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Abstract

We formalize and study the problem of learn-
ing the structure and parameters of graphical
games from strictly behavioral data. We cast
the problem as a maximum likelihood esti-
mation (MLE) based on a generative model
defined by the pure-strategy Nash equilib-
ria (PSNE) of the game. The formulation
brings out the interplay between goodness-of-
fit and model complexity: good models cap-
ture the equilibrium behavior represented in
the data while controlling the true number
of PSNE, including those potentially unob-
served. We provide a generalization bound
for MLE. We discuss several optimization
algorithms including convex loss minimiza-
tion (CLM), sigmoidal approximations and
exhaustive search. We formally prove that
games in our hypothesis space have a small
true number of PSNE, with high probability;
thus, CLM is sound. We illustrate our ap-
proach, show and discuss promising results
on synthetic data and the U.S. congressional
voting records.

1 Introduction

Graphical games [Kearns et al., 2001] were one of the
first and most influential graphical models for game
theory. It has been about a decade since their intro-
duction to the AI community. There has also been
considerable progress on problems of computing clas-
sical equilibrium solution concepts such as Nash [Nash,
1951] and correlated equilibria [Aumann, 1974] in
graphical games (see, e.g., Kearns et al. [2001], Vick-
rey and Koller [2002], Ortiz and Kearns [2002], Blum
et al. [2006], Kakade et al. [2003], Papadimitriou and
Roughgarden [2008], Jiang and Leyton-Brown [2011]
and the references therein). Indeed, graphical games

played a prominent role in establishing the compu-
tational complexity of computing Nash equilibria in
general normal-form games (see, e.g., Daskalakis et al.
[2009] and the references therein).

Relatively less attention has been paid to the prob-
lem of learning the structure of graphical games from
data. Addressing this problem is essential to the de-
velopment, potential use and success of game-theoretic
models in practical applications.

Indeed, we are beginning to see an increase in the avail-
ability of data collected from processes that are the
result of deliberate actions of agents in complex sys-
tem. A lot of this data results from the interaction of
a large number of individuals, being people, compa-
nies, governments, groups or engineered autonomous
systems (e.g. autonomous trading agents), for which
any form of global control is usually weak. The In-
ternet is currently a major source of such data, and
the smart grid, with its trumpeted ability to allow in-
dividual customers to install autonomous control de-
vices and systems for electricity demand, will likely be
another one in the near future.

We present a formal framework and design algorithms
for learning the structure and parameters of graphi-
cal games [Kearns et al., 2001] in large populations of
agents. We concentrate on learning from purely behav-
ioral data. We expect that, in most cases, the param-
eters quantifying a utility function or best-response
condition are unavailable and hard to determine in
real-world settings. The availability of data resulting
from the observation of an agent public behavior is ar-
guably a weaker assumption than the availability of
agent utility observations, which are often private.

Our technical contributions include a novel genera-
tive model of behavioral data in Section 2 for gen-
eral games. We define identifiability and triviality of
games. We provide conditions which ensures identi-
fiability among non-trivial games. We then present
the maximum likelihood estimation (MLE) problem



for general (non-trivial identifiable) games. In Sec-
tion 3, we show a generalization bound for the MLE
problem and an upper bound of the VC-dimension of
LIGs. In Section 4, we approximate the original prob-
lem by maximizing the number of observed equilibria
in the data, suitable for a class of games with small true
number of equilibria. We then present our convex loss
minimization approach, and baseline methods such as
sigmoidal approximation and exhaustive search for lin-
ear influence games (LIGs). In Section 5, we define
absolute-indifference of players and show that con-
vex loss minimization produces games in which all
players are non-absolutely-indifferent. We provide a
distribution-free bound which shows that LIGs have
small true number of equilibria with high probability.
Related Work. Our work complements the recent
line of work on learning graphical games [Vorobeychik
et al., 2005, Ficici et al., 2008, Duong et al., 2009,
Gao and Pfeffer, 2010, Ziebart et al., 2010, Waugh
et al., 2011]. With the exception of Ziebart et al.
[2010], Waugh et al. [2011], previous methods assume
that the actions as well as corresponding payoffs (or
noisy samples from the true payoff function) are ob-
served in the data. Another notable exception is a
recently proposed framework from the learning theory
community to model collective behavior [Kearns and
Wortman, 2008]. The approach taken there consid-
ers dynamics and is based on stochastic models. Our
work differs from methods that assume that the game
is known [Wright and Leyton-Brown, 2010]. The work
of Vorobeychik et al. [2005], Gao and Pfeffer [2010],
Wright and Leyton-Brown [2010], Ziebart et al. [2010]
present experimental validation mostly for 2 players
only, 7 players in Waugh et al. [2011] and up to 13
players in Duong et al. [2009].

In this paper, we assume that the joint-actions is the
only observable information. To the best of our knowl-
edge, we present the first techniques for learning the
structure and parameters of large-population graph-
ical games from joint-actions only. Furthermore, we
present experimental validation in games of up to 100
players. Our convex loss minimization approach could
potentially be applied to larger problems since it is
polynomial-time.
Background. In classical game-theory (see, e.g. Fu-
denberg and Tirole [1991] for a textbook introduction),
a normal-form game is defined by a set of players V
(e.g. we can let V = {1, . . . , n} if there are n play-
ers), and for each player i, a set of actions, or pure-
strategies Ai, and a payoff function ui : ×j∈VAj → R
mapping the joint-actions of all the players, given by
the Cartesian product A ≡ ×j∈VAj , to a real number.
In non-cooperative game theory we assume players are
greedy, rational and act independently, i.e. each player
i always want to maximize their own utility, subject

to the actions selected by others, irrespective of how
the optimal action chosen help or hurt others.

A core solution concept in non-cooperative game the-
ory is that of an Nash equilibrium. A joint-action
x∗ ∈ A is a pure-strategy Nash equilibrium (PSNE)
of a non-cooperative game if, for each player i, x∗i ∈
arg maxxi∈Ai

ui(xi,x∗−i); that is, x∗ constitutes a mu-
tual best-response, no player i has any incentive to uni-
laterally deviate from the prescribed action x∗i , given
the joint-action of the other players x∗−i ∈ ×j∈V−{i}Aj
in the equilibrium.

In what follows, we denote a game by G, and the PSNE
set of G by

NE(G) ≡ {x∗ | ∀i ∈ V, x∗i ∈ arg maxxi∈Ai
ui(xi,x∗−i)}.

A (directed) graphical game is a game-theoretic graph-
ical model [Kearns et al., 2001]. It provides a succinct
representation of normal-form games. In a graphical
game, we have a (directed) graph G = (V,E) in which
each node in V corresponds to a player in the game.
The interpretation of the edges/arcs E of G is that the
payoff function of player i is only a function of the set
of parents/neighbors Ni ≡ {j | (i, j) ∈ E} in G (i.e.
the set of players corresponding to nodes that point to
the node corresponding to player i in the graph). In
the context of a graphical game, we refer to the ui’s
as the local payoff functions/matrices.

Linear influence games (LIGs) [Irfan and Ortiz, 2011]
are a sub-class of graphical games. For LIGs, we as-
sume that we are given a matrix of influence weights
W ∈ Rn×n, with diag(W) = 0, and a threshold vec-
tor b ∈ Rn. For each player i, we define the influence
function fi(x−i) ≡

∑
j∈Ni

wijxj − bi = wi,−i
Tx−i− bi

and the payoff function ui(x) ≡ xifi(x−i). We further
assume binary actions: Ai ≡ {−1,+1} for all i. The
best response x∗i of player i to the joint-action x−i of
the other players is defined as

wi,−i
Tx−i > bi ⇒ x∗i = +1,

wi,−i
Tx−i < bi ⇒ x∗i = −1 and

wi,−i
Tx−i = bi ⇒ x∗i ∈ {−1,+1},

or equivalently x∗i (wi,−i
Tx−i − bi) ≥ 0. Hence, for

any other player j, wij ∈ R can be thought as a weight
parameter quantifying the “influence factor” that j has
on i, and bi ∈ R as a threshold parameter to the level
of “tolerance” that player i has for playing −1.

Figure 1 provides a preview illustration of the appli-
cation of our approach to congressional voting.

2 Problem Formulation

Our goal is to learn the structure and parameters of a
graphical game from observed joint-actions. Our prob-
lem is unsupervised, i.e. we do not know a priori which



Figure 1: 110th US Congress’s Linear Influence Game (January 3, 2007-09): We provide an illustration of the
application of our approach to real congressional voting data. Irfan and Ortiz [2011] use such LIGs to address a variety
of computational problems, including the identification of most influential senators. We show the graph connectivity of a
LIG learnt by independent `1-regularized logistic regression (see Sect. 4.4). We highlight some characteristics of the graph,
consistent with anecdotal evidence. First, senators are more likely to be influenced by members of the same party than
by members of the opposite party (the dashed green line denotes the separation between the parties). Republicans were
“more strongly united” (tighter connectivity) than Democrats at the time. Second, the current US Vice President Biden
(Dem./Delaware) and McCain (Rep./Arizona) are displayed at the “extreme of each party” (Biden at the bottom-right
corner, McCain at the bottom-left) eliciting their opposite ideologies. Third, note that Biden, McCain, the current US
President Obama (Dem./Illinois) and US Secretary of State Hillary Clinton (Dem./New York) have very few outgoing
arcs; e.g., Obama only directly influences Feingold (Dem./Wisconsin), a prominent senior member with strongly liberal
stands. One may wonder why do such prominent senators seem to have so little direct influence on others? A possible
explanation is that US President Bush was about to complete hist second term (the maximum allowed). Both parties had
very long presidential primaries. All those senators contended for the presidential candidacy within their parties. Hence,
one may posit that those senators were focusing on running their campaigns and that their influence in the day-to-day
business of congress was channeled through other prominent senior members of their parties.

joint-actions are PSNE and which ones are not. If our
only goal were to find a game G in which all the given
observed data is a PSNE, then a “dummy” LIG with
G = (W,b),W = 0,b = 0 would be the optimal so-
lution since |NE(G)| = 2n. In this section, we present
a probabilistic formulation that allows finding games
that maximize the empirical proportion of equilibria in
the data while keeping the true proportion of equilibria
low. Furthermore, we show that trivial games such as
W = 0,b = 0, obtain the lowest log-likelihood.
On the Identifiability of Games. Several games
with different coefficients can lead to the same PSNE
set. It is easy to construct simple games with different
structures or parameters, but the same set of PSNE.
(Please see Appendix A for examples.) In this work,
we choose to identify games by their PSNE sets.

Definition 1. We say that two games G1 and G2 are
equivalent if and only if their PSNE sets are identical,
i.e.: G1 ≡NE G2 ⇔ NE(G1) = NE(G2).

2.1 A Generative Model of Behavioral Data

We propose the following generative model for
behavioral data based strictly in the context

of “simultaneous”/one-shot play in non-cooperative
game theory. Let G be a game. With some probability
0 < q < 1, a joint-action x is chosen uniformly at ran-
dom from NE(G); otherwise, x is chosen uniformly at
random from its complement set {−1,+1}n −NE(G).
Hence, the generative model is a mixture model with
mixture parameter q corresponding to the probabil-
ity that a stable outcome (i.e. a PSNE) of the game
is observed. Formally, the probability mass function
(PMF) over joint-behaviors {−1,+1}n parametrized
by (G, q) is:

p(G,q)(x) = q
1[x ∈ NE(G)]
|NE(G)|

+ (1− q) 1[x /∈ NE(G)]
2n − |NE(G)|

(1)
where we can think of q as the “signal” level, and thus
1− q as the “noise” level in the data set.

(A more sophisticated noise process, and mixed-
strategy Nash equilibria are discussed in Appendix G.)
Remark 2. In order for eq.(1) to be a valid PMF for
any G, we need to enforce |NE(G)| = 0 ⇒ q = 0 and
|NE(G)| = 2n ⇒ q = 1. In both cases (|NE(G)| ∈
{0, 2n}) the PMF becomes a uniform distribution. On
the other hand, if 0 < |NE(G)| < 2n then setting q ∈



{0, 1} leads to an invalid PMF.

Let π(G) be the true proportion of equilibria in the
game G relative to all possible joint-actions, i.e.:

π(G) ≡ |NE(G)|/2n (2)

We say that a game G is trivial if and only if |NE(G)| ∈
{0, 2n} (or equivalently π(G) ∈ {0, 1}); and say G is
non-trivial otherwise.

The following propositions establish that the condi-
tion q > π(G) ensures that the probability of a PSNE
is strictly greater than a non-PSNE, and it also guar-
antees identifiability among non-trivial games.

Proposition 3. Given a non-trivial game G, the mix-
ture parameter q > π(G) if and only if p(G,q)(x1) >
p(G,q)(x2) for any x1 ∈ NE(G) and x2 /∈ NE(G).

Proof Sketch. By eq.(1) and eq.(2).

(Please, see Appendix B for detailed proofs.)

Proposition 4. Let G1 and G2 be two non-
trivial games. For some mixture parameter q >
max(π(G1), π(G2)), G1 and G2 are equivalent if and
only if they induce the same PMF over the joint-action
space {−1,+1}n of the players, i.e.: G1 ≡NE G2 ⇔
(∀x) p(G1,q)(x) = p(G2,q)(x).

Proof Sketch. By Definition 1, eq.(1) and eq.(2).

2.2 Learning Games via MLE

The learning problem consists on estimating the struc-
ture and parameters of a graphical game from data.
We point out that our problem is unsupervised, i.e.
we do not know a priori which joint-actions are PSNE
and which ones are not.

First, we use a shorthand notation for the Kullback-
Leibler (KL) divergence between two Bernoulli distri-
butions parametrized by 0 ≤ p1, p2 ≤ 1:

KL(p1‖p2)≡ KL(Bernoulli(p1)‖Bernoulli(p2))
= p1 log p1

p2
+ (1− p1) log 1−p1

1−p2
(3)

Next, we present the MLE problem for games.

Lemma 5. Given a dataset D = x(1), . . . ,x(m), let
π̂(G) be the empirical proportion of equilibria, i.e. the
proportion of samples in D that are PSNE of G:

π̂(G) ≡ 1
m

∑
l 1[x(l) ∈ NE(G)] (4)

the MLE problem for the probabilistic model in eq.(1)
can be expressed as:

max
(G,q)∈Υ

L̂(G, q) = KL(π̂(G)‖π(G))−KL(π̂(G)‖q)−n log 2

(5)

where H is the class of games of interest, Υ = {(G, q) |
G ∈ H ∧ 0 < π(G) < q < 1} is the hypothesis
space of non-trivial identifiable games, π(G) is de-
fined as in eq.(2) and the optimal mixture parameter
q̂ = min(π̂(G), 1− 1

2m ).

Proof Sketch. The expression L̂(G, q) follows from the
definition of log-likelihood and algebraic manipulation
for using eq.(3). By maximizing with respect to q,
we get KL(π̂(G)‖q̂) = 0 ⇔ q̂ = π̂(G). We define our
hypothesis space Υ given the conditions in Remark 2
and Propositions 3 and 4. For π̂(G) = 1, we “shrink”
q̂ to 1− 1

2m in order to generate a valid PMF (Remark
2).

Remark 6. A trivial game (e.g. G = (W,b),W =
0,b = 0, π(G) = 1) induces a uniform PMF by Re-
mark 2, and therefore its log-likelihood is −n log 2.
Note that the lowest log-likelihood for non-trivial iden-
tifiable games in eq.(5) is −n log 2 by setting the op-
timal mixture parameter q̂ = π̂(G) and given that
KL(π̂(G)‖π(G)) ≥ 0.

3 Generalization Bound

In this section, we show a generalization bound for
the MLE problem and an upper bound of the VC-
dimension of LIGs. Our objective is to establish that
with high probability, the maximum likelihood esti-
mate is close to the optimal parameters, in terms of
achievable expected log-likelihood.

Given the ground truth distribution Q of the data, let
π̄(G) be the expected proportion of equilibria, i.e.:

π̄(G) = PQ[x ∈ NE(G)]

and let L̄(G, q) be the expected log-likelihood of a gen-
erative model from game G and mixture parameter q,
i.e.:

L̄(G, q) = EQ[log p(G,q)(x)]

Note that our hypothesis space Υ in eq.(5) includes
a continuous parameter q that could potentially have
infinite VC-dimension. The following lemma will al-
low us later to prove that uniform convergence for the
extreme values of q implies uniform convergence for all
q in the domain.

Lemma 7. Consider any game G and, for 0 < q′′ <
q′ < q < 1, let θ = (G, q), θ′ = (G, q′) and θ′′ = (G, q′′).
If, for any ε > 0 we have |L̂(θ) − L̄(θ)| ≤ ε/2 and
|L̂(θ′′)− L̄(θ′′)| ≤ ε/2, then |L̂(θ′)− L̄(θ′)| ≤ ε/2.

Proof Sketch. By basic algebra, we have L̂(θ)−L̄(θ) =
(π̂(G) − π̄(G)) log

(
q

1−q ·
1−π(G)
π(G)

)
. Note that q

1−q is
strictly monotonically increasing for 0 ≤ q < 1.



The following theorem shows that the expected log-
likelihood of the maximum likelihood estimate con-
verges in probability to that of the optimal, as the
data size m increases.
Theorem 8. Let θ̂ = (Ĝ, q̂) be the maximum likelihood
estimate in eq.(5) and θ̄ = (Ḡ, q̄) be the maximum ex-
pected likelihood estimate, i.e. θ̂ = arg maxθ∈ΥL̂(θ)
and θ̄ = arg maxθ∈ΥL̄(θ), then with probability at least
1− δ:

L̄(θ̂) ≥ L̄(θ̄)−
(

log max(2m, 1
1−q̄ ) + n log 2

)
·√

2
m

(
log d(H) + log 4

δ

)
where H is the class of games of interest, Υ = {(G, q) |
G ∈ H ∧ 0 < π(G) < q < 1} is the hypothesis
space of non-trivial identifiable games and d(H) ≡
|∪G∈H{NE(G)}| is the number of all possible games
in H (identified by their PSNE sets).

Proof Sketch. The log-likelihood is bounded and since
E[L̂(θ)] = L̄(θ), we use Hoeffding’s inequality for each
θ. For applying the union bound for all θ, note that
there are 2d(H) possible parameters θ, since by Lemma
7 we need to consider only the two extreme values of
q ∈ {π(G),max(1− 1

2m , q̄)}.

The following theorem establishes the complexity of
the class of LIGs, which implies that log d(H) in The-
orem 8 is polynomial in the number of players n.
Theorem 9. Let H be the class of LIGs. Then d(H) ≡
|∪G∈H{NE(G)}| ≤ 2

n2(n+1)
2 +1 ≤ 2n

3
.

Proof Sketch. For every LIG in H, we define a neural
network. Note that log d(H) is upper bounded by the
VC-dimension of the class of those properly defined
neural networks. Finally, we use the VC-dimension of
neural networks [Sontag, 1998].

4 Algorithms

In this section, we approximate the MLE problem by
maximizing the number of observed PSNE in the data,
suitable for a class of games with small true proportion
of equilibria. We then present our convex loss mini-
mization approach. We also discuss baseline meth-
ods such as sigmoidal approximation and exhaustive
search.

First, we discuss some negative results that justifies
the use of simple approaches. Counting the number
of PSNE is NP-hard for LIGs, and so is computing
the log-likelihood function and therefore performing
MLE. This is not a disadvantage relative to prob-
abilistic graphical models, since computing the log-
likelihood function is also NP-hard for Markov ran-
dom fields, while learning is also NP-hard for Bayesian

networks. General approximation techniques such as
pseudo-likelihood estimation do not lead to tractable
methods for learning LIGs. From an optimization per-
spective, the log-likelihood function is not continuous
because of the number of PSNE. Furthermore, bound-
ing the number of PSNE by known bounds for Ising
models leads to trivial bounds. (Formal proofs and
discussion are included in Appendix C.)

4.1 Exhaustive Search

As a first approach, consider solving the MLE prob-
lem in eq.(5) by an exact exhaustive search algo-
rithm. Note that in a LIG each player separates
hypercube vertices with a linear function, i.e. for
v ≡ (wi,−i, bi) and y ≡ (xix−i,−xi) ∈ {−1,+1}n
we have xi(wi,−i

Tx−i − bi) = vTy. Assume we as-
sign a binary label to each vertex y, then note that
not all possible labelings are linearly separable. La-
belings which are linearly separable are called linear
threshold functions (LTFs). [Muroga, 1965] showed
that the number of LTFs is at least α(n) ≡ 20.33048n2

.
Therefore, an exhaustive search approach (for a single
player) will take at least α(n) time. Unfortunately,
enumerating all LTFs seems to be far from a trivial
problem. By using results in Muroga [1971], a weight
vector v with integer entries such that (∀i) |vi| ≤
β(n) ≡ (n+ 1)(n+1)/2

/2n is sufficient to realize all pos-
sible LTFs. Therefore enumerating LIGs takes at most

(2β(n) + 1)n
2

≈ (
√
n+1
2 )

n3

steps, and we propose the
use of this method for n ≤ 4. For n = 4 we found that
the number of LIGs is 23,706.

4.2 From MLE to MEPE

We approximately perform MLE for LIGs, by solving
a maximum empirical proportion of equilibria (MEPE)
problem, i.e. by maximizing the PSNE in the observed
data. This strategy allows us to avoid computing the
(NP-hard) true proportion of equilibria. For a class
of games with small true proportion of equilibria with
high probability (such as LIGs as shown in Section 5),
we use a lower bound of the log-likelihood with high
probability. We also show that under very mild condi-
tions, the parameters (G, q) belong to the hypothesis
space of the original problem with high probability.

First, we derive bounds on the log-likelihood function.

Lemma 10. Given a non-trivial game G with 0 <
π(G) < π̂(G), the KL divergence in the log-likelihood
function in eq.(5) is bounded as follows:

−π̂(G)log π(G)−log 2<KL(π̂(G)‖π(G))<−π̂(G)log π(G)

Proof Sketch. From basic calculus arguments.



The bounds are very informative when π(G)→ 0 (or in
our setting when n→ +∞), since log 2 becomes small
when compared to − log π(G) (See Appendix B.7.1 for
an illustration).

Next, we derive the MEPE problem from MLE.

Theorem 11. Assume that with probability at least
1− δ we have π(G) ≤ κn

δ for 0 < κ < 1. Maximizing a
lower bound (with high probability) of the log-likelihood
in eq.(5) is equivalent to maximizing the empirical pro-
portion of equilibria:

max
G∈H

π̂(G) (6)

furthermore, for all games G such that π̂(G) ≥ γ for
some 0 < γ < 1/2, for sufficiently large n > logκ (δγ)
and optimal mixture parameter q̂ = min(π̂(G), 1− 1

2m ),
we have (G, q̂) ∈ Υ, where Υ = {(G, q) | G ∈ H ∧ 0 <
π(G) < q < 1} is the hypothesis space of non-trivial
identifiable games.

Proof Sketch. For bounding the log-likelihood, we ap-
ply the lower bound in Lemma 10 in eq.(5). For prov-
ing (G, q̂) ∈ Υ⇔ 0 < π(G) < q̂ < 1, we use π(G) ≤ κn

δ
and γ ≤ π̂(G).

4.3 Sigmoidal Approximation

A very simple optimization approach can be devised
by using a sigmoid in order to approximate the 0/1
function 1[z ≥ 0] in the MLE problem of eq.(5) and
the MEPE problem of eq.(6). We use the following
sigmoidal approximation:

1[z≥0] ≈ Hα,β(z) ≡ 1
2 (1+tanh( zβ−atanh(1−2α1/n)))

(7)
The additional term α ensures that for G =
(W,b),W = 0,b = 0 we get 1[x ∈ NE(G)] ≈
Hα,β(0)n = α. We perform gradient ascent on these
objective functions that have many local maxima.
When maximizing the “sigmoidal” likelihood, each
step of the gradient ascent is NP-hard due to the “sig-
moidal” true proportion of equilibria. Therefore, we
propose the use of the sigmoidal MLE for n ≤ 15.
In our implementation, we add an `1-norm regularizer
−ρ‖W‖1 where ρ > 0.

4.4 Convex Loss Minimization (CLM)

From an optimization perspective, it is more conve-
nient to minimize a convex objective instead of a sig-
moidal approximation with many local minima. Note
that maximizing the empirical proportion of equilib-
ria in eq.(6) is equivalent to minimizing the empirical
proportion of non-equilibria, i.e. minG∈H (1− π̂(G)).
Furthermore, 1 − π̂(G) = 1

m

∑
l 1[x(l) /∈ NE(G)]. De-

note by ` the 0/1 loss, i.e. `(z) = 1[z < 0]. For LIGs,

solving the MEPE problem in eq.(6) is equivalent to
solving the loss minimization problem:

min
W,b

1
m

∑
l

max
i
`(x(l)

i (wi,−i
Tx(l)
−i − bi)) (8)

We can further relax this problem by introducing con-
vex upper bounds of the 0/1 loss. As we will show
in Section 5, the use of convex losses also avoids the
trivial solution of eq.(8), i.e. W = 0,b = 0 (which ob-
tains the lowest log-likelihood as discussed in Remark
6). In what follows, we develop four efficient methods
for solving eq.(8). In our implementation, we add an
`1-norm regularizer ρ‖W‖1 where ρ > 0.
Independent Support Vector Machines and Lo-
gistic Regression. We can relax the loss mini-
mization problem in eq.(8) by using the loose bound
maxi `(zi) ≤

∑
i `(zi). This relaxation simplifies the

original problem into several independent problems.
For each player i, we train the weights (wi,−i, bi) in
order to predict independent (disjoint) actions. This
leads to 1-norm SVMs of Bradley and Mangasarian
[1998], Zhu et al. [2003] and `1-regularized logistic re-
gression. We solve the latter with the `1-projection
method of Schmidt et al. [2007]. While the training is
independent, our goal is not the prediction for indepen-
dent players but the characterization of joint-actions.
The use of these well known techniques in our context
is novel, since we interpret the output of SVMs and lo-
gistic regression as the parameters of a LIG. Thus, we
use the parameters to measure empirical and true pro-
portion of equilibria, KL divergence and log-likelihood
in our probabilistic model.
Simultaneous Support Vector Machines. While
converting the loss minimization problem in eq.(8) by
using loose bounds allow to obtain several independent
problems with small number of variables, a second rea-
sonable strategy would be to use tighter bounds at
the expense of obtaining a single optimization prob-
lem with a higher number of variables.

For the hinge loss `(z) = max (0, 1− z), we have
maxi `(zi) = max (0, 1− z1, . . . , 1− zn) and the loss
minimization problem in eq.(8) becomes the following
primal linear program:

min
W,b,ξ

1
m

∑
l

ξl + ρ‖W‖1

s.t. (∀l, i) x(l)
i (wi,−i

Tx(l)
−i − bi) ≥ 1− ξl , (∀l) ξl ≥ 0

(9)
where ρ > 0. This problem is a generalization of 1-
norm SVMs of Bradley and Mangasarian [1998], Zhu
et al. [2003]. (The dual problem is in Appendix D.)
Simultaneous Logistic Regression. For the logis-
tic loss `(z) = log(1 + e−z), we could use the non-
smooth loss maxi `(zi) directly. Instead, we chose a



smooth upper bound, i.e. log(1 +
∑
i e
−zi) (Discus-

sion is included in Appendix E.) The loss minimiza-
tion problem in eq.(8) becomes:

min
W,b

1
m

∑
l

log(1 +
∑
i e
−x(l)

i (wi,−i
Tx

(l)
−i−bi)) + ρ‖W‖1

(10)
where ρ > 0. We use the `1-projection method
of Schmidt et al. [2007] for optimizing eq.(10).

5 True Proportion of Equilibria

In this section, we define absolute indifference of
players and show that convex loss minimization pro-
duces games in which all players are non-absolutely-
indifferent. We then provide a bound of the true pro-
portion of equilibria with high probability. Our bound
only assumes independence of weight vectors among
players. Our bound is distribution-free, i.e. we do not
assume a specific distribution for the weight vector of
each player. Furthermore, we do not assume any con-
nectivity properties of the underlying graph.

Parallel to our work, Daskalakis et al. [2011] analyzed
a different setting: random games which structure is
drawn from the Erdős-Rényi model (i.e. each edge
is present independently with the same probability p)
and utility functions which are random tables. The
analysis in Daskalakis et al. [2011], while more gen-
eral than ours (which only focus on LIGs), it is at the
same time more restricted since it assumes either the
Erdős-Rényi model for random structures or connec-
tivity properties for deterministic structures.

5.1 CLM Produces Games with
Non-Absolutely-Indifferent Players

First, we define the notion of absolute indifference of
players. Our goal is to show that our proposed convex
loss algorithms produce LIGs in which all players are
non-absolutely-indifferent and therefore every player
defines constraints to the true proportion of equilibria.
Definition 12. Given a LIG G = (W,b), we say
a player i is absolutely indifferent if and only if
(wi,−i, bi) = 0, and non-absolutely-indifferent if and
only if (wi,−i, bi) 6= 0.

Next, we show that independent and simultane-
ous SVM and logistic regression produce games
in which all players are non-absolutely-indifferent
except for some “degenerate” cases. The fol-
lowing lemma applies to independent SVMs for
c(l) = 0 and simultaneous SVMs for c(l) =
max(0,maxj 6=i (1− x(l)

j (wi,−i
Tx(l)
−i − bi))).

Lemma 13. Given (∀l) c(l) ≥ 0, the minimiza-
tion of the hinge training loss ̂̀(wi,−i, bi) =

1
m

∑
l max(c(l), 1− x(l)

i (wi,−i
Tx(l)
−i − bi)) guaran-

tees non-absolutely-indifference of player i except
for some “degenerate” cases, i.e. the optimal
solution (w∗i,−i, b

∗
i ) = 0 if and only if (∀j 6=

i)
∑
l 1[x(l)

i x
(l)
j = 1]u(l) =

∑
l 1[x(l)

i x
(l)
j = −1]u(l) and∑

l 1[x(l)
i = 1]u(l) =

∑
l 1[x(l)

i = −1]u(l) where u(l) is
defined as c(l) > 1⇔ u(l) = 0, c(l) < 1⇔ u(l) = 1 and
c(l) = 1⇔ u(l) ∈ [0; 1].

Proof Sketch. By optimality arguments, the subgradi-
ent of ̂̀ “vanishes” at (w∗i,−i, b

∗
i ) = 0.

