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A method for stabilizing oscillations and maximizing entanglement in a decoherence free Heisenberg spin dimer
using a time varying magnetic field is presented. Unentangled and fully entangled initial states are investigated. A
stabilizing magnetic field intensity function was found for both initial states. These time varying magnetic field
intensity functions are different from each other, implying that the magnetic intensity variation needed to stabilize
the system depends on the initial state. The time varying magnetic field functions were found using simulated
annealing optimization. This work proves that it is possible to remove the oscillatory nature of entanglement and
maximize entanglement in decoherence free systems. ©2021Optical Society of America

https://doi.org/10.1364/JOSAB.419601

1. INTRODUCTION

Quantum entanglement is important to implement applica-
tions of quantum information and computation. Entanglement
is a quantum mechanical phenomenon in which the individual
quantum states of a set of particles share the same wave function.
Each particle in a set of entangled particles cannot be measured
without affecting the other particles. Quantum entanglement
has been demonstrated to exist between particles even at very
large separations, for instance, distances such as between a
satellite and the surface of the Earth. [1].

Heisenberg spin chains are particularly important systems
that manifest entanglement phenomena. Physical realizations
of spin chains could potentially provide applications to quan-
tum computing [2,3]. Experimentally, many molecules have
been shown to behave as spin chains. For instance, La2Cu4,
Nd2CuO4 [4,5], CuGeO3, 13C-benzene [6,7], and LiCuVO4

all exhibit behavior similar to the mathematical idealization of
the spin chain.

An interesting subject for analysis is the behavior of a
Heisenberg spin chain immersed in an external magnetic
field. Entanglement in such systems has been studied for various
spin chain models [8–11]. In [10], a constant magnetic field
of varying magnitudes was able to control the oscillation fre-
quency of entanglement in a Heisenberg spin dimer. As shall
be demonstrated in this paper, it is possible to use this effect
with a time varying magnetic field to put a decoherence free
system into a constant, nearly perfect entangled state. There is
active research [12,13] in finding decoherence free systems to
implement quantum computing. This paper uses simulation
to show that a decoherence free system oscillates between zero
and maximum entanglement. The oscillation in entanglement
both decreases the percent of time entanglement is available
for quantum computation and would be more complicated to

implement due to needing to synchronize multiple spin dimers
to carry out quantum computations. So, if decoherence is elim-
inated, the resulting entanglement oscillations of the system
will need to be stabilized to efficiently use the entanglement.
This paper presents using a time varying magnetic field to sta-
bilize and maximize entanglement to address the anticipated
entanglement oscillations in decoherence free systems. To the
author’s knowledge, this paper is the first to use a time varying
magnetic field to stabilize entanglement in a Heisenberg spin
dimer system.

2. MODEL

In this work, a two qubit XY Heisenberg spin dimer with exter-
nal magnetic field is considered. The system state is described in
terms of a density matrix (ρ) that evolves according to Eq. (1):

dρ
dt
=−i[H, ρ]. (1)

The Hamiltonian H of the spin dimer is given by Eq. (2) [11]:

H = B(t)(S z
1 + S z

2)+ J(S+1 S−2 + S−1 S+2 )

+ Jr(S+1 S+2 + S−1 S−2 ). (2)

This Hamiltonian is described in terms of the param-
eters: J , r , and B , where J = (J x + J y )/2, and r =
(J x − J y )/(J x + J y ). The terms J x and J y denote the exchange
interaction between two qubits in each dimension with positive
values denoting anti-ferromagnetic interaction and negative
values denoting ferromagnetic interaction. The raising and low-
ering operators for the spin system (S±) are defined according to
S±n = S x

n ± i S y
n , S(x ,y ,z)n =

1
2σ

(x ,y ,z)
n , with σ (x ,y ,z)n denoting the
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three Pauli spin matrices, and n denoting the nth position on the
spin chain.

