is located at some point x_{cm} (initial) between the carts. Since this point cannot accelerate, and since it is initially rest, it must remain at the same position for all time. The center of mass is a constant of the motion:

$$x_{\text{cm}} \text{ (initial)} = x_{\text{cm}} \text{ (final)}.$$

Calculating the Center of Mass

Calculate the value of x_{cm} of your system for the three pairs of cart masses (m_1, m_2) and the initial values of x_1 and x_2. Show your calculation of x_{cm} in the space below. Record your results in the *Center of Mass Table*.

<table>
<thead>
<tr>
<th>x_1 (cm)</th>
<th>x_2 (cm)</th>
<th>m_1 (kg)</th>
<th>m_2 (kg)</th>
<th>x_{cm} (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compare the values of your *measured* collision point x with the values of your *calculated* center of mass point x_{cm}.

<table>
<thead>
<tr>
<th>x (cm)</th>
<th>x_{cm} (cm)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. Damped Oscillator – A Class Research Project

So far, we have neglected the effect of friction on the motion. In physics, an oscillator subject to friction is called a “damped oscillator”. Friction causes the motion to decay. The amplitude of the oscillations decreases as time goes on. The height of the sine curve gets smaller and smaller. In this experiment, you will study the effect of air friction on the motion of the mass-spring oscillator.

Any object moving through air experiences a ‘drag force’ due to the myriad of impacts between the object and the air molecules. As a result of the air-object collisions, the object slows down and the air molecules speed up (the air gets hotter). Mechanical energy of the object is transformed into internal (thermal) energy of the air.

The System

Each four-member team at a table will attach a cardboard surface to their oscillator. Unscrew the bottom disk from the weight hanger rod. Put the rod through the hole in the board. Screw the disk back onto the rod. Place the 100-gram slotted brass cylinder on top of the board. You now have a damped harmonic oscillator:

![Diagram of a damped harmonic oscillator](image)

The damping force is due to air friction acting on the surface of area A as the surface pushes through the “sea” of air and collides with the tiny “balls” of nitrogen and oxygen.

Each team will get a different surface area A to study the effect of air friction on the decay of the motion. The goal of the class is to find how the amount of decay depends on the magnitude of the area. This is the kind of research conducted by scientists and engineers who study the aerodynamic design of cars and planes.

Half Life

How are you going to quantify the “amount of decay”? You will measure the “half life” of the oscillator. The half-life is the time it takes for the amplitude to decay to one half of some initial value. The following position-time curve of a damped oscillator illustrates the concept of a half-life.
Note that the amplitude (height) decreases from H to $H/2$ in 4 cycles (periods). The half-life is therefore $4T$, where T is the period. It is easier to measure the half-life simply by the dimensionless number:

$$N_{1/2} \equiv \text{Number of cycles it takes for the amplitude to decrease by a factor of 1/2.}$$

For the above example, you would report the half-life as $N_{1/2} = \$. Note that a small value of $N_{1/2}$ corresponds to a large amount of decay. If there is no damping whatsoever, then $N_{1/2} = \infty$.

The Quest

Now that there are two experimental variables (A, $N_{1/2}$) that can be measured, the interesting question is: How are A and $N_{1/2}$ related? One thing is certain. More surface area (big A) means larger damping (small $N_{1/2}$). The half-life $N_{1/2}$ must decrease as the area A increases.

Class Research Goal: Find the function $N_{1/2}(A)$ that describes how $N_{1/2}$ depend on A.

Is it $N_{1/2} = 5.4/A$ or $N_{1/2} = 3.2/A^2$ or $N_{1/2} = 7.3/A^{1.5}$ or $N_{1/2} = e^{-2A}$?

The Experiment

Place the motion sensor directly under your oscillator. Make sure that the distance between the sensor and the board is greater than 25 cm. Open the Logger Pro file *Moving Along*. Change the graph scales so that t goes from 0.0 s to 30.0 s and x goes from -0.15 m to 0.15 m. With the oscillator at rest, zero the motion sensor [Click on “Experiment” and select “Zero”]. Pull the mass away from the equilibrium position ($x = 0$) about 10 cm and release. Record the motion $x(t)$. Print the graph.