Remark 14. For independent SVMs, the “de-
generate” cases in Lemma 13 simplify to (∀j 6=
i)
∑
l 1[x(l)

i x
(l)
j = 1] = m

2 and
∑
l 1[x(l)

i = 1] = m
2 .

The following lemma applies to independent logistic
regression for c(l) = 0 and simultaneous logistic re-
gression for c(l) =

∑
j 6=i e

−x(l)
j (wi,−i

Tx
(l)
−i−bi).

Lemma 15. Given (∀l) c(l) ≥ 0, the minimiza-
tion of the logistic training loss ̂̀(wi,−i, bi) =
1
m

∑
l log(c(l) + 1 + e−x

(l)
i (wi,−i

Tx
(l)
−i−bi)) guaran-

tees non-absolutely-indifference of player i ex-
cept for some “degenerate” cases, i.e. the op-
timal solution (w∗i,−i, b

∗
i ) = 0 if and only if

(∀j 6= i)
∑
l

1[x
(l)
i x

(l)
j =1]

c(l)+2
=

∑
l

1[x
(l)
i x

(l)
j =−1]

c(l)+2
and∑

l
1[x

(l)
i =1]

c(l)+2
=
∑
l

1[x
(l)
i =−1]

c(l)+2
.

Proof Sketch. By optimality arguments, the gradient
of ̂̀vanishes at (w∗i,−i, b

∗
i ) = 0.

Remark 16. For independent logistic regression, the
“degenerate” cases in Lemma 15 simplify to (∀j 6=
i)
∑
l 1[x(l)

i x
(l)
j = 1] = m

2 and
∑
l 1[x(l)

i = 1] = m
2 .

Based on these results, after termination of our pro-
posed algorithms, we fix cases in which the optimal
solution (w∗i,−i, b

∗
i ) = 0 by setting b∗i = 1 if the ac-

tion of player i was mostly −1 or b∗i = −1 other-
wise. Note that our proofs still hold if we include
the `1-regularization term since the subdifferential of
ρ‖wi,−i‖1 vanishes at wi,−i = 0.

5.2 Bounding the True Proportion of PSNE

In what follows, we show that for a game with a single
non-absolutely-indifferent player, the true proportion
of equilibria is bounded by 3/4.
Lemma 17. Given a LIG G = (W,b) with
non-absolutely-indifferent player i and absolutely-
indifferent players ∀j 6= i, the following statements
hold:

i. x ∈ NE(G)⇔ xi(wi,−i
Tx−i − bi) ≥ 0

ii. |NE(G)| = 2n−1 +
∑

x−i
1[wi,−i

Tx−i − bi = 0]
iii. 1

2 ≤ π(G) ≤ 3
4



Proof Sketch. Claims i and ii follow from basic alge-
bra. For proving Claim iii, we use results in Aich-
holzer and Aurenhammer [1996] regarding the num-
ber of vertices of a hypercube that are covered by a
hyperplane.

Next, we present our bound for the true proportion
of equilibria of games in which all players are non-
absolutely-indifferent.

Theorem 18. If all players are non-absolutely-
indifferent and if the rows of a LIG G = (W,b) are in-
dependent (but not necessarily identically distributed)
random vectors, i.e. for every player i, (wi,−i, bi)
is independently drawn from an arbitrary distribution
Pi, then the expected true proportion of equilibria is
bounded as follows:

(1/2)n ≤ EP1,...,Pn
[π(G)] ≤ (3/4)n

furthermore, the following high probability statement
holds:

PP1,...,Pn
[π(G) ≤ (3/4)n

δ ] ≥ 1− δ

Proof Sketch. We use Lemma 17 and the fact that
functions of independent variables are independent.
The high probability statement follows from Markov’s
inequality.

6 Experimental Results

For learning LIGs we used our convex loss methods:
independent and simultaneous SVM and logistic re-
gression. We also used the (super-exponential) ex-
haustive search method for n ≤ 4. As a baseline, we
used the sigmoidal (NP-hard) MLE for n ≤ 15 and the
sigmoidal MEPE. We found experimentally that the
parameters α = 0.1 and β = 0.001 in the sigmoidal
function achieved the best results.

For comparison, we learn Ising models. For n ≤ 15
players, we perform exact `1-regularized MLE by us-
ing FOBOS [Duchi and Singer, 2009] and exact (NP-
hard) gradients. For n > 15 players, we use the
method of [Höfling and Tibshirani, 2009] which uses
a sequence of first-order approximations of the exact
log-likelihood. We also used a two-step algorithm, by
first learning the structure by `1-regularized logistic re-
gression [Wainwright et al., 2006] and then using FO-
BOS with belief propagation for gradient approxima-
tion. We did not find a statistically significant differ-
ence between both algorithms and reported the latter.

Our experimental setup is as follows: after learning
models for different regularization levels ρ in a train-
ing set, we select the value of ρ that maximizes the
log-likelihood in a validation set, and report statistics

in a test set. For synthetic experiments, we report
the KL divergence, average precision (one minus the
fraction of falsely included PSNE), average recall (one
minus the fraction of falsely excluded PSNE). For real-
world experiments, we report the log-likelihood. For
both, we report the number of PSNE and the empirical
proportion of equilibria.

