Final Exam 2002 Problem 3: Classification (14 Points)

Part A: Nearest Neighbors (6 Points)

The 6.034 staff has decided to launch a search for the newest AI superstar by hosting a television show that will make one aspiring student an MIT Idol. The staff has judged two criteria important in choosing successful candidates: work ethic (W) and raw talent (R). The staff will classify candidates into either potential superstar (black dot) or normal student (open circle) using a nearest-neighbors classifier.

On the graph below, draw the decision boundaries that a 1-nearest-neighbor classifier would find in the R-W plane.
Part B: Identification Trees (4 Points)

Part B1 (2 Points)

Now, leaving nearest neighbors behind, you decide to try an identification-tree approach. In the space below, you have two possible initial tests for the data. Calculate the average disorder for each test. Your answer may contain log2 expressions, but no variables. The graph is repeated below.

Test A: \(R > 5: \)

\[
(+ (* _ (* 2 (- (* _ log _))))
(* _ (* 2 (- (* _ log _))))) = 1
\]

Test B: \(W > 6: \)

\[
(+ (* 5/12 (+ (* 1/5 log 1/5) (* 4/5 log 4/5))
(* 7/12 (+ (* 2/7 log 2/7) (* 5/7 log 5/7)) < 1
\]

Part B2 (2 Points)

Now, indicate which of the two tests is chosen first by the greedy algorithm for building identification trees.

We include a copy of the graph below for your scratch work.
Part C: Identification Trees (4 Points)

Now, assume $R > 5$ is the first test selected by the identification-tree builder (which may or may not be correct). Then, draw in all the rest of the decision boundaries that would be placed (correctly) by the identification-tree builder:

Note: other solutions do just as good a job at dividing up the bottom portion of the graph.