
1

Learning FromQuery-Answers: A Scalable Approach to
Belief Updating and Parameter Learning

NICCOLÒ MENEGHETTI
OLIVER KENNEDY, University at Buffalo, USA
WOLFGANG GATTERBAUER, Northeastern University, USA

Tuple-independent and disjoint-independent probabilistic databases (TI- and DI-PDBs) represent uncertain
data in a factorized form as a product of independent random variables that represent either tuples (TI-PDBs) or
sets of tuples (DI-PDBs). When the user submits a query, the database derives the marginal probabilities of each
output-tuple, exploiting the underlying assumptions of statistical independence. While query processing in TI-
and DI-PDBs has been studied extensively, limited research has been dedicated to the problems of updating or
deriving the parameters from observations of query results. Addressing this problem is the main focus of this
paper. We first introduce Beta Probabilistic Databases (B-PDBs), a generalization of TI-PDBs designed to support
both (i) belief updating and (ii) parameter learning in a principled and scalable way. The key idea of B-PDBs is
to treat each parameter as a latent, Beta-distributed random variable. We show how this simple expedient
enables both belief updating and parameter learning in a principled way, without imposing any burden on
regular query processing. Building on B-PDBs, we then introduce Dirichlet Probabilistic Databases (D-PDBs), a
generalization of DI-PDBs with similar properties. We provide the following key contributions for both B- and
D-PDBs: (i) we study the complexity of performing Bayesian belief updates and devise efficient algorithms for
certain tractable classes of queries; (ii) we propose a soft-EM algorithm for computing maximum-likelihood
estimates of the parameters; (iii) we present an algorithm for efficiently computing conditional probabilities,
allowing us to efficiently implement B- and D-PDBs via a standard relational engine; and (iv) we support our
conclusions with extensive experimental results.
CCS Concepts: • Information systems→ Uncertainty; • Theory of computation → Incomplete, incon-
sistent, and uncertain databases; •Mathematics of computing→Maximum likelihood estimation; Bayesian
computation;

Additional Key Words and Phrases: Probabilistic Databases, uncertain data management, parameter learning,
Bayesian updates, maximum likelihood estimation
ACM Reference Format:
Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer. 2018. Learning From Query-Answers: A Scal-
able Approach to Belief Updating and Parameter Learning.ACM Trans. Datab. Syst. 1, 1, Article 1 (January 2018),
41 pages. https://doi.org/10.1145/3277503

1 INTRODUCTION
Uncertain data arises in numerous settings, including data exchange, ETL, approximate query
processing, and more. In the last decade, the challenge of posing queries over uncertain data
(data specified by a probability distribution) has received considerable attention by the database
Authors’ addresses: Niccolò Meneghetti, niccolom@buffalo.edu; Oliver Kennedy, University at Buffalo, 338 Davis Hall,
Buffalo, NY, 14260-2500, USA, okennedy@buffalo.edu; Wolfgang Gatterbauer, Northeastern University, 360 Huntington
Avenue, Boston, MA, 02115-5000, USA, wolfgang@ccis.neu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0362-5915/2018/1-ART1 $15.00
https://doi.org/10.1145/3277503

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3277503
https://doi.org/10.1145/3277503

1:2 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

PDB
Evidence Query transformation

Back propagation
Query
output

Direct feedback Indirect feedback

Evidence

Fig. 1. In most classical probabilistic databases (PDBs), users directly provide probabilities for data in the PDB
(“Direct Feedback”). In Beta- and Dirichlet-Probabilistic Databases, users provide probabilities for the outputs
of queries over the database (“Indirect Feedback”). The methods developed in this paper give a principled
approach for propagating this information back to the database and appropriately changing the probabilities.

community [2, 5, 7, 9, 19, 25, 32, 33, 39, 52, 55, 56], and querying uncertain data is relatively well
understood. However, deriving the probability distribution behind a probabilistic database can be
significantly harder [16, 17], particularly when facts about the data are noisy (“Ada probably works
for HP”), or indirect (“Ada works for a tech company in Boston”).

In this article we address the challenges of building a probabilistic database from a noisy, indirect
signal. We propose two newmodels: Beta-Probabilistic Databases (B-PDBs) andDirichlet-Probabilistic
Databases (D-PDBs) that extend existing models of probabilistic databases with a principled process
for updating the database’s probability distribution (“belief updating”), or for deriving it from
scratch (“parameter learning”). As illustrated in Figure 1, the information used to update or derive
either of the new models may be indirect, on the output of a query. Concretely, our models
can incorporate any information that can be expressed in terms of the probability of a Boolean
expression holding over the database and — as an instance of “reverse data management” [45]
— propagate this feedback back to the database. This information may also be noisy: The new
information may itself be sampled, as in a poll or a vote, or crowdsourced. Most importantly, both
new models are completely backwards compatible with existing, widely used models. B-PDBs
generalize the Tuple-Independent model [5, 9, 11, 21] for probabilistic databases (TI-PDBs), while
D-PDBs generalize both B-PDBs and the Disjoint-Independent model [2, 32] for probabilistic
databases (DI-PDBs, also sometimes called X-Tuples). This backwards compatibility allows us to
freely leverage query processing techniques developed for TI-PDBs and DI-PDBs, like probabilistic
relational algebra (pRA) [21], Monte Carlo simulations [7, 33, 38], anytime approximations [13, 20],
dissociations [8, 22, 23], lineage-based methods [26] and more. B- and D-PDBs enable a more
powerful form of pay-as-you-go feedback on query results [34, 60], as well as probabilistic forms
of in-database constraint programming [27, 37] and of virtualized experiments [15]. Above all else,
B- and D-PDBs provide a systematic way of training any finite probabilistic relation instance [58].

Example 1.1 (Running example). Consider a hypothetical data aggregator combining information
from a variety of sources like LinkedIn, Facebook, or Twitter, for example to make hiring decisions.
Based on a tweet, the aggregator is able to infer that Ada is employed in Boston, but does not learn
her employer. Given a table of employers E(name,emp) and locations L(emp,loc), an equivalent
assertion is given by the following existential query:

q1 = exists(select * from E natural join L where E.name='Ada' and L.loc='Boston')

This information could then, in principle, be propagated directly into the database. However, there
are at least two sources of uncertainty that could make this assertion unreliable: First, we may
not be certain that the assertion is correct, for example as a result of ambiguity in the tweet it
was extracted from. Secondly, the information extracted from this tweet may directly contradict
prior evidence. Both of our proposed models make it possible to account for both factors when
updating the underlying database: In the B-PDB (resp., D-PDB) model, each tuple (resp., x-tuple)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:3

Ep

name emp tid θ
Ada HP x1 .6
Ada IBM x2 .6
Bob HP x3 .5

(a) TI-PDB

E(a,b) before observing ¬(x1 ∨ x3)
name emp tid a b ⟨θ⟩ h [θ]
Ada HP x1 6 4 .6 −0.507
Ada IBM x2 18 12 .6 −1.014
Bob HP x3 2 2 .5 −0.125

after observing ¬(x1 ∨ x3)
name emp tid a b ⟨θ⟩ h [θ]
Ada HP x1 6 5 .54 −0.528
Ada IBM x2 18 12 .6 −1.014
Bob HP x3 2 3 .4 −0.235

(b) B-PDB

0.0
1.0
2.0
3.0
4.0

p [θ1]

0.0
1.0
2.0
3.0
4.0

p [θ2]

0.0 0.2 0.4 0.6 0.8 1.0
0.0
1.0
2.0
3.0
4.0

p [θ3]

(c) p[θi]

Fig. 2. Running example (a): A simple TI-PDB with three tuples. (b, c): A corresponding B-PDB, before (solid
red) and after (dashed green) observing the answer “no” to the query q5 = exists(select * from E where
emp=’HP’). Notice that while tuples x1 and x2 exhibit the same marginal probability, the confidence on the
estimate of P[x2] is higher than the confidence on the estimate of P[x1], as the differential entropy measured
on θ1 is larger than the differential entropy of θ2 (columns theta and h shown for convenience only).

in the probabilistic database has a true, independent probability (resp., probability distribution).
We know the tuples of the database, but only have an inaccurate estimate of their probabilities.
Our goal is to learn the true probability based on repeated samples taken from queries over that
database.

We initially focus exclusively on the Tuple-Independent model. In this model, a database is a
set of n tuples {x1, . . . ,xn}, annotated with independent probabilities {θ1, . . . ,θn}. It represents
a standard relational database whose internal state is uncertain; the set of its plausible states (its
“possible worlds”) consists of the power-set of {x1, . . . ,xn}. The probability of a possible worldw
is simply the probability of selecting its tuples independently: P[w] = ∏

xi ∈w θi ·
∏

x j<w (1 − θ j).
Given a Boolean query q, the probability of q being true is equal to the sum of the probabilities of
the possible worlds that satisfy q: P[q] = ∑

w |=q P[w].
Notice that our focus on independent input tuples (and later disjoint-independent tuples) does

not limit the generality of our approach. It is known (e.g., [22, 51, 58]) that any correlation between
probabilistic events can be captured by general Boolean functions over independent events only
(not just disjoint-independent events). Hence, any finite set of possible worlds may be encoded as a
view over a TI-PDB. For completeness, we present the full argument in appendix C.

Example 1.2 (Running example continued). Continuing example 1.1, we could use a TI-PDB to
encode noisy knowledge about employment histories, for example from a source like Facebook
(see Figure 2a). If we want to find out whether the person named Ada ever had an employer, we
run the following Boolean query over the probabilistic employer relation Ep.

q2 = exists(select * from Ep where name='Ada') (1)
The answer is expected to be true (“Ada had at least one employer in the past”) with probability
0.84 and false (“Ada never had a job”) with probability 0.16.1

Let’s now assume that there exists a TI-PDB D whose parameters are hidden, but that we would
like to recover. To do so, we have a limited ability to gather (noisy) evidence (denoted E) about
1The probabilities follow from 1 − [(1 − 0.6) · (1 − 0.6)] = 0.84. Also notice that we adopt here the Closed-World Assumption
(CWA) as is common with TI-PDBs: any missing tuple is assumed to have probability 0.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

Query
output 2) Parameter learning

1) Belief updates

Probabilities

Votes
p(t1)=0.7
p(t2)=0.9
p(t3)=0.3

t1
t2
t3

t1
t2
t3

t1
t2
t3

PDB
Query transformation

Back propagation

Fig. 3. Beta- and Dirichlet-Probabilistic Databases support both (1) Belief updates to merge new, sampled
observations with the prior PDB state, and (2) Parameter Learning to derive a PDB that would produce the
desired query probabilities.

D. We encode E as (i) a set of Boolean queries Q def
= {q1, . . . ,qk }, and (ii) a finite set of query-

answers E = ⋃
i Eqi sampled from P[qi], for each qi in Q. Note that this approach generalizes to

non-Boolean queries as well: A single non-boolean query with k possible results may be expanded
into a set of k Boolean queries, individually testing the existence of each possible result.

Example 1.3 (Deriving Q). Our approach is agnostic to how the set of boolean queries Q are
obtained for a given evidence set E. However, to create context for the remainder of our work, we
illustrate how Q would be derived in three potential applications of B-PDBs and D-PDBs: (i) Direct
Feedback, (ii) Query Feedback, and (iii) Probabilistic Data Exchange.

Direct Feedback. Mimicking classical probabilistic databases, we might learn from (potentially
noisy) direct evidence about tuples already in D. In this case, Q selects the specific tuples we have
evidence about. For example, given probabilities for tuples with tuple identifiers (TIDs) t1, . . . tk
from relation Ep, we would use: Q = {

exists(select * from Ep where tid=ti)
�� i ∈ [1,k] }.

Query Feedback. In a second usage pattern, the user first queries the database, identifies
potential errors in the result, and provides feedback about them. In this case, Q is defined to be
(the Boolean expansion of) the user’s query or queries.

Probabilistic Data Exchange. A third possibility is that we wish to learn from probabilities or
votes regarding source facts that do not appear directly as tuples in the database (as in example 1.1).
As in data exchange, we accomplish this by first defining the source facts in terms of a view over
the target database. Q is then defined by the resulting view queries.

We assume each sample is drawn independently from all the others, and we use E = ⋃
i Eqi to

denote the “evidence”, i.e. the whole set of samples. This article focuses mainly on two problems,
as illustrated in Figure 3.
(1) Belief updating: given an initial hypothesis consisting of estimates of the hidden param-

eters of D and our confidence in each estimate, we show how to refine the hypothesis by
incorporating the new evidence E.

(2) Parameter learning: we show how to derive a new TI-PDB (resp., DI-PDB) from scratch,
relying only on the given evidence.

Belief updating is useful when someone wants to improve an already reliable probabilistic
model, exploiting some new, previously unseen, evidence. For example, let’s assume we trust the
information stored in relation Ep, but we want to improve our knowledge about Ada’s work history.
In order to do so, we submit a query q3 “has Ada ever worked for IBM?”2 to 10 independent data
banks. If at least 7 of them answer “yes”, then we may want to increase parameter θ1 in Ep (whose
initial value is 0.6) to reflect this additional information. Clearly, the extent of the adjustment will
depend on how strong our initial confidence about the value of θ1 was. Belief updating is about
computing these adjustments to prior beliefs in a principled way.

2In SQL: q3 = exists(select * from E where name=’Ada’ and emp=’IBM’).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:5

Parameter learning is about using evidence or expert inputs to build a new probabilistic model
from scratch. In contrast to belief updating, we start with no prior and our aim is solely to find a
model consistent with the available evidence. For example: if we are told that the query

q4(emp) = select emp from E where name='Ada'

should return the answer {HP, IBM} (“Ada worked for both HP and IBM”) with relative frequency
0.32 (or some other answer with relative frequency 1−0.32 = 0.68), and should return the empty set
∅ (“Ada has not worked before”) with relative frequency 0.12 (or some other non-empty answer with
relative frequency 1−0.12 = 0.88), then our goal becomes to choose θ1 and θ2 so that the model (Ep)
exhibits the desired marginal probabilities for q. This is achieved either when (θ1,θ2) = (0.4, 0.8) or
when (θ1,θ2) = (0.8, 0.4)3.

In the context of parameter learning, we will consider the option of collapsing multiple query-
answers into a single update. For each update, we will assume a set of k distinct Boolean queries
(e.g., the expansion of a non-Boolean query) and that each query is evaluated on exactly s samples
of the ground truth database. We denote by τ = {τ1, . . . ,τk } the fraction of positive answers for
each Therefore, we model the evidence E as a mapping that associates each query to its observed
relative frequency of positive answers: E def

= ⟨{(q1,τ1), (q2,τ2), . . . , (qk ,τk)}, s⟩.
Example 1.4 (Running example continued). If we crawled the web and retrieved 25 LinkedIn

profiles that are all plausible, equally likely matches for the entity named Ada, and all of them but
4 report some unspecified work experience, then we can associate the relative frequency τ = 0.84
to query (1), and set s = 25. Evidence for other queries can be collected in a similar fashion.

The key idea behind B-PDBs is to model the parameters θi , i ∈ [n] as Beta-distributed latent
random variables. This simple expedient allows us to (i) model both our current estimate of a
probability and our confidence in a natural way, and (ii) to deploy a principled way to update those
estimates in the presence of new evidence. We illustrate with Figure 2b (first table) a simple B-PDB,
consisting of a single relation E(a,b), generalizing the TI-relation Ep we introduced in Figure 2a.
Notice that for each tuple xi the parameter θi has been replaced by two parameters, ai and bi . The
symbol θi is now used to identify a [0, 1]-valued random variable, whose probability density is
Beta-distributed:

p[θi] def
= θai−1

i · (1 − θi)bi−1 · B(ai ,bi)−1 (2)

Here B(·, ·) denotes the Beta function, which serves as a normalizing factor4. The three solid-red
plots on the right in Figure 2 depict the density functions p[θ] for each tuple in the B-PDB. An
intuitive way to understand Beta distributions is to think about their parameters a and b as votes.
Under this interpretation, the first row for x1 in the B-PDB represents a poll where the query “has
Ada ever worked for HP?” has received a1 = 6 positive answers and b1 = 4 negative ones. Similarly,
the second row for x2 can be seen as a poll where the query “has Ada ever worked for IBM?” has
received a2 = 18 positive votes and b2 = 12 negative ones. While the relative frequency of positive
answers is the same for both the polls (0.6 = 6

6+4 =
18

18+12), the second poll should be considered
more “informative”, as it involves more votes (30 vs. 10 votes). Consistently with this intuition, the
plots of p[θ1] and p[θ2] both have a peak at 0.6, but the former exhibits a higher entropy, while the
latter shows a stronger concentration around the expectation.

3Since 0.32 = 0.8 · 0.4 and 0.12 = (1 − 0.8)(1 − 0.4). Notice that q4 is not a Boolean query. Nonetheless, the example is well
defined: it is possible to write a Boolean query to verify whether the answer to q is {HP, IBM}, and another one to verify
whether the answer is ∅.
4Chapter 25 of [35] is a good introduction to Beta distributions.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

In B-PDBs, the marginal probability of a tuple xi (that we denote with P[xi]) is equal to the
expected value of the random variable θi , that we denote with ⟨θi ⟩p[θi]

P[xi] = ⟨θi ⟩p[θi] =
∫ 1

0
θi · p[θi] dθi (3)

=
ai

ai + bi
(4)

It is well known [35] that the integral in eq. (3) admits the closed-form given in eq. (4). It follows
that B-PDBs are indistinguishable from regular TI-PDBs when it comes to query processing: all
existing inference techniques, both exact and approximate, that have been proposed in the past for
TI-PDBs (e.g., [11, 20, 23, 38, 48, 50]) can be readily applied to B-PDBs. To do so, it is sufficient to
convert the B-PDB into a TI-PDB by computing the expectation ⟨θi ⟩p[θi] for each and every tuple
in the database, in constant time for each tuple. Therefore, B-PDBs are a conservative generalization
of TI-PDBs that add a principled way to update the parameters. Together with D-PDBs, they form
the main focus of this article. The first table of Figure 2b shows the tuples’ marginal probabilities
inside column ⟨θ⟩. This column is shown for readers’ convenience only; it is not explicitly stored in
a B-PDB. It is immediate to verify that the given B-PDB is equivalent, in terms of query processing,
to the relation Ep introduced in Figure 2a.

Beyond estimating tuples’ probabilities (and unlike standard TI-PDBs), B-PDBs can also evaluate
the confidence of such estimates. In the remainder of this article we adopt the differential entropy
h [θi] as a metric for the confidence of the B-PDB’s estimates of P[xi]5. By definition, the differential
entropy of θi is:

h [θi] def= −
∫ 1

0
p[θi] · ln(p[θi]) dθi

The above integral admits a well-known [18, 43] closed form6. In contrast to the standard entropy,
differential entropy h [θi] is defined between 0 and −∞. Intuitively, the smaller h [θi] is, the higher
is the confidence of the estimate of P[xi], with 0 denoting a uniform distribution and uncertainty
vanishing entirely at the limit of −∞. For the readers’ convenience, Figure 2b shows the differential
entropies in the column h [θ]7.
In the following sections, we will describe extensively how B-PDBs, and later how D-PDBs

support belief updates. We introduce the former case here with a simple example. The second table
in Figure 2b shows the effect of performing a belief update to incorporate the observation of a
single, negative answer to the Boolean query

q5 = exists(select * from E where emp='HP') .

Intuitively, the observation suggests that neither Ada nor Bob have worked in the past for HP. We
react to this new information by adding a negative vote to both the first and the third tuple in the
B-PDB. The adjusted probability densities of θ1 and θ3 are plotted on the right, in dashed green.
Notice that the update has a greater impact on p[θ3] than on p[θ1], consistent with the fact that our
confidence in θ1 is higher: h [θ1] < h [θ3]. In the general case, belief updates may involve thousands
of records, and affect the parameters of a B-PDB in a non-trivial way.

In the remainder of this article, we study (i) belief updates (Section 4) and (ii) parameter learning
(Section 5), first in the context of B-PDBs, and later extending our approach to the more general class
of D-PDBs (Section 7); we show how to perform both when we observe answers to an arbitrary set
5We use differential entropy and not standard deviation because P[xi] is a probability.
6The closed solution is h [θi] = ln(B(ai , bi)) − [(ai − 1) · (ψ (ai) −ψ (ai + bi))] − [(bi − 1) · (ψ (bi) −ψ (ai + bi)), where
ψ (·) denotes the Digamma function.
7As before, this information is given for readers’ convenience only and does not need to be stored inside the B-PDB.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:7

of conjunctive, self-join-free queries, and show efficient implementations for safe queries (Section 6).
While the problem of parameter learning has been studied before, to the best of our knowledge the
preliminary work on B-PDBs [46] was the first attempt to enable bayesian updates on probabilistic
databases. This article extends that effort with a new model (D-PDBs) that generalizes the DI-PDB
model for probabilistic databases; We also use the longer format to provide additional examples
and experiments for clarity.

Our contributions include:
(1) Bayesian belief updates. Given a B-PDB and a set of queries’ results, we show how

to incorporate the new evidence into the B-PDB in a Bayesian fashion. We analyze the
complexity of computing such Bayesian updates and provide efficient algorithms for tractable
classes of queries.

(2) Parameter learning. We devise a soft-expectation-maximization algorithm for computing
the maximum likelihood estimate of the parameters {θ1, . . . ,θn} w.r.t. some given queries’
results.

(3) Conditional probabilities.We present an algorithm for efficiently computing the probabil-
ity of a query result conditioned on observed evidence.

(4) Generalization to DI-PDBs.We introduce D-PDBs, an extension of B-PDBs that generalizes
the DI-PDB model of probabilistic databases with support for bayesian belief updates and
parameter learning.

(5) Benchmarks. We show how the algorithms we propose can be easily embedded into a
standard relational engine, so to exploit its optimization features. We test our framework
against real (YAGO2, IPUMS) and synthetic (TCP-H) data sets, annotated with probabilities.

Relative to the preliminary work [46], item 4 is entirely new material.

2 BACKGROUND
In this section, we review some background, notions, and contextualize B-PDBs w.r.t. previous
work on probabilistic databases. For the sake of conciseness, we use the following notation: given a
real number z we denote by z its complement (1 − z). When φ is a Boolean expression, φ denotes,
as usual, its negation ¬φ.

2.1 Relational Databases
A relational database consists of a finite collection of relations {R, S,T , . . .}, over a finite set of n
tuples {x1, . . . ,xn}. A conjunctive query q is a first-order formula in prenex normal form, respecting
the following restrictions: (i) each predicate symbol represents a relation, (ii) all variables are either
existentially quantified or quantifier-free, (iii) the formula is negation-free and (iv) disjunction-free.
We use capital letters to denote first-order logic variables. For example:

q(Z) = ∃X ∃Y E(X ,Y) ∧ L(X ,Z) (5)

We denote by hvar(q) the set of free (“head-”) variables of q, and by evar(q) the set of existentially
quantified variables. A conjunctive query is said to be self-join-free iff every relation name appears
at most once; it is said to be Boolean iff there are no free variables. Given a database instance D,
every non-Boolean conjunctive query can be seen as a collection of Boolean queries, one for each
possible grounding of the free variables to values in their active domain [1]. In the remainder of
this paper we assume queries are always conjunctive and self-join-free. With limited abuse of
notation we will denote non-Boolean queries as vectors (q) and Boolean ones as an indexed vectors’
components (qj) that range over the groundings of q. Given a database instance D and a Boolean

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

query q, we denote by ΦD(q) the lineage [4, 6, 26] of q, a propositional Boolean formula over the
alphabet {x1, . . . ,xn}, built by the following recursive rules:
• ΦD(q) = ΦD(q′1) ∨ . . . ∨ ΦD(q′k) when q = ∃X q′, and hvar(q′) = {X } and {q′1, . . . ,q′k } are
the groundings of q′ obtained by replacing X with one of the constants in its active domain
• ΦD(q) = ΦD(q′) ∧ ΦD(q′′) when q = q′ ∧ q′′
• ΦD(q) = xi , when q is a ground atom of tuple xi 8

A lineage expression φ is said to be read-once iff each literal appears at most once. It is straight-
forward to extend the definition of lineage to query answers: if φ is the lineage of q then the answer
⊤ has lineage φ, while the answer ⊥ has lineage φ. In the following we often identify Boolean
queries with their lineage. For the sake of compactness we sometimes omit the ∧ symbol in lineage
expressions (therefore, x1x2 is an abbreviation for x1 ∧ x2) and use the common Datalog notation
to express conjunctive queries; for example: q(Z) :−E(X ,Y),L(X ,Z).
Given a variable X and a query q, we denote by at(X , q) the set of q’s atoms where X appears.

Variables that appear in every atom of q are called root variables. We say that a query q is hierarchical
iff, for any two existential variables (X ,Y), either at(X , q) ⊆ at(Y , q) or at(Y , q) ⊆ at(X , q) or
at(X , q) ∩ at(Y , q) = ∅ holds.

Example 2.1 (continued). The query q from Equation (5) is hierarchical; the set of head-variables
hvar(q) contains only Z , while evar(q) consists of {X ,Y }. X is a root variable, but Y is not. Let D
be a database instance where the relations E and L are defined as follows:

E

name emp tid
Ada HP x1
Ada IBM x2
Bob HP x3

L

name lng tid
Ada eng x4
Bob eng x5
Bob ita x6

Within D the active domain of Z is {eng, ita}. Therefore query q can be seen as a collection of two
Boolean queries:

q1 :−E(X ,Y),L(X , eng). q2 :−E(X ,Y),L(X , ita).
Their lineage expressions are:

ΦD(q1) = x1x4 ∨ x2x4 ∨ x3x5 ΦD(q2) = x3x6

The lineage of q2 is read-once, while the lineage of q1 is not, as the literal x4 is used twice (we will
later show how to obtain a read-once expression for q1).

We define query plans as sentences respecting the following grammar:
P ::= R | πX (P ′) | σ (P ′) | ▷◁ [P ′, P ′′, . . .]

where R denotes an arbitrary relation name and projections (π), selections (σ) and natural joins
(▷◁) have the usual semantics. It is straightforward to extend the notation we use for queries to
query plans: if P denotes a plan, then hvar(P) is the set of attributes in its output schema, while
evar(P) denotes the set of attributes that are projected-away. In the following we write π−X (P)
as short form for πhvar(P)\{X }(P). A plan P is Boolean when hvar(P) is empty. Given a database
instance D, a non-Boolean plan P can be seen as a collection of Boolean plans {P1, . . . , Pk }, one
for each of its output-tuples. Each plan in {P1, . . . , Pk } is obtained from P by substituting its head
variables by the constants of the respective output-tuple. A query plan always corresponds to
exactly one query, but one query may have multiple distinct query plans. Two query plans are
logically equivalent if they answer the same query. Given a database instance D and a Boolean
8In this paper “atoms” are atomic first-order logic formulas. For example, the query from Equation (5) contains two atoms,
E(X , Y) and L(X , Y). An atom is ground when it has no variables: E(’Ada’, ’HP’).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:9

plan P we denote by ΦD(P) the lineage of P , a Boolean expression built according to the following
recursive rules:
• Atom: If P = R then ΦD(P) = x where x identifies the grounded tuple in R.
• Join: If P = P ′ ▷◁ P ′′ then ΦD(P) = ΦD(P ′) ∧ ΦD(P ′′).
• Select/Project: If P = π∅ (σ (P ′)) then ΦD(P) = ΦD(P ′1) ∨ ΦD(P ′2) ∨ . . . ∨ ΦD(P ′k) assuming
that {P ′1, P ′2, . . . , P ′k } are the Boolean plans corresponding to the output-tuples of σ (P ′).

If plan P answers query q, then ΦD(P) is logically equivalent to ΦD(q), for every D.

Example 2.2 (continued). Both the following query plans

P ′ = π−X (π−Y (E) ▷◁ L) P ′′ = π−XY (E ▷◁ L)
compute the correct answer for query q from Equation (5), but they produce different lineage
expressions:

P ′
lng ΦD
eng ((x1 ∨ x2) x4) ∨ x3x5
ita x3x6

P ′′
lng ΦD
eng x1x4 ∨ x2x4 ∨ x3x5
ita x3x6

Notice that all the lineage expressions produced by P ′ are read-once and logically equivalent to the
corresponding lineage expressions of q and P ′′.

2.2 Tuple-independent Probabilistic Databases
A tuple-independent probabilistic database (TI-PDB) is a regular relational database where each
tuple represents an independent probabilistic event. Each tuple xi is associated with a Bernoulli-
distributed Boolean random variable, expected to be true with probability θi and false with proba-
bility θi . It represents the belief that tuple xi belongs to the database. In slight abuse of notation we
use xi to denote both a tuple and its associated Boolean random variable; we use the vector notation
θ to denote the whole set of parameters {θ1, . . . ,θn}. Unlike deterministic databases, the state of a
TI-PDB is uncertain: the set of its plausible states (its “possible worlds”) ranges over the power-set
of its tuples. Hence, a possible world consists of a subset of tuples, generated by including each
tuple xi with probability θi . A TI-PDB D defines a probability measure P[·] over possible worlds
and Boolean queries. Ifw is a possible world, we denote byw[i] a function that returns 1 when tuple
xi belongs tow , and 0 otherwise. The probability ofw is P[w |D] def=∏

i :w [i]=1 θi ·
∏

i :w [i]=0 θi , the
probability of drawing its tuples independently; if q is a Boolean query, its marginal probability is
the sum of all possible worlds where q is satisfied: P[q |D] def= ∑

w |=q P[w]. If φ is a lineage expression,
we denote by P[φ |D] the probability of φ being satisfied, given that each literal xi is true with
probability θi and false otherwise. Notice that P[q |D] = P[φ |D] when φ = ΦD(q).

TI-PDBs are often associated with Probabilistic Relational Algebra (pRA) [21], a generalization of
positive relational algebra that consists of three probabilistic operators: independent projection (πp),
independent join (▷◁p) and selection (σ). These operators differ from standard relational algebra in
the fact that they associate a score to each output tuple. Let P be the Boolean plan associated with
an arbitrary output tuple; its score is computed according to the following recursive rules:
• If P identifies a tuple xi then score(P) = θi
• If P = P ′ ▷◁p P ′′ then score(P) = score(P ′) · score(P ′′)
• If P = σ (P ′) then score(P) = score(P ′)
• If P = πp

∅ (P ′) then
score(P) = 1 − [(1 − score(P ′1)) · . . . · (1 − score(P ′k))]

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

assuming that {P ′1, . . . , P ′k } are the plans corresponding to the output-tuples of P ′. For the
sake of conciseness we adopt the independent-or (⊗) operator:

score(P) def= score(P ′1) ⊗ . . . ⊗ score(P ′k)
def
=

⊗
i ∈{1, ...,k }

[
score(P ′i)

]
Let’s assume P ′ and P ′′ are two plans answering the Boolean queries q′ and q′′, respectively, and
P[q′ |D] = score(P ′) and P[q′′ |D] = score(P ′′). Notice that P[q′ ∧ q′′ |D] = score(P ′ ▷◁p P ′′) holds,
but only if q′ and q′′ represent independent events. Similar considerations apply to πp: if P ′ and
P ′′ are the output-tuples of the plan P , then the equivalence P[q′ ∨ q′′ |D] = score(πp

∅(P)) holds
only if q′ and q′′ represent independent events. The probabilistic independence between q′ and
q′′ is guaranteed when their lineages do not share any literal. We can conclude that an arbitrary
pRA plan P computes the correct marginal probabilities when all its intermediate results consist of
pairwise independent events. A plan respecting such property is said to be “safe” and its lineage
expressions are guaranteed to be read-once. The following Lemma summarizes a variety of results
about probabilistic query processing over TI-PDBs

Lemma 2.3. [9, 11, 24, 48] Let q be a self-join-free conjunctive query consisting of k Boolean queries
{q1, . . . ,qk }. The following statements are equivalent:

(1) Query q is hierarchical.
(2) For any D, query q admits a safe pRA plan.
(3) For any D and qj ∈ q, the lineage of qj admits a read-once representation.
(4) For any D and qj ∈ q, computing P[qj |D] takes polynomial time in the size of D.

Deciding any (all) of the above properties (finding a certificate, if any exists) takes polynomial time in
the size of q. If such test fails (i.e. no certificate exists), then anwering q is #P-hard.

Example 2.4 (continued). We can turn the relations E and L into a TI-PDB by annotating each
tuple with a probability, that we store in a dedicated column named θ .

Ep

name emp tid θ
Ada HP x1 0.6
Ada IBM x2 0.6
Bob HP x3 0.5

Lp

name lng tid θ
Ada eng x4 0.4
Bob eng x5 0.2
Bob ita x6 0.6

We can rewrite the plans P ′ and P ′′ in terms of pRA:

P ′ = πp
−X (π

p
−Y (Ep) ▷◁p Lp) P ′′ = πp

−XY (Ep ▷◁p Lp) (6)

They both produce the same output-tuples, but different scores:
P ′

lng score
eng ((θ1 ⊗ θ2) θ4) ⊗ θ3θ5 = 0.4024
ita θ3θ6 = 0.3

P ′′
lng score
eng θ1θ4 ⊗ θ2θ4 ⊗ θ3θ5 = 0.48016
ita θ3θ6 = 0.3

Notice that plan P ′ is safe, while P ′′ is not: the correct value of P[q1 |D] is 0.4024, it is not 0.48016.

In conclusion, pRA is guaranteed to be sound whenever we evaluate a hierarchical query. Dalvi
and Suciu [9] developed a well-known algorithm to identify safe plans for hierarchical queries.
Other techniques, like [7, 20, 33, 38], must be used to answer non-hierarchical queries, or more
general classes of query (e.g., Conjunctive queries with Inequalities [49]) Note that, although our
focus is on hierarchical queries in this article, our approach may be easily adapted to any scheme
capable of efficiently computing marginal and conditional probabilities.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:11

3 BETA PROBABILISTIC DATABASES
In this section we recap Beta probabilistic databases (B-PDBs) from [46]. B-PDBs are a generalization
of TI-PDBs based on the idea of imposing a prior distribution over the parameters θ . In the resulting
model, each parameter θi becomes an independent random variable, whose probability density
function follows a Beta distribution Beta(ai ,bi) determined by two hyper-parameters, ai and bi .
We use a and b to denote the corresponding n-vectors of hyper-parameters, and H def

= (a, b) to
denote a B-PDB instance (the relational structure ofH is assumed to be fixed and, for the sake of
conciseness, it is never mentioned explicitly). Then the probability density functions are:

p[θi |H] def
= Be(ai ,bi) (7)

p[θ |H] def
=

n∏
i=1

p[θi |H], (8)

where Be(a,b) denotes the probability density function of a Beta distribution:

Be(a,b) def
= θa−1 · θb−1 · B(a,b)−1

In terms of graphical models, one can see a B-PDB as a collection ofn independent Boolean variables,
distributed according to n independent Beta-Bernoulli compound distributions:

θi ∼ Beta(ai ,bi) xi ∼ Bernoulli(θi) (9)

Given an arbitrary function f (θ) and a distribution p[θ] we denote by ⟨f ⟩p[θ] the expected value of
f , assuming θ is sampled from p[θ]. Just like TI-PDBs, B-PDBs define a probability measure over
possible worlds and lineage formulas:

P[xi |H] def
=

∫ 1

0
θi · Be(ai ,bi) dθi (10)

P[w |H] def
=

n∏
i=1
P[xi |H]w [i] · P[xi |H]

w [i]
(11)

P[φ |H] def
=

∑
w : w |=φ

P[w |H] (12)

Equations 10, 11 and 12 denote, respectively, the probability of a literal, the probability of a possible
world, and the probability of a Boolean query having lineage φ. Notice that φ may also represent the
lineage of any one possible answer to a non-Boolean query. For example, if we submit a non-Boolean
query q consisting of three Boolean queries [φ1,φ2,φ3], the probability of observing the answer
[⊥,⊤,⊥] is P[φ1φ2φ3 |H].

In practical terms, B-PDBs differ from TI-PDBs in that each tuple is annotated with two R+-valued
parameters, rather than with a single probability measure (compare, for example, the relation E(a,b)

in Figure 2b with the probabilistic relation Ep discussed in Example 2.4). Notice that the marginal
probability of xi can be computed as [35]

P[xi |H] =
∫ 1

0
θi · Be(ai ,bi) dθi = ⟨θi ⟩H = ai

ai+bi
(13)

From Equation (13) it follows immediately that the vector ⟨θ⟩H of expected tuple probabilities under
H represents the parameters of a TI-PDB that behave identically to the B-PDBH when it comes
to query processing. In other words, the mapping H → ⟨θ⟩H allows us to immediately re-use
all the standard query processing techniques developed for TI-PDBs, like pRA [21], Monte Carlo

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

simulations [7, 33, 38], anytime approximations [13, 20], dissociations [8, 22, 23], lineage-based
methods [26] and many others.

Given two queries with lineage φ and φ ′, we denote by P[φ |φ ′,H] the probability of observing φ
being true in a possible world ofH that already satisfies φ ′:

P[φ |φ ′,H] def= P[φ∧φ ′ |H]P[φ ′ |H] (14)

We denote by p[θ |φ,H] the posterior probability density function of θ w.r.t. φ:

p[θ |φ,H] def= p[θ ,φ |H]
P[φ |H] =

P[φ |θ] · p[θ |H]
P[φ |H] (15)

Notice that P[φ |θ] represents the probability of observing φ being satisfied by a TI-PDB with
parameters θ .

3.1 Modeling Independent Observations fromH
The model discussed so far assumes that query-answers are delivered in a deterministic fashion: if
a user states that the answer to query q (with lineage φ) should be ⊤, then the posterior probability
p[θ |φ,H] is well defined. The same applies to the case when the answer is negative (⊥), and the
resulting posterior is p[θ |¬φ,H]. But what if the user states that q is true with probability 0.8?
We now lay the groundwork for handling this very special case, that is of great importance in the
context of maximum likelihood estimation. Before discussing the details, we just point out that
some special handling is needed, as processing ten independent deterministic query-answers, say
eight yeses and two noes, is not equivalent to processing ten non-deterministic answers with 0.8
bias. We propose the following solution: whenever a user states that q is true with probability 0.8
we pretend that she is reporting the results of a hidden poll with deterministic answers, where
each answer is independent from the others and a fraction of 0.8 of the answers were positive. We
follow a similar approach when a user delivers non-deterministic feedback about multiple queries
(for example: “q1 should be true with probability 0.32, but q2 should be true with probability 0.88”).
In such case we assume the user is reporting the results of two independent hidden polls. The
discussion that follows formalizes this simple intuition.
Given a B-PDB H and a positive integer s , we denote by H s the distribution obtained by

replicating the model ofH exactly s times. In other words,H s represents the distribution of a set
of s possible worlds drawn independently fromH . Figure 4 depicts modelH s using plate notation
(Figure 4b), and compares it with the model induced by TI-DBs (Figure 4a). Within a modelH s ,
we denote by θℓ,i and xℓ,i the pairs of random variables associated with the i-th tuple of the ℓ-th
possible world. Therefore

θℓ,i ∼ Beta(ai ,bi) xℓ,i ∼ Bernoulli(θℓ,i)

We denote by x(·,i) the s-vector (x1,i , . . . ,xs,i), by x(ℓ, ·) the n-vector (xℓ,1, . . . ,xℓ,n) and by x(·, ·)
the s-by-n matrix containing all the Boolean random variables of the model. We adopt similar
conventions for defining the semantics of θ(·,i), θ(ℓ, ·) and θ(·, ·). Given an integer t such that 0 ≤ t ≤ s ,
we denote by P[φt |H s] the probability of observing a set of s independent possible worlds fromH
among which φ is satisfied exactly t times:

P[φt |H s] def=
(
s

t

)
· P[φ |H]t · P[φ |H]s−t (16)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:13

The posterior probability density of θ(·, ·) w.r.t.H s and evidence φt may be rewritten as:

p[θ(·, ·) |φt ,H s] = P[φ
t |θ(·, ·)] · p[θ(·, ·) |H s]
P[φt |H s]

=

(s
t

) ∏t
ℓ=1 P[φ |θ(ℓ, ·)] ·

∏s
ℓ=t+1 P[φ |θ(ℓ, ·)] ·

∏s
ℓ=1 p[θ(ℓ, ·) |H]

P[φt |H s]
Notice that the above formula generalizes Equation (15). Given a positive integer k , we denote by
H s,k the probability distribution obtained by replicatingH s exactly k times. Equivalently,H s,k

represents the distribution of a set of s · k possible worlds of the database sampled independently
from H . We extend our notation accordingly, denoting by x j, ℓ,i and θ j, ℓ,i the random variables
associated with the (js + ℓ)-th possible world. Recall that we previously defined evidence as a set of
queries associated with responses: E def

= ⟨{(q1,τ1), (q2,τ2), . . . , (qk ,τk)}, s⟩. Observe that the set of
possible tuples in D is fixed, and consequently that the lineage of any query result is also fixed.
Hence, we can model evidence instead by a set of k distinct Boolean expressions {φ1, . . . ,φk },
where φi = Φ(qi), and k integers {t1, . . . , tk } between 0 and s , where ti = τi · s . We abuse notation
and denote by E = {φt1

1 , . . . ,φ
tk
k } the event of observing each φ j in {φ1, . . . ,φk } being satisfied

exactly tj over the s possible worlds {x(j,1, ·), . . . ,x(j,s, ·)}. Its likelihood is

P[E|H s,k] =
k∏
j=1
P[φtjj |H s] (17)

The posterior probability density of θ(·, ·, ·) w.r.t.H s,k and evidence E = {φt1
1 , . . . ,φ

tk
k } is

p[θ(·, ·, ·) |E,H s,k] def=
k∏
j=1

p[θ(j, ·, ·) |φtjj ,H s]

Due to the tight coupling of boolean queries and their lineage formulas, moving forward we will
use φ interchangeably to refer to both.
Example 3.1. Let’s assume we have a B-PDBH with two tuples, x1 and x2, and k = 2 queries

with lineage: φ1 = x1 ∧ x2 and φ2 = x1 ∨ x2. Then:
• The probability of x1 (resp x2) conditioned onH is the expected value of its parameter
P[x1 |H] = ⟨θ1⟩H P[x2 |H] = ⟨θ2⟩H
• The probability of φ1 (resp., φ2) based on the probability of its parameters.
P[φ1 |H] = ⟨θ1⟩H · ⟨θ2⟩H P[φ2 |H] = ⟨θ1⟩H ⊗ ⟨θ2⟩H
• φ1 subsumes φ2, so:
P[φ1 ∧ φ2 |H] = ⟨θ1⟩H · ⟨θ2⟩H
• Also conditioning on φ2 (unsurprisingly) means normalizing over cases where φ2 is true.
P[φ1 |φ2,H] = (⟨θ1⟩H · ⟨θ2⟩H) · (⟨θ1⟩H ⊗ ⟨θ2⟩H)−1

• Evaluating φ1 on exactly two samples ofH , φ1 will be true exactly once if it is true in the
first sample and false in the second, or visa versa.
P[φ1

1 |H 2] = 2 · (⟨θ1⟩H · ⟨θ2⟩H) · (⟨θ1⟩H ⊗ ⟨θ2⟩H)
• Evaluating φ1 and φ2 on two independent samples (one sample per query) creates two
independent events. Note the difference from P[φ1 ∧ φ2 |H]
P[φ1

1,φ
1
2 |H 1,2] = (⟨θ1⟩H · ⟨θ2⟩H) · (⟨θ1⟩H ⊗ ⟨θ2⟩H)

From Equation (13) it is straightforward to derive the following Lemma:

Lemma 3.2. For any arbitrary evidence E = {φt1
1 , . . . ,φ

tk
k } the likelihood function P[E|H s,k]

respects the following properties:

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

φxθ φ

n
s

(a)

φ jxθ

b

a

φ

n
s

(b)

Fig. 4. Comparison between a regular TI-PDB (a) and a B-PDB (b) when the evidence is observed against
a single query φ (hence k = 1), using plate notation. TI-PDBs associate each tuple i ∈ [n] with a single
Boolean, Bernoulli-distributed random variable xi , whose probability mass function depends on a single
parameter θi . In contrast, B-PDBs model θi not as a parameter but as a random variable that is [0, 1]-valued
and Beta-distributed with hyper-parameters (ai ,bi). In other words, B-PDBs associate each tuple with two
random variables: θi and xi . For both TI-PDBs and B-PDBs the evidence consists of observed query answers,
that here are modeled by the observable variable φ.

(1) IfHa andHb are two B-PDBs such that ⟨θ⟩Ha = ⟨θ⟩Hb then P[E|Ha] = P[E|Hb].
(2) Let H be a B-PDB and D a TI-PDB with parameters θ ∗: if θ ∗ = ⟨θ⟩H then P[E|H s,k] =
P[E|Ds,k], where Ds,k denotes the distribution obtained by drawing s · k independent samples
from D.

Since modelH s,k generalizesH (asH = H 1,1), in the following we will often use the former as
a placeholder for the latter. The same applies to the associated notations (θ(·, ·, ·), φ

tj
j). The reader

should nonetheless keep in mind that updatingH s,k once is not equivalent to updatingH for s · k
times.
The next two sections are dedicated to two specific operations supported by B-PDBs, that

involve the computation of the posterior p[θ(·, ·, ·) |E,H s,k]: belief updating and maximum likelihood
estimation. We introduce their formal definition here:

Definition 3.3 (Belief updating). Given a B-PDBH and an evidence event E = {φt1
1 , . . . ,φ

tk
k }, belief

updating is the process of identifying the B-PDB Ĥ that minimizes the relative entropy between
the posterior p[θ(·, ·, ·) |E,H s,k] and the new prior p[θ(·, ·, ·) |Ĥ s,k]. Belief updating is discussed in
Section 4.

As we will see, new evidence can create dependencies that can not be represented with a B-PDB.
We are looking for an new B-PDB whose implied possible worlds are closest the exact posterior.

Definition 3.4 (Maximum likelihood estimation). Given some evidence E = {φt1
1 , . . . ,φ

tk
k }, maxi-

mum likelihood estimation is the problem of identifying a local maximum of the likelihood function
P[E|H s,k]. Maximum likelihood estimation is discussed in Section 5.
Note that this likelihood is unaffected if we scale the hyper-parameter vectors (a, b). That is,

for any vector µ of positive reals, P[E|(a, b)] = P[E|(µaT , µbT)]. Hence the output of maximum
likelihood estimation is a TI-PDB given by the probability vector θ , and not the supporting hyper-
parameters. Rather, the hyper-parameters fill a role analogous to temperature in simulated annealing,
stabilizing probabilities as they are supported by more evidence.

4 BELIEF UPDATING
The goal of belief updating is to adjust the parameters a and b as to incorporate some new, previously
unseen, evidence. Following the notation introduced in the previous section, we begin with a simple

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:15

case of belief updates where the evidence consists of a deterministic query-answer (s = 1) regarding
a single boolean query (k = 1). We then parallelize this approach in two dimensions: We allow a
single belief update to simultaneously learn from noisy feedback (s > 1) about multiple Boolean
queries (k > 1). Specifically, ifH denotes the current state of our B-PDB and if E = {φt1

1 , . . . ,φ
tk
k }

is the new evidence we observe, our goal is to identify a new state Ĥ def
= (â, b̂) that minimizes the

relative entropy between p[θ(·, ·, ·) |E,H s,k] and p[θ(·, ·, ·) |Ĥ].

4.1 Simple case: s = k = 1
When s = k = 1 holds and E = {φ}, Ĥ is supposed to minimize the relative entropy between the
exact posterior distribution p[θ |φ,H] and the new state of the database p[θ |Ĥ]. Since every tuple
of Ĥ is independent from the others, it is sufficient to minimize the relative entropy between the
marginal distributions p[θi |φ,H] and p[θi |Ĥ] for each and every tuple. To accomplish this, we
need to first derive the value of the integral p[θi |φ,H] =

∫ 1
0 ..

∫ 1
0 p[θ |φ,H]dθ1..dθi−1dθi+1..dθn .

The following theorem does so.

Theorem 4.1. The marginal posterior probability of random variable θi , given hypothesisH and
evidence E = {φ}, can be computed as follows:

p[θi |φ,H] = P[xi |φ,H] · Be(ai + 1,bi) + P[xi |φ,H] · Be(ai ,bi + 1)
Proof. The proof is given in Appendix B. □

Theorem 4.1 states that p[θi |φ,H] is a mixture of Beta distributions. It is well known that
the Beta distribution is the conjugate prior of the Bernoulli distribution: if θi ∼ Beta(ai ,bi) and
xi ∼ Bernoulli(θi) then the posterior of θi is Be(ai + 1,bi) when xi is observed to be true, and
Be(ai ,bi + 1) if xi is observed to be false. Within a B-PDB we can exploit such property whenever
we can infer the value of some random variable xi from the evidence; this is formalized by the
following Corollary:

Corollary 4.2. In a B-PDBH the marginal posterior of θi respects the following property:

p[θi |φ,H] =
{Be(ai + 1,bi) if and only if φ |= xi

Be(ai ,bi + 1) if and only if φ |= xi

Theorem 4.1 suggests a very intuitive interpretation of the marginal posterior p[θi |φ,H]: it
can be seen as a random process in which we first make a guess about the value taken by xi in
the evidence and then we select the appropriate conjugate prior. Notice that the complexity of
computing p[θi |φ,H] depends on the complexity of computing conditional probabilities in the
form P[x |φ,H]. This problem is discussed extensively in Section 6; for the moment we just observe
that it is #P-hard in the general case.

Now that we know how to compute the marginal posterior p[θi |φ,H], we can move our attention
to the problem of computing an update H → Ĥ that minimizes the relative entropy between
p[θi |φ,H] and the i-th priorp[θi |Ĥ] def= Be(âi , b̂i). We denote suchmeasure, also known asKullback-
Leibler divergence, with KLdivi :

KLdivi =
∫ 1

0
p[θi |φ,H] · ln

(
p[θi |φ,H]
p[θi |Ĥ]

)
dθi

Notice that p[θi |Ĥ] belongs to the exponential family, and its sufficient statistics are lnθi and lnθi .
Therefore, if we want to minimize the relative entropy KLdiv we have to choose (âi , b̂i) so that

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

the expected value of (lnθi , lnθ i) w.r.t. P[θi |Ĥ] matches the expected value of the same statistics
computed w.r.t. probability mass function p[θ |φ,H]. This well-known [31] criterion is formalized
in the following definition and justified in Prop. 4.49:

Definition 4.3. We denote by bfit(ai ,bi ,φ) the pair of parameters (â∗i , b̂∗i) satisfying the following
two equations: {∫ 1

0 Be(â∗i , b̂∗i) lnθi dθi =
∫ 1

0 p[θi |φ,H] lnθi dθi∫ 1
0 Be(â∗i , b̂∗i) lnθi dθi =

∫ 1
0 p[θi |φ,H] lnθi dθi

(18)

or, in terms of expectations: {
⟨lnθi ⟩Be(â∗i ,b̂∗i) = ⟨lnθi ⟩p[θi |φ,H]
⟨lnθ i ⟩Be(â∗i ,b̂∗i) = ⟨lnθ i ⟩p[θi |φ,H]

(19)

Proposition 4.4. When (âi , b̂i) = (â∗i , b̂∗i) = bfit(ai ,bi ,φ), the relative entropy between the poste-
rior p[θi |φ,H] and the Beta distribution p[θi |Ĥ] is minimized.

Proof. The relative entropy between p[θi |φ,H] and p[θi |Ĥ] can be expressed as follows:

KLdivi =
∫ 1

0
p[θi |φ,H] · ln

(
p[θi |φ,H]
p[θi |Ĥ]

)
dθi

= h [p[θi |φ,H]] −
∫ 1

0
p[θi |φ,H] · ln

(
p[θi |Ĥ]

)
dθi

= h [p[θi |φ,H]] + ln(B(âi , b̂i)) −
∫ 1

0
p[θi |φ,H] · ln

(
θ âi−1
i · θi

b̂i−1
)
dθi

= h [p[θi |φ,H]] + ln(B(âi , b̂i)) −
∫ 1

0
p[θi |φ,H] · (âi − 1) · lnθi dθi

−
∫ 1

0
p[θi |φ,H] · (b̂i − 1) · lnθi dθi

= h [p[θi |φ,H]] + ln(B(âi , b̂i)) − (âi − 1) · ⟨lnθi ⟩p[θi |φ,H] − (b̂i − 1) · ⟨lnθi ⟩p[θi |φ,H]
The gradient of KLdivi w.r.t. (âi , b̂i) is:

∇KLdivi =

∂KLdivi
∂âi

∂KLdivi
∂b̂i

 =

[∂B(âi ,b̂i)∂âi

· B(âi , b̂i)−1] − ⟨lnθi ⟩p[θi |φ,H]

[∂B(âi ,b̂i)
∂b̂i

· B(âi , b̂i)−1] − ⟨lnθi ⟩p[θi |φ,H]


=


[ψ (âi) −ψ (âi + b̂i)] − ⟨lnθi ⟩p[θi |φ,H]

[ψ (b̂i) −ψ (âi + b̂i)] − ⟨lnθi ⟩p[θi |φ,H]


=


⟨lnθi ⟩p[θi | Ĥ] − ⟨lnθi ⟩p[θi |φ,H]

⟨lnθi ⟩p[θi | Ĥ] − ⟨lnθi ⟩p[θi |φ,H]


9A similar, more general result is proved in [31] for all the distributions in the exponential family.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:17

The Hessian of KLdivi w.r.t. (âi , b̂i) is positive semidefinite:

Hess[KLdivi] = ∇∇KLdivi

ψ ′(âi) −ψ ′(âi + b̂i) −ψ ′(âi + b̂i)

−ψ ′(âi + b̂i) ψ ′(b̂i) −ψ ′(âi + b̂i)


Whereψ ′(·) denotes the Trigamma function. The thesis follows immediately. □

Finally, we observe that the relative entropy between p[θ |φ,H] and p[θ |Ĥ], that we denote with
KLdiv, is minimized when Ĥ = argmin

∑n
i=1 KL

div
i :

KLdiv =
∫

p[θ |φ,H] · ln
(
p[θ |φ,H]
p[θ |Ĥ]

)
dθ

= h [p[θ |φ,H]] −
∫

p[θ |φ,H] · ln
(
p[θ |Ĥ]

)
dθ

= h [p[θ |φ,H]] −
n∑
i=1

∫
p[θ |φ,H] · ln

(
p[θi |Ĥ]

)
dθ

= h [p[θ |φ,H]] −
n∑
i=1

∫ 1

0
p[θi |φ,H] · ln

(
p[θi |Ĥ]

)
dθi

4.2 Intermediate case: k = 1, s > 1
Next we address the case where k = 1, s > 1 and E = {φt }. Under these assumptions the
goal of belief updating is to minimize the KL divergence between p[θ(·, ·) |φt ,H s] and p[θ(·, ·) |Ĥ s].
Since the tuples of Ĥ are pairwise independent, it is sufficient to minimize the relative entropy
between p[θ(·,i) |φt ,H s] and p[θ(·,i) |Ĥ s] for every i in {1, . . . ,n}. As usual θ(·,i) denotes the vector
(θ1,i , . . . ,θs,i). Its probability density w.r.t. Ĥ s is

p[θ(·,i) |Ĥ s] =
s∏

ℓ=1
p[θℓ,i |Ĥ] (20)

while its posterior density w.r.t.H s and evidence {φt } is

p[θ(·,i) |φt ,H s] =
t∏

ℓ=1
p[θℓ,i |φ,H] ·

s∏
ℓ=t+1

p[θℓ,i |φ,H] (21)

where p[θℓ,i |φ,H] and p[θℓ,i |φ,H] are computed according to Theorem 4.1. We now redefine KLdivi
as the relative entropy between p[θ(·,i) |φt ,H s] and p[θ(·,i) |Ĥ s]:

KLdivi =
∫ 1

0
..

∫ 1

0
p[θ(·,i) |φt ,H s] ln

(
p[θ(·,i) |φ t ,Hs]
p[θ(·,i) | Ĥs]

)
dθ(·,i)

Definition 4.5. We denote by bfit(ai ,bi , {φt }, s) the pair of parameters (â∗i , b̂∗i) satisfying the
following two equations:{

⟨lnθi ⟩Be(â∗i ,b̂∗i) =
t
s ⟨lnθi ⟩p[θi |φ,H] + s−t

s ⟨lnθi ⟩p[θi |φ,H]
⟨lnθ i ⟩Be(â∗i ,b̂∗i) =

t
s ⟨lnθ i ⟩p[θi |φ,H] + s−t

s ⟨lnθ i ⟩p[θi |φ,H]

Proposition 4.6. When (âi , b̂i) = (â∗i , b̂∗i) = bfit(ai ,bi , {φt }, s), the relative entropy between
p[θ(·,i) |φt ,H s] and p[θ(·,i) |Ĥ s] is minimized.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

Proof.

KLdivi =
∫ 1

0
..

∫ 1

0
p[θ(·,i) |φt ,H s] ln

(
p[θ(·,i) |φ t ,Hs]
p[θ(·,i) | Ĥs]

)
dθ(·,i)

=

t∑
ℓ=1

[∫ 1

0
p[θℓ,i |φ,H] ln

(
p[θℓ,i |φ,H]
p[θℓ,i |H]

)
dθℓ,i

]
+

s∑
ℓ=t+1

[∫ 1

0
p[θℓ,i |φ,H] ln

(
p[θℓ,i |φ,H]
p[θℓ,i |H]

)
dθℓ,i

]
= h

[
p[θ(·,i) |φt ,H s]] + s · ln(B(âi , b̂i))
− (âi − 1) · [t · ⟨lnθi ⟩p[θi |φ,H] + (s − t)⟨lnθi ⟩p[θi |φ,H]]
− (b̂i − 1) ·

[
t · ⟨lnθ i ⟩p[θi |φ,H] + (s − t)⟨lnθ i ⟩p[θi |φ,H]

]
The gradient ∇KLdivi is zero when{

⟨lnθi ⟩p[θi | Ĥ] =
t
s ⟨lnθi ⟩p[θi |φ,H] + s−t

s ⟨lnθi ⟩p[θi |φ,H]
⟨lnθ i ⟩p[θi | Ĥ] =

t
s ⟨lnθ i ⟩p[θi |φ,H] + s−t

s ⟨lnθ i ⟩p[θi |φ,H]
□

4.3 General case: k > 1, s > 1
We can finally address the general case where k > 1, s > 1 and E = {φt1

1 , . . . ,φ
tk
k }. Under these

assumptions the goal of belief updating is to minimize the KL divergence between p[θ(·, ·, ·) |E,H s,k]
and p[θ(·, ·, ·) |Ĥ s,k], and is achieved by minimizing the KL divergence between p[θ(·, ·,i) |E,H s,k]
and p[θ(·, ·,i) |Ĥ s,k], for every i in {1, . . . ,n}, where

p[θ(·, ·,i) |Ĥ s,k] =
k∏
j=1

p[θ(j, ·,i) |Ĥ s] (22)

p[θ(·, ·,i) |E,H s,k] =
k∏
j=1

p[θ(j, ·,i) |φtjj ,H s] (23)

Therefore, we can redefineKLdivi as the relative entropy betweenp[θ(·, ·,i) |E,H s,k] andp[θ(·, ·,i) |Ĥ s,k]:

KLdivi =
∫ 1

0
..

