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Lab 10: RC, RL, and RLC Circuits 
In this experiment, we will investigate the behavior of circuits containing 
combinations of resistors, capacitors, and inductors.  We will study the way 
voltages and currents change in these circuits when voltages are suddenly 
applied or removed.  To change the voltage suddenly, a function generator will 
be used.  In order to observe these rapid changes we will use an oscilloscope. 

1. The Square Wave Generator 

Introduction We can quickly charge and discharge a capacitor by using a function generator 
set to generate a square wave.  The output of this voltage source is shown in 
Figure 1. 
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Figure 1.  Output of square-wave generator 

One control on the generator lets you vary the amplitude, V0.  You can change 
the time period over which the cycle repeats itself, T, adjusting the repetition 
frequency f = 1/T .  

The generator is not an ideal voltage source because it has an internal resistance 
of 50 Ω.  Thus, for purpose of analysis, the square-wave generator may be 
replaced by the two circuits shown in Figure 2.  When the voltage is “on,” the 
circuit is a battery with an EMF of V0 volts in series with a 50-Ω resistor.  When 
the voltage is “off,” the circuit is simply a 50-Ω resistor. 
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Figure 2.  Square-wave generator equivalant circuit 
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Procedure • To learn how to operate  the oscilloscope and function generator, set the 
function generator for square wave output and connect the generator to the 
vertical input of the oscilloscope. 

• Adjust the oscilloscope to obtain each of the patterns shown in Figure 3. 

• Try changing the amplitude and repetition frequency of the generator and 
observe what corresponding changes are needed in the oscilloscope 
controls to keep the trace on the screen the same. 

• Now set the function generator to a frequency of about 100 Hz.  Observe 
pattern and adjust the frequency until the period T = 10.0 ms. 
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Figure 3.  Observing the output of the square-wave generator. 

2. Resistance-Capacitance Circuits 

Introduction We have previously studied the behavior of capacitors and looked at the way 
capacitor discharges through a resistor.  Theory (see textbook) shows that for a 
capacitor, C, charging though a resistor, R, the voltage across the capacitor, V, 
varies with time according to 

 V(t) = Vo (1 – e–t/RC), (1) 

where Vo is the final, equilibrium voltage. 

When the same capacitor discharges through the same resistor, 

 V(t)  = Voe–t/RC (2) 

The product of the resistance and capacitance, RC, governs the time scale with 
which the changes take place.  For this reason it is called the time constant, 
which we call τ (tau).  It can be found indirectly by measuring the time required 
for the voltage to fall to Vo /2 (see Figure 4 below).  This time interval is called 
the half-life, T1/2 , and is given by the equation T1/2 = (ln2)τ, so 

 τ = T1/2 /ln2 = T1/2 /(0.693) (3) 
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Figure 4.  Discharge of a capacitor 

Procedure • Assemble the circuit shown in Figure 5. 

• With initial values R = 10 kΩ, C = 0.1 µF, and f = 100 Hz, observe one period 
of the charge and discharge of the capacitor. 

• Make sure the repetition frequency is low enough so that the voltage across 
the capacitor has time to reach its final values, Vo and 0. 

• Sketch the waveform you observed on the data sheet. 

• Use the ohmmeter to measure R. 
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Figure 5. Investigating an RC circuit 
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Techniques Here is a method for finding T1/2 . 

• Change oscilloscope gain (volts/cm) and sweep rate (ms/cm) until you 
have a large pattern on the screen.  Make sure the sweep speed is in the 
“calibrated” position so the time can be read off the x-axis. 

• Center the pattern on the screen so that the horizontal axis is in the center of 
the pattern.  That is, so that the waveform extends equal distances above 
and below the axis. 

• Move the waveform to the right until the start of the discharge of the 
capacitor is on the vertical axis (Figure 6b).  You may find it helpful to 
expand, or magnify, the trace.  The sweep time is now a factor of five or ten 
faster than indicated on the dial.  Ask your instructor for details. 

• The half-life, T1/2 is just the distance shown on Figure 6b. 

 

T1/2

 

Figure 6a and b.  Measuring the half-life 
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Procedure • Measure the half-life, T1/2 and from this compute the time constant τ using 
Equation 3. 

• Compute the value of RC from component values.  Note that, as described 
above, the square-wave generator has an internal resistance of 50 Ω.  Thus 
the total resistance through which the RC circuit charges and discharges is 
(R + 50 Ω). 

• Try different values of f and hence, T, while keeping τ fixed by not changing 
either R or C. 

• Sketch what you saw when the period T of the square wave is much larger 
than the time constant τ.  Repeat when it is much smaller. 