Find the half-life $N_{1/2}$ of your oscillator. Start with the first maximum of your x-t curve and find the height H (amplitude) of this maximum. Examine your decaying sine curve to find the maximum point in the future that has the height $H/2$. Clearly mark these two maximum points on your printed graph. Label the heights of the two horizontal lines that go through these points. Count the number of cycles between the H point and the $H/2$ point. Record the values of the surface area and the half-life of your damped harmonic oscillator.

$$A = \underline{\text{m}^2}, \quad N_{1/2} = \underline{\text{}}.$$
Write your results in the class data table on the chalkboard. After all teams have entered their data points \((A, N_{1/2})\) into the table, plot \(N_{1/2}\) (y axis) versus \(A\) (x axis) using Graphical Analysis. Delete the connecting lines between the points on your graph. Find the best-fit curve through the data points. The curve-fit analysis allows you to try different functions. Remember that “y as a function of x” in the curve-fit program is “\(N_{1/2}\) as a function of \(A\)” for your system. Report your \(N_{1/2}(A)\) function:

\[
N_{1/2}(A) = \text{______________________________}.
\]

V. Coupled Oscillators and Normal Modes

If you couple together two or more oscillators, then the resulting motion gets very interesting. Many systems in nature (mechanical, electrical, atomic) are coupled oscillators. The concept of a “normal mode” simplifies the analysis of the motion of coupled oscillators. It allows one to understand the complicated non-sinusoidal vibrational motion in terms of a sum or “superposition” of simple sinusoidal (harmonic) vibrations. The whole motion is broken down into a set of more manageable parts. These simple parts are the “normal modes”.

What exactly is a normal mode?

* A normal mode is a pattern of motion in a system of particles in which every particle vibrates sinusoidally with the same frequency.

Normal Modes

Examine the coupled pendula system on display in the lab. Note that the spring serves as the coupling mechanism. This system may look simple, but it exhibits a rich variety of motions.

There are two normal modes: mode A and mode B. To “excite” mode A, pull both masses away from the vertical (equilibrium) in the same direction and release. To “excite” mode B, pull both masses away from the vertical (equilibrium) in opposite directions and release. Note that in each mode, both masses oscillate with the same frequency. Measure the period \(T\) and the frequency \(f\) of each mode:

\[
T_A = \text{_____________ s}.
\]

\[
T_B = \text{_____________ s}.
\]
Energy Exchange Motion = Mode A + Mode B

Pull mass 1 away from the vertical (do not touch mass 2) and release.

Observe this “energy exchange motion”. Summarize the motion by sketching a sequence of pictures of the system at different times.

Note that the total amount of energy in the system remains constant, but it is constantly being passed between the two pendula. Pendulum 2 speeds up at the expense of pendulum 1 slowing down, and vice versa. The energy “sloshes” back and forth between the two parts of the system. The spring provides the transfer mechanism. This simple system models the complex energy transfers that occur in nature.

Measure the period of the energy exchange, i.e. the time it takes for system 2, which starts with zero energy, to gain all the energy from 1, and then give it all back to 1. Since the energy exchange motion is a combination of the A and B modes, we will label this motion “AB”.

Relation Between f_A, f_B, f_{AB}

How is the energy exchange motion a superposition of mode A and mode B? The following picture illustrates how the A and B displacements add to give the energy-exchange displacement:

According to the theory (normal mode analysis), the frequency of the energy-exchange motion (AB) is related in a simple way to the frequency of the constituent modes:
\[f_{AB} = f_B - f_A. \]

Do your experimental values of \(f_{AB} \), \(f_B \), and \(f_A \) obey this theoretical relation? What is the percent difference between \(f_B - f_A \) and \(f_{AB} \)?

Music, Atoms, & Photons

The way pure tones (harmonics) combine to make complex sounds, or the way quantum jumps in atoms produce light obey the *same mathematics* as the normal mode discussion above. When two sound waves of slightly different frequency \(f_A \) and \(f_B \) are combined (superimposed), the result is a wave that pulsates at the frequency \(f_{AB} = f_B - f_A \). When an electron in an atom jumps from a high-energy “orbit” \(B \), where it revolves at frequency \(f_B \), to a low-energy orbit \(A \) where it revolves at frequency \(f_A \), the atom emits a light wave of frequency \(f_{AB} = f_B - f_A \). During the quantum jump, the electron is in a superposition of quantum states (modes): state \(A \) + state \(B \). In music, the superposition results in “beats”. In quantum mechanics, the superposition results in a “photon.” One of the great triumphs of quantum mechanics was to discover the precise connection between the *orbital frequencies* \((f_A, f_B)\) of the electron and the *optical frequency* \((f_{AB})\) of the emitted light. Here is a picture that illustrates how an atom “makes” light: