Recitation 11: Boosting, Notes

December 2, 2005

1. AdaBoost Algorithm

Given training examples \((x_1, y_1), \ldots, (x_m, y_m)\) such that \(x_i \in X, y_i \in Y = \{-1, +1\}\).

Initialize \(D_1(i) = 1/m\). \((D_t(i)\) represents how much weight is given to example \(i\) on iteration \(t\).)

For \(t = 1, \ldots, T:\)

(a) Train weak learner using distribution \(D_t\): Outputs a weak classifier \(h_t : X \rightarrow Y\) \((h_t\) can be an ID tree, a NN-based classifier, \ldots\)

(b) Compute the error \(\epsilon_t\) of the classifier \(h_t\): \(\epsilon_t = \text{sum of the weights of the data samples that } h_t \text{ classifies incorrectly, or more mathematically,}\)

\[
\epsilon_t = \sum_{i: h_t(x_i) \neq y_i} D_t(i)
\]

(c) Use the error to compute \(\alpha_t \in R:\)

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

\((\alpha_t\) represents the weight on each classifier.)

(d) Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is a normalization factor (chosen so that \(D_{t+1}\) will be a distribution, that is, sum to 1)

Output the final classifier to be a weighted majority vote of the \(T\) base classifiers:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]

Slogan: “\(T\) heads are better than 1.”

2. Important properties of Adaboost

- Integrates disparate classifiers together \((i.e.,\) combine classifiers that concentrate on different aspects of the problem or, in other words, put more weight to different data points)
- Theoretical bounds – adding a new classifier can’t hurt (in terms of training error)
- Easy to program: can use any weak learner; Doesn’t get stuck in local minima (in terms of minimizing training error)
- Sensitive to outliers, thus could overfit in theory, but not typical in practice.

1These notes were prepared in conjunction with Sourabh Niyogi. (Orig. date: Nov. 18, 2004; Last updated: Dec. 18, 2005)