∫ 1

0
p[θ(·, ·,i) |E,H s,k] ln

(
p[θ(·, ·,i) |E,Hs,k]
p[θ(·, ·,i) | Ĥs,k]

)
dθ(·, ·,i)

Definition 4.7. We denote by bfit(ai ,bi , E, s,k) the pair of parameters (â∗i , b̂∗i) satisfying the
following two equations:{

⟨lnθi ⟩Ĥ∗ =
∑

j
tj
ks ⟨lnθi ⟩p[θi |φ j ,H] +

s−tj
ks ⟨lnθi ⟩p[θi |φ j ,H]

⟨lnθ i ⟩Ĥ∗ =
∑

j
tj
ks ⟨lnθ i ⟩p[θi |φ j ,H] +

s−tj
ks ⟨lnθ i ⟩p[θi |φ j ,H]

Proposition 4.8. When (âi , b̂i) = bfit(ai ,bi , E, s,k) the relative entropy between p[θ(·, ·,i) |E,H s,k]
and p[θ(·, ·,i) |Ĥ s,k] is minimized.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:19

The proof of Prop. 4.8 mimics the one of Prop. 4.6. For the sake of conciseness we omit it. Before
introducing our belief update algorithm, we observe that the equations from Definition 4.7 can be
rewritten as follows:{

[ψ (â∗i) −ψ (â∗i + b̂∗i)] − [ψ (ai) −ψ (ai + bi)] = r
ai
− 1

ai+bi
[ψ (b̂∗i) −ψ (â∗i + b̂∗i)] − [ψ (bi) −ψ (ai + bi)] = r

bi
− 1

ai+bi

(24)

where r = 1
k
∑k

j=1

[
tj
s P[xi |φ j ,H] +

s−tj
s P[xi |φ j ,H]

]
andψ (·) denotes the Digamma function. No-

tice that r is simply the evidence-conditioned probability of literal xi averaged over s · k evidence
samples. From now on we denote by bu(ai ,bi , r) a procedure that computes the values (â∗, b̂∗) that
satisfy Equation (24) for a given hypothesisH s,k and evidence E. We finally introduce Algorithm 1,
that exploits Prop. 4.4, 4.6 and 4.8 to perform a belief update in response to arbitrary evidence
E. Notice that Algorithm 1 shows how to perform belief updates for three different, semantically
distinct models:H ,H s andH s,k . Choosing one model over the others means choosing a specific
way to model the evidence, as either a query-answer (H), a query-marginal (H s) or a set of queries
with marginal probabilities (H s,k). Interestingly, Algorithm 1 allows us to update a B-PDB in an
incremental fashion: if the evidence is provided as a stream of query-answers, dynamically changing
over time, a B-PDB can incorporate such information by performing a new belief update every time
a new chunk of evidence becomes available. The idea of performing repeated Bayesian updates is
discussed in detail in the next section.

Algorithm 1: Belief Update
Data:ModelH , evidence E = {φt1

1 , . . . ,φ
tk
k }

1 for j ∈ {1, . . . ,k} do
2 τj ← tj/s;
3 for i ∈ {1, . . . ,n} do
4 ri ←

∑k
j=1

1
k (τjP[xi |φ j ,H] + τjP[xi |φ j ,H])

5 (â∗i , b̂∗i) ← bu(ai ,bi , ri)
6 for i ∈ {1, . . . ,n} do
7 ai ← â∗i
8 bi ← b̂∗i

5 PARAMETER LEARNING (MLE)
In this section we show how to exploit our belief update procedures to identify a local maximum
of the likelihood function P[E|H s,k]. Our approach relies on the simple observation that a belief
update triggered by evidence E can only increase the likelihood of observing E again; it is immediate
to derive a soft-EM [12, 30] algorithm that performs repeated belief updates until convergence.

First we introduce the concept of posterior predictive distribution. Let’s assume we have observed
evidence E and devised the corresponding posterior distribution p[θ(·, ·, ·) |E,H s,k]. Rather than
deriving a new hypothesis Ĥ that minimizes the KL divergence against it, we instead use the
posterior itself to compute the probability of observing some new evidence E ′ in the future. Such
probability is given by ∫ 1

0
..

∫ 1

0
P[E ′ | θ(·, ·, ·)] · p[θ(·, ·, ·) | E,H s,k] dθ(·, ·, ·) (25)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

In the literature the resulting distribution is called posterior predictive. Our next goal is to show
that the posterior predictive assigns to the event of observing E (again) a probability that is larger
or equal to the one assigned by the original hypothesisH . In other words, we want to prove the
following proposition

Proposition 5.1. For every evidence E and modelH s,k the following holds∫ 1

0
..

∫ 1

0
P[E | θ(·, ·, ·)] · p[θ(·, ·, ·) | E,H s,k] dθ(·, ·, ·) ≥ P[E | H s,k] (26)

Proof. The inequality in eq. (26) can be rewritten as∫ 1

0
..

∫ 1

0
P[E | θ(·, ·, ·)] ·

P[E | θ(·, ·, ·)] · p[θ(·, ·, ·) | H s,k]
P[E | H s,k] dθ(·, ·, ·) ≥ P[E | H s,k] (27)

Since P[E | H s,k] is positive∫ 1

0
..

∫ 1

0
P[E | θ(·, ·, ·)]2 · p[θ(·, ·, ·) | H s,k] dθ(·, ·, ·) ≥

[
P[E | H s,k]

]2
(28)

The same can be expressed in terms of expectations

⟨P[E | θ(·, ·, ·)]2⟩p[θ(·, ·, ·) | Hs,k] ≥
[
⟨P[E | θ(·, ·, ·)]⟩p[θ(·, ·, ·) | Hs,k]

]2
(29)

The thesis is proved by making two observations:

⟨P[E | θ(·, ·, ·)]2⟩p[θ(·, ·, ·) | Hs,k] ≥
∫ 1

0
..

∫ 1

0
P[E | θ(·, ·, ·)]2 · p[θ(·, ·, ·) | H s,k]2 dθ(·, ·, ·) (30)[

⟨P[E | θ(·, ·, ·)]⟩p[θ(·, ·, ·) | Hs,k]
]2
≤

∫ 1

0
..

∫ 1

0
P[E | θ(·, ·, ·)]2 · p[θ(·, ·, ·) | H s,k]2 dθ(·, ·, ·) (31)

The first inequality holds because p[θ(·, ·, ·) | H s,k] ∈ (0, 1], the second follows from the Cauchy-
Bunyakovsky-Schwarz inequality. □

Prop. 5.1 shows that the posterior predictive distribution is always biased towards the observed
evidence E. We now move our attention to the belief updateH → Ĥ ∗ and show how it relates to
the posterior predictive. As usual, Ĥ ∗ denotes the value of Ĥ that minimize the following measure:

KLdiv =
∫ 1

0
..

∫ 1

0
p[θ(·, ·, ·) |E,H s,k] ln

[
p[θ(·, ·, ·) |E,H s,k]
p[θ(·, ·, ·) |Ĥ s,k]

]
dθ(·, ·, ·)

=h
[
p[θ(·, ·, ·) |E,H s,k]

]
−

∫ 1

0
..

∫ 1

0
p[θ(·, ·, ·) |E,H s,k] lnp[θ(·, ·, ·) |Ĥ s,k]dθ(·, ·, ·)

=h
[
p[θ(·, ·, ·) |E,H s,k]

]
− ⟨lnp[θ(·, ·, ·) |Ĥ s,k]⟩p[θ(·, ·, ·) |E,Hs,k]

It is easy to conclude that

Ĥ ∗ = argmin
Ĥ

KLdiv = argmax
Ĥ
⟨lnp[θ(·, ·, ·) |Ĥ s,k]⟩p[θ(·, ·, ·) |E,Hs,k] (32)

In other words, Ĥ ∗ is a maximum likelihood estimator for the posterior predictive distribution,
which in turn is biased towards the evidence E that triggered the update H → Ĥ ∗. Therefore,
we can devise an EM algorithm by simply repeating multiple belief updates until convergence.
The above conclusion, together with the considerations from [47], can be used to justify several
variants of the EM algorithm. In the following we provide the pseudo-code of the classic, fully

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:21

Bayesian, soft-EM (here named Algorithm 2). Intuitively, the “E-step” consists of the computation
of the posterior p[θ(·, ·, ·) |E,H s,k], while the “M-step” consists of the belief updateH → Ĥ ∗.

Algorithm 2: Greedy-MLE
Data:ModelH , evidence E = {φt1

1 , . . . ,φ
tk
k }

1 for j ∈ {1, . . . ,k} do
2 τj ← tj/s;
3 repeat
4 for i ∈ {1, . . . ,n} do
5 ri ←

∑k
j=1

1
k (τjP[xi |φ j ,H] + τjP[xi |φ j ,H])

6 (â∗i , b̂∗i) ← bu(ai ,bi , ri)
7 for i ∈ {1, . . . ,n} do
8 ai ← â∗i
9 bi ← b̂∗i

10 until convergence;

Example 5.2 (continued). Let’s assume we are given a B-PDB with two tuples, x1 and x2, and
k = 2 queries: φ1 = x1 ∧ x2 and φ2 = x1 ∨ x2. The initial state of the database,H0, is

a1 = 1 a2 = 1 b1 = 3 b2 = 3
Query φ1 is observed to be satisfied t1 = 32 times over s = 100 samples, while φ2 is observed to be
true t2 = 88 times. Hence E = {φt1

1 ,φ
t2
2 }, and the target marginal probabilities for φ1 and φ2 are,

respectively, τ1 = 0.32 and τ2 = 0.88. Given an arbitrary B-PDBH , the likelihood of observing E
being generated byH is P[E|H 100,2] =

=

(
100
32

)
P[φ1 |H]32P[φ1 |H]68 ·

(
100
88

)
P[φ2 |H]88P[φ2 |H]12

The likelihood is maximized when P[φ1 |H] = τ1 and P[φ2 |H] = τ2. There are two values of θ that
satisfy these conditions: either θ = (0.8, 0.4), or θ = (0.4, 0.8). Figure 5 shows how Algorithm 2
converges to one of the optimal values for θ : the green dots represent the state of the database
(in terms of ⟨θ1⟩H and ⟨θ2⟩H) after each iteration of the cycle at lines 3-10. The starting point is
⟨θ⟩H = (0.25, 0.25).
It is important to notice that, for the sake of performing MLE, we are not strictly required to

process the whole available evidence in every iteration of lines 3-10. Under reasonable assumptions,
it is safe to modify Algorithm 2 so that, at each iteration, only a small portion of the evidence is
processed, as long as we ensure that, in the long term, each portion is processed with uniform
frequency and, as a consequence, it is equally represented. For example, we couldmodify Algorithm 2
so to process one query at-a-time (and use the update rule from Definition 4.5) or to process one
sample at-a-time (and use the update rule from Definition 4.3). The query/sample to be processed
next could be chosen with a deterministic policy (for example: round-robin) or with a randomized
one (for example: uniform sampling). While all these variants will result into a sound greedy
MLE algorithm, they are not semantically equivalent from the point of view of belief updates. To
understand why, consider the following observation: performing a single BU step on modelH 2

for evidence {φ1} will not have necessarily the same outcome as performing a sequence of two
distinct BU steps on modelH , one with evidence {φ} and the other with evidence {φ}. As shown
in Figure 5 the likelihood function may have several local maximums and even several global ones.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

⟨θ1⟩H

0.0 0.2 0.4 0.6 0.8 1.0 ⟨θ 2⟩H0.0
0.2

0.4
0.6

0.8
1.0

P
[E
|H

s,
k
]

0.000

0.005

0.010

Fig. 5. Convergence of Algorithm 2 towards a maximum likelihood estimate of (θ1,θ2).

In the general case Algorithm 2, and its variations discussed above, will only converge to a local
optimum.

6 COMPUTING CONDITIONAL PROBABILITIES
Computing conditional probabilities in the form P[xi |φ j ,H] is a central requirement for both
Algorithm 1 and Algorithm 2. As discussed in Section 3, P[xi |φ j ,H] denotes the probability of
observing tuple xi being present in a possible world sampled fromH that satisfies φ j . In this Section
we study the computational complexity of deriving such probabilities.