The first term B(t)S z
n controls the response of the system to

the external magnetic field. The external magnetic field is taken
to be directed along the z axis, and is a function of time. The
second and third terms describe the internal interactions of the
system, which are governed by the coupling strength between
the spin states (J ) and the anisotropy of this coupling (r ).

The entanglement measure evaluated in this work is concur-
rence [14]. R is constructed from the system density matrix ρ in
Eq. (3). The concurrence C is defined by Eq. (4), in which theλi

represent the eigenvalues of the matrix R :

R = ρ(σy ⊗ σy )ρ
∗(σy ⊗ σy ), (3)

C =max
(√
λ1 −

√
λ2 −

√
λ3 −

√
λ4, 0

)
. (4)

3. DYNAMIC MAGNETIC FIELD SIMULATION
METHOD

To simulate the effect of a time changing magnetic field on the
spin dimer, the elements in the system Hamiltonian that are
effected by the magnetic field are changed at each time step
according to the magnetic field function of time that is to be
simulated. The simulations are carried out using a modified
version of the quantum optics toolbox [15] to solve the system
of differential equations that determine how the quantum
spin dimer system evolves over time. The numerical solver was
updated to integrate the set of differential equations described
in the Hamiltonian H with a time varying magnetic field,
even though in the original form, the numerical solver uses a
time-invariant Hamiltonian. The justification for using this
approach is that the change of the magnetic field is close enough
to infinitesimally small during each simulation time interval,
which can be considered as constant over the time interval.
Additionally, the elements in the Hamiltonian that are affected
by the magnetic field are independent of other components, as
shown in Fig. 1. This allows passing all of the time values for the
magnetic field as a single vector instead of up to 10 independent
vectors. The goals of varying the magnetic field are to reduce the
oscillations of the system and maximize the entanglement. The
assumed form of the solution is a waveform created from sum-
ming 16 different sinusoids. Each of these sinusoids is defined
by three parameters: amplitude, phase, and frequency. The
optimization method chosen was simulated annealing to find
the solution due to the large number of parameters to solve for.
The simulated annealing method is relatively robust in avoiding
getting trapped in a local maximum. The number of simulations
required to find the solution ranged from around 10,000 to
20,000.

For the initial configuration, a constant magnetic field
strength of amplitude a0 = 0.9850, joint decay J = 0.6705,
and ratio r = 0.4926 were used. The magnetic field versus
time function B(t) consists of two parts. The first part is a time
varying magnetic field for 3.2 time units, and the second part is a
time independent field of magnitude a0 for the rest of the simu-
lation time. One of the time varying magnetic field functions is
plotted in Figs. 2 and 3:

Fig. 1. Image of the Hamiltonian matrix, with elements dependent
on the magnitude of the magnetic field highlighted in red. The parts
of the Hamiltonian not affected by the magnitude of the magnetic
field are highlighted in green. The zero magnitude components of the
Hamiltonian are highlighted in blue.

B(t)= ao +

N∑
k=1

ak sin(2π fk t + φk). (5)

The first method of representing the magnetic field strength
consisted of creating the magnetic field strength versus time
function by the trigonometric Fourier series with N = 16 sinus-
oidal functions, as shown in Eq. (5). Each sinusoidal function
is initially defined by a random amplitude (ak), phase (φk),
and frequency ( fk) which are optimized to yield maximum
entanglement. Interestingly, the oscillation frequency of entan-
glement in this system is proportional to the magnetic field [10].
The practicality of the magnetic field is dependent on the level
of technology that can create the highest frequency required in
the waveform.

Using the simulated annealing optimization technique with
this method yielded 100% for the initially 100% entangled
state and 86% entanglement when starting from the unen-
tangled state as measured using the root mean square (RMS).
To improve the unentangled state result, a second method to
represent B(t) was used. The second method consists of rep-
resenting the time varying magnetic field using a cubic spline
interpolation with 32 control points. This method allowed
the optimization to increase the RMS entanglement to 97%
for the initially unentangled state. The reason for the better
optimization result is that the first method consists of around
49 free parameters that affect the function over the entire 3.2
time units, but the spline technique has only 32 control points
that affect only a local area up to the neighboring control points.
This reduces the complexity of finding the optimal parameters
to create the B(t) function that optimizes entanglement.

The simulated annealing optimization method uses random
trials for each initial system state. An example of how the solu-
tions improve over time is shown in Fig. 4 for the initial state of
maximum entanglement. Each point in the plot is the RMS of
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Fig. 2. Evolution of entanglement (blue line) with magnetic field
as a function of time (orange line) for an initial unentangled state. The
inset shows the entanglement over the full simulation time of 450 time
units.

0.999985

0.999990

0.999995

1.000000

1.000005

0 2 4 6 8

E
nt

an
gl

em
en

t

Time

0.0

0.5

1.0

1.5

2.0

M
ag

ne
tic

 F
ie

ld
 S

tr
en

gt
h

0.999985

0.999990

0.999995

1.000000

1.000005

0 100 200 300 400

Fig. 3. Evolution of entanglement (blue line) with magnetic field as
a function of time (orange line) for an initial fully entangled state. The
inset shows the entanglement over the full simulation time of 450 time
units.

the entanglement over the simulated time and represents the
“fitness” of an individual trial solution, as the solver randomly
varies the parameters defining the time varying magnetic field
strength. The RMS entanglement is used only for optimiza-
tion purposes in Fig. 4 since it converts the entanglement over
the entire simulation time to a single point. The number of
parameters varied with each random step increases or decreases
depending on the progress of how often the fitness of the solu-
tion was improving. For slow improvement, the number of
parameters and the standard deviation of the random varia-
tion of the parameters are reduced. If no progress is made for a
number of trial solutions, the number of random parameters
and amount that the parameters are varied were increased by an
order of magnitude to break out of a potential local maximum.

4. RESULTS

There are a number of results that were interesting from this
investigation. The first is that the system entanglement that
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Fig. 4. Optimization progress for the RMS value of entanglement
with magnetic field as a function of time using cubic spline interpola-
tion and 32 control points for an initially maximum entangled state.
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Fig. 5. Entanglement oscillation for a decoherence free system using
a constant amplitude magnetic field.

normally oscillates between maximum and minimum entan-
glement, as shown in Fig. 5, can be manipulated with the time
varying magnetic field to remove the oscillation and make the
entanglement arbitrarily close to full entanglement, as shown in
Fig. 3. Second, the optimized magnetic field function of time
is dependent on the initial state of the system, as is shown in
Figs. 2 and 3. Third, the elements in the Hamiltonian of the
system evolution affected by the magnetic field are only on the
diagonal and do not overlap the rest of the Hamiltonian, as
shown in Fig. 1. This allows updating the Hamiltonian differ-
ential equation solver at each time step more efficiently. Finally,
the stabilized entanglement created by the initial time varying
magnetic field maintains the system in the nearly fully entangled
state without oscillations for at least 450 time units. This implies
the system will remain in the entangled state for an arbitrary
amount of time with no further changes to the magnetic field
needed. This will be helpful for maintaining a large number of
qubits in a quantum computer.

5. DISCUSSION AND CONCLUSION

The time varying magnetic field causes the two spin particles to
synchronize and act as if the two particles become one particle
in a superposition of the ground and excited states. This implies
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there is no way to tell the state of the spin particles until the state
is measured. This method of controlling and stabilizing entan-
glement has the advantage of not requiring any measurement of
the quantum spin dimer system. In general, measurement will
cause the system to decohere and lose the entanglement that is
desired. Other methods such as quantum feedback [9] can both
measure the system and restore the coherence, but this requires
constant updating of the system. The method of varying the
magnetic field also has the advantage that once the initial field
is applied, there is no requirement for periodic maintenance of
the system coherence. The main drawback, if any, of the time
varying magnetic field method is that it requires optimization
of many trial solutions for a given initial state of the system.
However, the author considers this to be trivial compared
with the advantages of no quantum measurement or periodic
maintenance required.
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