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This paper studies the ability of feedback control to reduce the effect of decoherence and enhance entanglement
in an interacting Heisenberg chain model in the presence of an external magnetic field. The system reaches an
improved steady state entanglement when feedback is present. The influence of the strength of the external
B field is found for optimized steady state entanglement. The time-dependent entanglement evolution of
the system is also studied. One potential application of this scheme is to raise the maximum operating
temperature of spin entangled systems.

Entanglement is one of the key elements for imple-
menting quantum computation and quantum informa-
tion. Quantum mechanical entanglement dictates that
the state of one entangled particle cannot be measured
without affecting the state of the second (twin) entan-
gled particle1. Significant research has been carried out
with Heisenberg spin systems2,3, in solid state4, quan-
tum dot5 or NMR6 quantum computation schemes. Ad-
ditionally, two dimensional atom trapping experiments
have been carried out on spin systems for use in quan-
tum computing7. A key question for entangled quantum
states is how to preserve quantum coherence and entan-
glement in the presence of decoherence effects. Any quan-
tum system is unavoidably influenced by its environment
which gives rises to decoherence processes. Typically the
decoherence processes are reduced by carrying out the
experiments at single digit Kelvin temperatures. The
difficulty in reaching these temperatures is a significant
technical challenge8. One potential approach to control
decoherence to allow operation at a higher temperature
is quantum feedback. In this approach, the quantum sys-
tem of interest is subjected to continuous photodetection,
and the information obtained from these measurements
is used to achieve a reduction of decoherence in quantum
systems.
This letter investigates the improvement in steady

state entanglement using homodyne-mediated feedback
in a quantum system with interacting Heisenberg spin
chain subjected to both the presence of an external mag-
netic field and decoherence9. This work generalizes the
analysis of Ref.3 for this model by treating and control-
ling decoherence. For any initial state of the system in-
cluding the state where the two qubits are initially un-
entangled, the system reaches a improved steady state
entanglement when feedback is active. For a given sys-
tem with fixed spin-spin interaction the level of optimized
steady state entanglement is affected by decoherence rate
and the external B field. The time-dependent entan-
glement evolution of the system for some typical initial
states is analyzed and contrasted between feedback en-
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abled and disabled. The initial states include an unen-
tangled ground state and an entangled Bell state. The
feedback parameters are optimized to achieve the maxi-
mum possible concurrence.

I. MODEL DESCRIPTION

The Hamiltonian of a Heisenberg chain of N spin 1
2

particles with nearest-neighbor interaction is3:
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α
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2 opera-
tor at site n, σα

n are the Pauli matrices, and the periodic
boundary condition SN+1 = S1 applies.
A two qubit system (N = 2) will be investigated since

it is the simplest spin chain that exhibits entanglement.
The Hamiltonian H for an anisotropic two qubit Heisen-
berg XY system in an external magnetic field B along
the z-axis can be written as:
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where J = (Jx + Jy)/2, r = (Jx − Jy)/(Jx + Jy), and
S± = Sx±iSy are the raising and lowering operators of
the spin systems. The parameter r(−1 ≤ r ≤ 1) corre-
sponds to the anisotropy of the system and equals 0 for
the isotropic XY model and ±1 for the Ising model. The
first term in the Hamiltonian describes the population
configuration due to the external magnetic field. The in-
teraction Hamiltonian, which is the second and the third
term in Eq.(2) creates coherence between the two qubits
which is necessary for the generation of entanglement in
this system3.
The master equation which describes the time evolu-

tion of the system in the presence of decoherence is given
by
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Here ρ is the density matrix which, in the presence of
decoherence, represents the mixed state of the system.
The Lindblad super operator D 10 is defined as D =
D[A]B ≡ ABA†−{A†A,B}/2 and describes decoherence
from each qubit to the environment. The spontaneous
emission rate of the two qubits is represented by γ.
Entanglement between the elements of the Heisenberg

spin chain is created by means of the combined influ-
ences of anisotropic interactions and a magnetic field B3.
An initially fully entangled state will reduce to a par-
tially entangled state in the presence of population re-
laxation. The ability of feedback to counter the effect of
population relaxation will be investigated in this letter.
The improvement feedback creates is compared in the
final steady state entanglement of the system with and
without feedback. In order to implement the feedback
scheme, a driving laser field is applied to the Heisenberg
spin chain. The Hamiltonian of the driving laser field is
given by Hl = α(Sy

1 + Sy
2 ), here α is amplitude of the

driving field. The fluorescence collected from the system
in the y direction will be fed back into the system with
a feedback laser field of amplitude F = λ(Sy

1 − Sy
2 ).