3. Resistance-Inductance Circuits 

Introduction In this part we conduct a similar study of a circuit containing a resistor and an 
inductor, L.  First consider the circuit shown in Figure 7, below.  The text shows 
that if we start with the battery connected to the LR circuit, after a long time the 
current reaches a steady-state value, io = Vo/R . 
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Figure 7.  A model circuit with an inductor and resistor 

If we call t = 0 the time when we suddenly throw the switch to remove the 
battery, allowing current to flow to ground.  The current changes with time 
according to the equation 

 i(t) = ioe–(R/L)t (4) 

If at a new t = 0 we throw the switch so the battery is connected, the current 
increases according to the equation 

 i(t) = io(1 – e–(R/L)t) (5) 

The time constant for both equations is L/R and 

 
L
R   = τ = 

T1/2
0.693  (6) 

We can find the current by measuring the voltage across the resistor and using 
the relationship i`= V/R. 
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Note that what we would first see is the growth of current given by Equation 5, 
where the final current depends on the square-wave amplitude Vo.  Then, when 
the square wave drops to zero, the current decays according to Equation 4.  The 
time constant should be the same in both cases. 

Procedure • Set up the circuit shown in Figure 8 below. 

• With initial values R= 1kΩ and L = 25mH, set the oscilloscope to view one 
period of exponential growth and decay.  Again, make sure that f is low 
enough for the current to reach its final values, io and 0.  Start with f = 5 
kHz.  Sketch the pattern. 

• Measure the half-life.  From this value, compute the time constant τ.   

• Measure the value of R  and the dc resistance of the inductor with an 
ohmmeter.  Finally add the internal resistance of the square-wave generator 
to obtain the total resistance.  Compute the value of L/R from the 
components and compare with τ found from the indirect measurement 
above. 

• Try different values of T.  In particular, sketch the waveform when τ is 
much larger than the period T of the square wave and when it is much 
smaller. 
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Figure 8.  Investigating the LR circuit 

4. Resistance Inductance Capacitance circuits  

Introduction As discussed in the textbook, a circuit containing an inductor and a capacitor, an 
LC circuit, is an electrical analog to a simple harmonic oscillator, consisting of a 
block on a spring fastened to a rigid wall. 
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Figure 1.  LC Circuit and its analog, a mechanical SHM System 

 In the same way that, in the mechanical system, energy can be in the form of 
kinetic energy of the block of mass M, or potential energy of the spring with 
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constant k, in the LC circuit energy can reside in the magnetic field of the 

inductor U = 
1
2 Li2, or the capacitor, U = 

1
2 q2/C.  Both the current and the charge 

then change in a sinusoidal manner.  The frequency of the oscillation is given by 

 ωo = 1/ LC  (7) 

All circuits have some resistance, and in the same way frictional forces damp 
mechanical SHM, resistance causes energy loss (i2R) which makes the charge 
decay in time. 

 q(t) = qoe–t/τ cos ω1t (8) 

 ω1 = (ωo2 – 1/τ2)1/2 (9) 

where τ = 2L/R or 

 T1/2 = ln2(2L/R) = (0.693)τ (10) 

For large τ the system is underdamped and the charge oscillates, taking a long 
time to return to zero. 

Note that in Equation (3) when ωo2 = 1/τ2 , ω1, the argument of the cosine  
function of Equation (2), is zero at all times.  This condition is called critical 
damping.  This condition exists when R = 2 L/C    

When the resistor is larger than the critical value the system is overdamped.  The 
charge actually takes longer to return to zero than in the critically damped case. 

Experiment 

The decaying oscillations in the LRC circuit can be observed using the same 
technique as used to observe exponential decay.  Again, a square-wave generator 
produces the same effect as a battery switched on and off periodically.  The 
scope measures the voltage across C as a function of time.  



RC, RL, and RLC Circuits 

 8 

Procedure • Assemble the circuit of Figure 2.  Use a small value of R, say, 47Ω.   Be sure 
to reduce the signal generator frequency to 100 Hz or below so you can see 
the entire damped oscillation.   

• Measure the period and calculate the frequency of the oscillations.  The 
period is NOT 0.01 s = 1/100 Hz, the repetition frequency of the square 
wave. 

 NOTE:  You have actually measured ω1, the damped frequency.  This is 
slightly less than ωo, the undamped frequency of Equation. 1 but the 
difference is negligible. 

• Compare the ω1 you measured with the calculated  ωo = 1/ LC . 

• Note that in the equations, R represents the sum of the resistance of the 
inductor, the internal resistance of the square-wave generator, 50 Ω, and the 
resistor you put in. 

• To study critical damping and overdamping, remove your fixed resistor 
and put in its place a 5-kΩ variable resistor. 