Synthetic Experiments. We use a small syn-
thetic model in order to compare with the (super-
exponential) exhaustive search method. The ground
truth model Gg = (Wg,bg) has n = 4 players and 4
PSNE, Wg was set according to Figure 2 (edge weights
were set to +1) and bg = 0. The mixture parameter
of the ground truth qg was set to 0.5,0.7,0.9. For each
of 50 repetitions, we generated a training, a validation
and a test set of 50 samples each. Figure 2 shows that
our convex loss methods and sigmoidal MLE outper-
form (lower KL) exhaustive search, sigmoidal MEPE
and Ising models. Exhaustive search (exact MLE) suf-
fers from over-fitting since it does not obtain the lowest
KL. From all convex loss methods, simultaneous logis-
tic regression achieves the lowest KL. For all methods,
the recovery of PSNE is perfect for qg = 0.9 (equi-
librium precision and recall equal to 1). The empiri-
cal proportion of equilibria resembles the ground truth
mixture parameter qg.

Next, we show that the performance of convex loss
minimization improves as the number of samples in-
creases. We use larger random models with varying
number of samples (10,30,100,300). The ground truth
model Gg = (Wg,bg) contains n = 20 players. For
each of 20 repetitions, we generate edges in Wg with
density 0.5. Edge weights were set to +1 with prob-
ability P (+1) and to −1 with probability 1 − P (+1).
We set the bias bg = 0 and the mixture parameter
of the ground truth qg = 0.7. We then generated a
training and a validation set with the same number of
samples. Figure 3(a) shows that our convex loss meth-
ods outperform (lower KL) sigmoidal MEPE and Ising
models. From all convex loss methods, simultaneous
logistic regression achieves the lowest KL.

By using the above synthetic model, we evaluate the
effect of our approximation methods. First, we test
the impact of removing the true proportion of equilib-
ria from our objective function. Second, we test the
impact of using convex losses instead of a sigmoidal ap-
proximation of the 0/1 loss. We use a varying number
of players (n = 4, 6, 8, 10, 12) and 50 samples. Fig-
ure 3(b) shows that in general, convex loss methods
outperform (lower KL) sigmoidal MEPE, and MEPE
outperforms sigmoidal MLE.

Congressional Voting. We used the U.S. congres-
sional voting records in order to measure the general-
ization performance of convex loss minimization in a
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Figure 2: Closeness of recovered models to the ground
truth for different qg. Convex loss methods (IS,SS: inde-
pendent and simultaneous SVM; IL,SL: logistic regression)
and sigmoidal MLE (S1) have lower KL than exhaustive
search (EX), sigmoidal MEPE (S2) and Ising models (IM).
The recovery of PSNE is perfect for qg = 0.9 and the em-
pirical proportion of equilibria resembles qg.
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Figure 3: KL divergence between recovered models and
ground truth for increasing samples (a) and players (b), for
0.5 density. Each chart shows the probability P (+1) that
an edge has weight +1, and average number of equilibria
(NE). In (a) convex loss methods (IS,SS: independent and
simultaneous SVM; IL,SL: logistic regression) have lower
KL than sigmoidal MEPE (S2) and Ising models (IM). In
(b) simultaneous logistic regression (SL) has lower KL than
sigmoidal MEPE (S2), and MEPE has lower KL than sig-
moidal MLE (S1). (Omitted convex losses behave as SL).

real-world dataset. The dataset is publicly available
at http://www.senate.gov/ and covers from the 101th
congress to the 111th congress (Jan 1989 to Dec 2010).
The number of votes casted for each session were aver-
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Figure 4: Statistics for games learnt from 20 senators, 1st
session of the 104th and 107th congress and 2nd session of
the 110th congress. The log-likelihood of convex loss meth-
ods (IS,SS: independent and simultaneous SVM; IL,SL: lo-
gistic regression) is higher than sigmoidal MEPE (S2) and
Ising models (IM). The number of PSNE is low.
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Figure 5: Matrix of influence weights for games learnt from
100 senators, 1st session of the 107th congress, by using
simultaneous logistic regression. A row represents how ev-
ery other senator influences the senator in the row. Pos-
itive/negative influences in blue/red. Democrats in the
top/left corner, Republicans in the bottom/right. Partial
view of the graph (b).

age: 337, minimum: 215, maximum: 613. Abstentions
were replaced with negative votes. Since reporting the
log-likelihood requires computing the (NP-hard) num-
ber of PSNE, we selected only 20 senators by stratified
random sampling. We randomly split the data into
three parts. We performed six repetitions by making
each third of the data take turns as training, validation
and testing sets. Figure 4 shows that our convex loss
methods outperform (higher log-likelihood) sigmoidal
MEPE and Ising models. From all convex loss meth-
ods, simultaneous logistic regression achieves the best
KL. For all methods, the number of PSNE is low.

We apply convex loss minimization to larger problems,
by learning structures of games from all 100 senators.
Figure 5 shows that simultaneous logistic regression
elicits the bipartisan structure of the congress.

(Please, see Appendix F for additional results.)

Concluding Remarks. There are several ways of
extending this research. More sophisticated noise pro-
cesses as well as mixed-strategy Nash equilibria need
to be considered and studied. Finally, topic-specific
and time-varying versions of our model would elicit
differences in preferences and trends.

(We include additional discussion in Appendix G.)
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