Theorem 6.1. Let φ j represent the lineage of a Boolean conjunctive query, and xi be one of its
literals. In general, computing the conditional probabilities P[xi |φ j ,H] (or P[xi |φ j ,H]) is #P-hard
but it is in PTIME when φ j is read-once.

Proof. By Turing reduction. First we prove that computing P[xi |φ j ,H] takes polynomial time
in the size of D when φ j is read-once. We start by observing that

P[xi |φ j ,H] = P[φ j |xi ,H] · P[xi |H]/P[φ j |H] (33)

Notice that P[φ j |xi ,H] represents the marginal probability of the formula obtained by replacing
xi with ⊤ in φ j . We denote by (φ j |xi) such formula, therefore P[(φ j |xi)|H] = P[φ j |xi ,H]. If φ j
is read-once then so is (φ j |xi), therefore computing the right-hand side of Equation (33) takes
polynomial time. We now analyze the worst-case complexity of computing P[xi |φ j ,H]: let φ j be
a non-read-once expression, and {x1, . . . ,xn} the literals appearing in it; we want to reduce the
problem of computing P[φ j |H] to the problem of computing conditional probabilities in the form
P[x |φ,H]. From Equation (33), it is immediate to obtain

P[φ j |H] = P[xi |H] · P[(φ j |xi)|H]/P[xi |φ j ,H] (34)

Since Equation (34) holds for any literal in {x1, . . . ,xn}, we can apply it n − 1 times and obtain:

P[φ j |H] = P[x1 |H]
P[x1 |φ j ,H] ·

P[x2 |H]
P[x2 |(φ j |x1),H] · · ·

P[xn−1 |H]
P[xn−1 |(φ j |x1 . .xn−2),H] · P[(φ j |x1 ..xn−1)|H]

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:23

Notice that the last factor consists of the probability of a read-once Boolean formula, as the
expression (φ j |x1 ..xn−1) depends only on the literal xn . Therefore, if we have an oracle able to
compute conditional probabilities in the form P[x |φ,H], we can compute P[φ j |H] in polynomial
time, by making (n − 1) calls10. □

From Lemma 2.3 and Theorem 6.1 it follows immediately that computing a single Bayesian
update, to incorporate the answer to a hierarchical query, takes polynomial time in the data-size. We
point out that Bayesian updating is not restricted to hierarchical queries: if φ j is not read-once it is
always possible to approximate P[xi |φ j ,H] with standard inference techniques. In the next Section
we adapt the well-known algorithm by Dalvi and Suciu [9] to the goal of computing Bayesian
updates extensionally, by means of “CP-plans”.

6.1 CP-plans: Extensional Evaluation of P[xi |φ j ,H] for HierarchicalQueries
Let q = [φ1, ..,φk] be a non-Boolean hierarchical query. Our goal is to compute P[xi |φ j ,H] for every
Boolean query φ j in {φ1, ..,φk } and every literal xi appearing in φ j . We first show how to compute
P[φ j |H] and P[φ j |xi ,H] for every φ j and xi , extensionally. Once P[φ j |H] and P[φ j |xi ,H] are
known, it is immediate to obtain P[xi |φ j ,H] by Equation (33). A plan performing such computation
is called a“CP-plan”. In order to represent CP-plans compactly, we introduce a simple extension of
pRA. In our algebra, a CP-plan (P cp) is a sentence respecting the following grammar:

P cp ::= CP(Rp
0) | π c

X (P ′) | σ c(P ′) | ▷◁c [P ′, P ′′, . . .]
R
p
0 represents an arbitrary TI-relation, where each tuple has a unique identifier tid and is associated

with a marginal probability p. Let’s assume A is a key for Rp
0 , consisting of all the attributes except

for tid and p. The operator CP(Rp) turns a TI-relation R
p
0 into a pair (Rp,Rcp), where

Rp(A, p) def= πA,p(Rp
0) Rcp(A, cp, lt) def= πA,1,tid(Rp

0)
Intuitively, Rp is obtained from R

p
0 by projecting-away tid. Rcp associates each tuple x of Rp

0 with
the conditional probability P[x |x], which is, by definition, equal to 1. All the other operators of our
algebra process pairs of relations in the form (Rp,Rcp). Let B be a strict subset of A. If we apply
the projection operator π c

B to the pair (Rp,Rcp), we obtain a pair of relations (Qp,Qcp), defined as
follows:

Qp(B, p) def= πB,(1−Πagg(Rp .p))(Rp)
Qcp(B, cp, lt) def= πA,cpexp,Rcp .lt[(Rp ▷◁A Rcp) ▷◁B Qp]

Here, Πagg(·) denotes the aggregate product and cpexp def
= 1 − (Qp.p · Rcp.cp/Rp.p). The selection

operator (σ c) simply applies the selection predicate to both Rp and Rcp. Therefore, the statement
(Qp,Qcp) = σ c(Rp,Rcp) is equivalent to the following RA plan:

Qp(A, p) def= σ (Rp) Qcp(A, cp, lt) def= σ (Rcp)
Let’s now assume we are given a collection ofm relation pairs {(Rp

1 ,R
cp
1), .., (R

p
m ,R

cp
m)} and Ai =

hvar(Rp
i) \ {p}. Let’s define A = ∪mi=1Ai . The statement (Qp,Qcp) = ▷◁c [(Rp

1 ,R
cp
1), .., (R

p
m ,R

cp
m)] is

10A similar conclusion can be drawn from the work of Kanagal et al. [36] by noticing that the sensitivity ∂P[φ j]
∂θi

can be
computed as the difference P[φ j |xi] − P[φ j |xi].

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

equivalent to the following RA plan:

Qp(A, p) def= πA,(Πmi=1R
p
i .p)(▷◁ [R

p
1 , ..,R

p
m])

Vi (A, cp, lt) def= πA,cpexp,Rcp
i .lt(▷◁Ai [Qp,R

p
i ,R

cp
i]) ∀i ∈ {1..m}

Qcp(A, cp, lt) def= ⊎mi=1Vi

Here cpexp def
= (Qp.p·Rcp

i .cp/R
p
i .p). Now that we have defined all the operators of our algebra, we can

show how to build a CP-plan for a given hierarchical query. The method we propose (Algorithm 3)
is a straightforward adaptation to conditional probabilities of the procedure by Dalvi and Suciu
[9] for constructing safe plans for computing marginal probabilities. The first component of the
plan (Qp) is constructed exactly as in Dalvi and Suciu’s method. The second component of the plan
(Qcp) also closely mirrors this method, excepting only the leaves, where Rcp = πRp .A,1,Rp .tid(Rp),
which is equivalent for the purposes of safety. In other words, Algorithm 3 can be thought of as
two independent instances of the Dalvi and Suciu method run in parallel. Their algorithm is known
to be sound and complete; Algorithm 3 inherits both properties.

Algorithm 3: SafeCpPlan
Data: Hierarchical query q(..) :−R(..), S(..), . . .

1 if evar(q) = ∅ then
2 return CP(R) ▷◁c CP(S) ▷◁c . . .
3 else if q :− q′, q′′ and evar(q′) ∩ evar(q′′) = ∅ then
4 return SafeCpPlan(q′) ▷◁c SafeCpPlan(q′′)
5 else if ∃X ∈ evar(q) : X is a root variable then
6 return π c−X (SafeCpPlan(q′(X , hvar(q)) :−R(..), S(..), . . .))

Let (Qp,Qcp) be the result of a CP-plan generated by Algorithm 3: if φ j is the lineage of a tuple in
Qp and its literals are {x1, ..,xm}, then Qcp is guaranteed to containm copies of such tuple, each
copy being associated with a conditional probability P[φ j |xi], for every xi in {x1, ..,xm}.

Example 6.2 (continued). If q denotes the hierarchical query from Equation (5), then SafeCpPlan(q)
returns the plan:

(Qp,Qpc) = π c
−X (π c

−Y (CP(E)) ▷◁c CP(L))
Let’s split it into several views, in a bottom-up fashion:

(V p
1 ,V

cp
1) = CP(E)

(V p
2 ,V

cp
2) = π c

−Y (V p
1 ,V

cp
1)

(V p
3 ,V

cp
3) = CP(L)

(V p
4 ,V

cp
4) = (V

p
2 ,V

cp
2) ▷◁c (V

p
3 ,V

cp
3)

(Qp,Qcp) = π c
−X (V p

4 ,V
cp

4)
The content of each view is presented in Figure 6. For the sake of clarity we have annotated each
tuple with its lineage; with little abuse of notation, some lineage formulas contain conditional
expressions; translating them into regular Boolean formulas is straightforward. Notice that the
CP-plan does not materialize these formulas.

Notice that Qp is equivalent to the TI-relation returned by plan P ′ in Equation (6).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:25

E

V
p
1 V

cp
1 L

V
p
2 V

cp
2 V

p
3 V

cp
3

V
p
4 V

cp
4

Qp Qcp

V p
1

name emp p (lin.)
Ada HP 0.6 x1
Ada IBM 0.6 x2
Bob HP 0.5 x3

V cp
1

name emp cp lt (lin.)
Ada HP 1 x1 x1 |x1
Ada IBM 1 x2 x2 |x2
Bob HP 1 x3 x3 |x3

V p
2

name p (lin.)
Ada 0.84 x1 ∨ x2
Bob 0.5 x3

V cp
2

name cp lt (lin.)
Ada 1 x1 x1 ∨ x2 |x1
Ada 1 x2 x2 ∨ x2 |x2
Bob 1 x3 x3 |x3

V p
3

name lng p (lin.)
Ada eng 0.4 x4
Bob eng 0.2 x5
Bob ita 0.6 x6

V cp
3

name lng cp lt (lin.)
Ada eng 1 x4 x4 |x4
Bob eng 1 x5 x5 |x5
Bob ita 1 x6 x6 |x6

V p
4

name lng p (lin.)
Ada eng 0.34 (x1 ∨ x2)x4
Bob eng 0.1 x3x5
Bob ita 0.3 x3x6

V cp
4

name lng cp lt (lin.)
Ada eng 0.4 x1 (x1 ∨ x2)x4 |x1
Ada eng 0.4 x2 (x1 ∨ x2)x4 |x2
Ada eng 0.84 x4 (x1 ∨ x2)x4 |x4
Bob eng 0.2 x3 x3x5 |x3
Bob eng 0.5 x5 x3x5 |x5
Bob ita 0.6 x3 x3x6 |x3
Bob ita 0.5 x6 x3x6 |x6

Qp

lng p (lin.)
eng 0.4024 ((x1 ∨ x2)x4) ∨ x3x5
ita 0.3 x3x6

Q cp

name cp lt (lin.)
eng 0.46 x1 ((x1 ∨ x2)x4) ∨ x3x5 |x1
eng 0.46 x2 ((x1 ∨ x2)x4) ∨ x3x5 |x2
eng 0.4688 x3 ((x1 ∨ x2)x4) ∨ x3x5 |x3
eng 0.856 x4 ((x1 ∨ x2)x4) ∨ x3x5 |x4
eng 0.668 x5 ((x1 ∨ x2)x4) ∨ x3x5 |x5
ita 0.6 x3 x3x6 |x3
ita 0.5 x6 x3x6 |x6

Fig. 6. CP-plan data dependencies

7 EXTENSION TO MUTUALLY EXCLUSIVE EVENTS
In this section we relax the assumption that each tuple is stochastically independent from all the
others, allowing some tuples to be mutually exclusive to others. We first introduce the disjoint-
independent model, a well-known [10] generalization of TI-PDBs that is able to model mutually
exclusive events. Later we generalize our own framework in the same spirit, and show how to
handle Bayesian updates and parameter learning in the new model.