The master equation rewritten to include homodyne-
mediated feedback now becomes:
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The steady state solution ρ of master equation given
in Eq. 4 allows using concurrence11–13 as the measure
of entanglement. For a system described by the density
matrix ρ, the concurrence C is

C = max
(

√
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√
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λ4, 0
)

, (5)

where the λi are the square roots of the eigenvalues (with
λ1 the largest one) of the “spin-flipped” density operator
R, which is defined by

R = ρ (σy ⊗ σy) ρ
∗ (σy ⊗ σy) , (6)

where ρ∗ denotes the complex conjugate of ρ.
In Eq.4, the amount of feedback can be varied by ad-

justing the amplitude of F or turned off by setting F = 0.
The steady state concurrence is maximized by brute force
searching for the optimal driving and feedback ampli-
tudes. Once the optimized amplitudes are found these
are used to simulate the time evolution of the system
using Eq.4.
As shown in Fig. 1, for the two limiting initial states,

the corresponding time evolution curves converge to the
steady state solution of Eq.(4). Although only two states
are presented, the system converges to the same steady
state as was simulated for hundreds of initial states. The
solid circles on the curves give the time evolution of the
concurrence given the steady state optimized feedback.
The curves with square markers represent the time evo-
lution of concurrence without feedback. There are a few
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FIG. 1. Plot of the evolution of concurrence versus time for
an initially unentangled and a completely entangled state for
when feedback is on (circles) and off (squares). For both
curves, the system parameters are γ = 0.3, J = 0.6, B = 0.35,
and r = 0.5.
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FIG. 2. Plot of the subsystem entropy versus time for an ini-
tially unentangled and a completely entangled state for when
feedback is on (circles) and off (squares). For both curves
the system parameters are γ = 0.3, J = 0.6, B = 0.35, and
r = 0.5.

key points that can be derived from the figure. First,
regardless of the initial state of the system, the concur-
rence reaches a steady state value after some oscillatory
behavior. Second, the Heisenberg spin-spin interaction
in Eq.(4) creates an entangled state despite the pres-
ence of decoherence and absence of feedback. Third,
in the case of feedback, the steady state concurrence
is reached more quickly as compared with no feedback.
Fourth, when feedback is absent, the decoherence limits
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the steady state concurrence to be approximately 0.3 for
either an initially entangled or unentangled state. The
steady state concurrence is increased by using feedback
to be approximately 0.4. Additionally, as shown in Fig.
2, by using feedback the entropy of the two system eigen-
states is decreased from 0.7 to 0.6. The entropy of the
subsystem is defined as S = −tr[ρi(log2ρi)], here i = 1, 2
represents the two eigenstates of the system. This means
the purity of the system increases since decreased subsys-
tem entropy implies that one of the system eigenvalues
dominates. So, the new physics introduced here is to
illustrate that the feedback scheme provides an improve-
ment in both the purity and concurrence of the Heisen-
berg system. This is in contrast to previous work where
an improvement in entanglement did not correspond to
an increase in the purity of the system14.
It is also of interest to show the dependence of the

steady state concurrence on the strength of an external
magnetic field. As indicated in Fig. 3 and 4, the concur-
rence increases from B = 0 to a maximum when B = 0.5
and vanishes as B further increases. The driving and
feedback amplitude corresponding to the maximum con-
currence are α = 0.06, λ = 0.3 for the chosen set of pa-
rameters J = 0.6, r = 0.5, γ = 0.3. Since the units used
in the derivations are arbitrary, one interesting paper
finds the physical J parameter using the spin excitation
spectra of a scanning tunneling electron microscope15.
The experiment was carried out with Magnesium atom
chains of length from 1 to 10. The interaction strength
J between the atoms was found to be an energy of 6.2
meV. The magnitude found in a paper studying spin in-
teractions in anti-ferromagnetic quantum spin chains was
on the order of a 15 kelvin to around 115 Kelvin which
is equivalent to 1 to 10 meV8.

II. DISCUSSION AND CONCLUSION

Some applications of this theory include explaining the
peculiar behavior of the relative magnetic permeability
of some materials near absolute zero where the decoher-
ence effects approach those assumed in this paper. A
related paper modeled the results of magnetic suscep-
tibility versus magnetic field strength and temperature
without feedback using a Heisenberg XY chain with near-
est neighbor spin spin entanglement8. The experimental
model is similar to the model in Eq. 4 except without
feedback. Since an increase of temperature tends to de-
crease entanglement, the temperature effect is equivalent
to decoherence. This allows a rough estimate of the tem-
perature equivalence of concurrence in this paper with-
out feedback yields an approximate temperature of 1.35
Kelvin. This is based on comparing the max entangle-
ment of 0.4 in their Fig. 5 showing the quantum corre-
lation versus temperature. The increase of entanglement
(0.3 to 0.4) from using feedback is then approximately
equivalent to 150 mK. The ability of quantum feedback
to create the same amount of entanglement with a higher
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FIG. 3. Plot of the steady state concurrence versus the mag-
netic field strength B̄, where γ = 0.3, J = 0.6, and r = 0.5.
The line with circle markers represents when feedback is en-
abled and the line with square markers represents when feed-
back is off.
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FIG. 4. Plot of the steady state concurrence versus the mag-
netic field amplitude B and feedback amplitude λ, where
γ = 0.3, J = 0.6, and r = 0.5.

temperature makes it an interesting path to high temper-
ature entanglement. The open question is ”What is the
highest temperature, with quantum feedback, where non-
negligible concurrence can be achieved?”. The answer to
this question is a promising path for future quantum en-
tanglement development.
In summary, this paper has given a detailed analysis

of using the homodyne-mediated feedback scheme to con-
trol decoherence in a Heisenberg spin 1/2 system with an
external magnetic field. A steady state and time depen-
dent master equation has been presented to model the



4

driving and feedback amplitude needed to achieve opti-
mal concurrence and purity of the system.
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