• Start with a small value of R.  Sketch the underdamped oscillations. 

• Increase R until critical damping is reached; that is, until the oscillations 
disappear.  Sketch this curve.  Use the ohmmeter to measure the value of 
the variable (potentiometer) resistor.  Add the dc resistance of the inductor 
and 50Ω for the generator and compare with the predicted value for critical 
damping, R = 2 L/C . 

• What happens when the resistance is larger than the critical-damping 
value?  Sketch your results. 
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Figure 2. Investigating the LRC circuit 

When the circuit is underdamped, Equation (2) applies.  This means that the 
amplitude of the oscillation will decay exponentially, with the time constant for 
the decay being: 

                                       τ = 2L/R.                                                                        (11) 

Recall that when an exponential decay is plotted on a semi-log scale the resulting 
graph Is a straight line with a slope equal to -1/τ. 

You can find the slope of a line on a semi-log graph by identifying the two end 
points of the line.  Note the time and voltage at each point t1 and V1, t2 and V2. 
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Calculate the natural log of the two voltages. 

Then (ln V2   - ln V1)/(t2 - t1) = -1/τ 

To measure the time constant of the decay of the oscillations, follow this 
procedure: 

 

Procedure • Adjust the variable resistor so that the circuit Is underdamped and 
oscillates about seven or eight times before the oscillations become too 
small to be easily seen on the oscilloscope. 

• Center the oscillation pattern vertically on the screen so that when the 
oscillations have decayed the line on the oscilloscope coincides with the 
time axis. 

 Make a data table recording the voltage of each oscillation peak, and the 
corresponding time for each peak.  When your table is complete you should 
have six or seven sets of data recorded. 

• Plot your data on a semi-log graph. 

• Following the procedure described above, determine the time constant for 
your circuit.   This is your experimental value for the time constant. 

• Remove the variable resistor from the circuit and measure its resistance.  
Add this value to the resistance of the square-wave generator (50 ohms) 
and the resistance of the inductor to get the total resistance of your circuit. 

• Using Equation (5), calculate the theoretical decay time constant for your 
circuit.  Compare this theoretical value to the experimental value you found 
above.  They should agree within ten or twenty percent.  If they do not, 
consult your instructor. 
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RC, RL, and RLC Circuits 
Name_________________________Partner____________________________ Section:___________ 

2. RC Circuits 

1. Using dimensional analysis, show that the product of an ohm times a farad (RC)  has units of 
time. 

 

 

2. Sketch observed pattern  produced by the RC circuit on top of the square wave. 
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V

 

3. Measured T1/2 __________________ s       τ= T1/2 /0.693=________________s 

 RC from component values __________________s  

 Within the uncertainties of the tolerances (10%) of the resistor and capacitor, do your 
measurements support the equation τ = RC ? 

 If there is more than 20% disagreement, see your instructor. 

 

4. What is the largest voltage across the capacitor (Vo)? 

 

 What is the largest charge on the capacitor (qo = C Vo) 



RC, RL, and RLC Circuits 

 11 

5. Sketches.  

  τ>> T       τ<< T 

 τ = ______________    τ = ______________ 

 T = ______________    T = ______________ 

t
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6. How might you measure the internal resistance of your function generator? 

 

3. RL Circuits 

1. Using dimensional analysis, show L/R has units of time. 

 

2. Sketch of V across R. t

V

 

3. MeasuredT1/2 ________________s;  τ = T1/2 /0.693 = ___________________s 

 L/R from component values____________________________________s 

 Within the uncertainties of the manufacturing tolerances (10%) of the resistor and 
inductance, do your measurements support the equation τ = L/R? 

 

4. What is the largest current through the inductor (io)? 
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5. Sketches 

  τ >> T      τ << T 

 τ = ______________    τ = ______________ 

 T = ______________    T = ______________ 

t
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4 RLC Circuits 

1. Measured period _______ s.  

 Calculated f1 = ______________Hz; ω1 = 2 π f1 = ____________rad/s.  

 Compare with the frequency calculated from component values, 

 ωo = 1/ LC  = _________rad/s. 

2. Sketch of patterns 

 Underdamped  Critically damped   Overdamped 
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3. When critically damped, resistance of potentiometer = ______________Ω 

 Sum of resistances of potentiometer, inductor, and generator = __________Ω 

 Theoretical value  R = 2 L/C  = __________Ω. 

 Comparison and discussion of any disagreement:   ____________________________ 

4. Experimental decay constant (from graph) = ___________________________________ 

 Theoretical decay constant (Equation(11)) =____________________________________ 

 Comparison and discussion of any disagreement:   _____________________________ 