7.1 Disjoint-Independent PDBs
A disjoint-independent probabilistic database (DI-PDB) is a TI-PDBwhere each relation is annotated
with a key. In the context of DI-PDBs, a key is simply a collection of attributes, with the property
that every two tuples in a relation that agree on the key attributes must represent mutually
exclusive events. If two tuples do not agree on the key attributes, then they represent stochastically

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

independent events. The set of all tuples in a relation that agree on some key value form a block.
Since a block represents a collection of mutually exclusive events, the sum of the probabilities of
its tuples must not be greater than 1. For convenience we identify each tuple in a DI-PDB with
a lineage literal xu,v , where index u identifies a specific block (xu) and index v a specific tuple
within the block. We adopt the same indexing strategy to identify tuples’ probabilities (hence, each
tuple xu,v is associated with a probability θu,v and a DI-relation always satisfies the constraint
∀u :

∑
v θu,v ≤ 1). For simplicity, we assume that every block has exactly c ≥ 1 tuples.

A possible world w is a subset of tuples where no two elements belong to the same block. We
can model it as a functionw(u) that maps each block to either one of its tuples (when that tuple
belongs tow) or the value ε (when no tuple from the block appears inw). A disjoint-independent
database D defines a probability measure over both possible worlds and Boolean queries:

P[w(u)|D] =
{
θu,v ifw(u) = xu,v

1 −∑
v θu,v ifw(u) = ε (35)

P[w |D] =
∏
u

P[w(u)|D] (36)

P[q |D] =
∑
w |=q
P[w |D] (37)

The lineage expression xu = xu,v (or simply xu,v) denotes the event of being in a possible world
w where w(u) = xu,v With little abuse of notation we denote by xu = xu,ε (or simply xu,ε) the
lineage of the event of being in a possible world where block xu is associated with the value ε , and
by θu,ε = 1 −∑

v θu,v its probability.

Example 7.1 (continued). Let’s revisit our running example, imposing the constraint that each
person can work for at most one company. The resulting probabilistic model can be expressed as a
DI-PDB:

Ep

name emp tid θ
Ada HP x1,1 0.6
Ada IBM x1,2 0.3
Bob HP x2,1 0.5

Lp

name lng tid θ

Ada eng x3,1 0.4
Bob eng x4,1 0.2
Bob ita x5,1 0.6

Key attributes are underlined. Relation Ep and Lp have, respectively, six and eight possible worlds.
Notice that DI-relations can model TI-relations, as is the case with Lp. The probability that Ada is
unemployed (x1,ε) is 0.1. The Boolean query q1 :−E(X ,Y),L(X , eng) has lineage ((x1,1 ∨x1,2) x3,1) ∨
x2,1x4,1. Its probability is P[q1 |D] = ((θ1,1 + θ1,2) θ3,1) ⊗ θ2,1θ4,1.

While hierarchical queries are not guaranteed to be tractable in the DI model, Dalvi and Suciu
[10] developed a polynomial time algorithm to identify safe extensional plans for all conjunctive,
self-join free queries that admit one. They derived a dichotomy theorem, showing that every
conjunctive, self-join-free query either admits an extensional plan or is intractable (#P-hard).

7.2 Dirichlet-Probabilistic Databases (D-PDBs)
We are now ready to generalize the DI model so as to support Bayesian updates. Each block xu in
a DI-PDB can be seen as a categorically-distributed random variable, taking values in a domain
of cardinality c + 1 (c tuples plus ε). From now on we denote by θu a vector of c + 1 parameters
associated with the random variable xu : θu

def
= (θu,ε ,θu,1, ..,θu,c). Notice that θu, by definition, ranges

in the probabilistic simplex C def
= {x ∈ (R+)c+1 :

∑
i xi = 1}. Rather than taking θu as a given, known

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:27

quantity, we model it as a latent random vector, distributed according to a Dirichlet distribution
with concentration parameters αu

def
= (αu,ε ,αu,1, ..,αu,c). Therefore, its marginal probability is

p[θu |αu] =
θ
αu,ε−1
u,ε · θαu,1−1

u,1 · · · θαu,c−1
u,c

B(αu) (38)

where B(αu) denotes the generalized Beta function

B(αu) =
∫
C

(
θ
αu,ε−1
u,ε · θαu,1−1

u,1 · · · θαu,c−1
u,c

)
dθu =

Γ(αu,ε) · Γ(αu,1) · · · Γ(αu,c)
Γ(αu,ε) + Γ(αu,1) + · · · + Γ(αu,c) (39)

From now on we denote byDir (αu) the right-end-side of Equation (38). From the above definitions
it follows immediately that the random variable xu is distributed according to a Dirichlet-Categorical
compound distribution, and its marginal probability is given by

P[xu,y |αu] =
∫
C
P[xu,y |θu] · p[θu |αu]dθu =

αu,y

αu,ε + αu,1 + · · · + αu,c (40)

where y ranges in {ε, 1, . . . , c} and P[xu,y |θu] = θu,y . If we denote byH the set of all the hyper-
parameters {αu }u , it is easy to see thatH defines a probability measure over possible worlds (w)
and Boolean queries (q):

P[w |H] =
∏
u

P[w(u)|H] =
∏
u

P[w(u)|αu] (41)

P[q |H] =
∑
w |=q
P[w |H] (42)

Similarly, if φ represents the lineage of query q, then P[φ |H] = ∑
w |=φ P[w |H] and conditional

probabilities are well-defined as per Equation (14). In addition, Equations 16 and 17 can be readily
applied to generalize the model to multiple observations and define the semantics ofH s andH s,k .
For the sake of conciseness we skip the details. From now on we callH a Dirichlet Probabilistic
Database (D-PDB). It is easy to verify that a B-PDB is a special case of D-PDB where c = 1 for each
block or, equivalently, where every attribute belongs to its relation key.

Theorem 7.2. If our current hypothesis isH and we observe a possible world where the lineage
formula φ is satisfied, then, for each block xu , the marginal posterior of random vector θu is given by

p[θu |φ,H] =
∑

y∈{ε,1, ..,c }
P[xu,y |φ,H] · Dir (αu + ey) (43)

where e denotes the standard natural basis of αu .

Proof. The proof is given in Appendix B. □

In the general case the marginal posterior p[θu |φ,H] is not a Dirichlet distribution, but rather a
Dirichlet mixture. Nonetheless, minimizing the relative entropy between p[θu |φ,H] and the prior
p[θu |H] is straight-forward, as the latter belongs to the exponential family.

Definition 7.3. We denote by dfit(αu ,φ) the vectorα ∗u that satisfies the following c+1 constraints:

∀y ∈ {ε, 1, .., c}
∫ 1

0
Dir (α ∗u) lnθu,y dθu,y =

∫ 1

0
p[θu,y |φ,H] lnθu,y dθu,y (44)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

In other words α ∗u is built so that Dir (α ∗u) agrees with p[θu,y |φ,H] on the expected value of
ln(θu,y), for each tuple xu,y in the block xu . By Theorem 7.2 and the properties of the Dirichlet
distribution the above equation can be rewritten as

∀y ∈ {ε, 1, .., c} [ψ (α∗u,y) −ψ (|α ∗u |1)] − [ψ (αu,y) −ψ (|αu |1)] = P[xu,y |φ,H]αu,y
− 1
|αu |1 (45)

where | · |1 denotes the L-1 norm.
From [31] it follows immediately that Dir (α ∗u) is the Dirichlet distribution that minimizes

the KL divergence w.r.t. the marginal posterior p[θu,y |φ,H]. Let’s now assume that evidence E
consists of s · k samples over k distinct Boolean queries, with s samples per query. In other words
E = {φt1

1 , . . . ,φ
tk
k }. In order to minimize the relative entropy between the priors ofH s,k and the

marginal posteriors computed w.r.t. E, we must choose a set of hyper-parameters that satisfies, for
each block xu , the following constraints

∀y ∈ {ε, 1, .., c} [ψ (α∗u,y) −ψ (|α ∗u |1)] − [ψ (αu,y) −ψ (|αu |1)] = ry
αu,y
− 1
|αu |1 (46)

Where ry = 1
k
∑k

j=1

[
tj
s P[xu,y |φ j ,H] +

s−tj
s P[xu,y |φ j ,H]

]
. Notice that ry is the evidence-conditioned

probability of tuple xu,y averaged over s · k evidence samples. Algorithm 4 shows how to perform
a Bayesian Update in a D-PDB. By du(αu , r) we denote a procedure that computes the hyper-
parameters vector α ∗

u that satisfies Equation (46) for a given hypothesis H s,k and evidence E.

Algorithm 4: Belief Update (DI model)
Data:ModelH , evidence E = {φt1

1 , . . . ,φ
tk
k }

1 for j ∈ {1, . . . ,k} do
2 τj ← tj/s;
3 for u ∈ {1, . . . ,n} do
4 for y ∈ {ε, 1, . . . , c} do
5 ry ←

∑k
j=1

1
k (τjP[xu,y |φ j ,H] + τjP[xu,y |φ j ,H])

6 α ∗u ← du(αu , r)
7 for u ∈ {1, . . . ,n} do
8 αu ← α ∗u

It is easy to verify that the same considerations we introduced in Section 5 in the context of
B-PDBs remain true for D-PDBs: by simply repeating multiple iterations of Algorithm 4 it is possible
to design a greedy MLE algorithm for the DI model. We omit the details.

8 EXPERIMENTS
This section is divided in two parts. In the first part we provide experimental evaluation of the
Bayesian updating technique proposed in section 4, in combination with the Dirichlet model
presented in section 7. The second part is dedicated to maximum likelihood estimation.
Experimental Setup All the experiments discussed here were performed on a 3.4 GHz Intel Core
i7-2600 with 32GB of DDR3-1333 MHz RAM and a 750GB SSD disk, running Ubuntu 14.04.5 LTS.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:29

8.1 Bayesian updates and D-PDBs
We extended MayBMS [3], a publicly available11 block-independent probabilistic database, with
the support for Bayesian updating. Our implementation12, that we call Beta-MayBMS, extends the
original system in two ways: (i) it imposes Dirichlet priors on each parameter and (ii) it enables
Bayesian updating w.r.t. arbitrary query answers. The standard, SQL-like syntax of MayBMS is
augmented with the following statement

update <bi-tbl> given evidence (<query>) is [not] empty;

The <query> used as evidence can be any query supported by MayBMS; in other words, Bayesian
updating is not restricted to hierarchical queries. More details about the design of Beta-MayBMS
are given in Appendix D. Here we describe our experimental evaluation of it against a simple data
cleaning task.

We obtained a copy of the 5% 1990 sample from the IPUMS-USA data set [54]. The sample consists
of 12,501,046 records of census data, from which we extracted the following variables: EDUC, MARST,
CHBORN, EMPSTAT, VETSTAT, YRIMMIG, AGE. We randomly selected a fraction of 0.0001% of the data
and introduced noise over the attribute AGE by simulating typing errors. Each affected record is
replaced with a block of mutually exclusive tuples, consisting of the original AGE value together
with up to two noisy copies. The noise is introduced by randomly replacing (or dropping) a digit
in the record’s AGE value; these variations mimic the confusion matrix of a basic SVD classifier13
trained against the MNIST [44] dataset of handwritten digits.

Our benchmark consists in asserting a number of query-answers that involve the attribute AGE
and measure the evolution of the mean square error (MSE) over the noisy records after each belief
update. We chose query-answers that express general knowledge about the data set; they are listed
in Figure 7. Each query answer is asserted up to four times, for a total of 100 belief updates. As
shown in Figure 8g, each Bayesian update effectively reduces the noise over the attribute AGE,
and the largest improvement is gained during the first run of 25 assertions. Afterwards the MSE
converges to the value of 165.

8.2 Maximum Likelihood Estimation and B-PDBs
This section is dedicated to the experimental evaluation of the maximum likelihood estimation
algorithm proposed in Section 5, in the context of TI-PDBs. We compare our approach against the
existing literature on parameter learning in probabilistic databases. Dylla and Theobald [16, 17]
were the first to address this problem. In their work they model parameter learning as a constraint
satisfaction problem: given a set of Boolean queries, labeled with marginal probabilities, their aim is
to find a parameter vector θ so that the resulting TI-PDB exhibits the desired marginal probabilities,
for each Boolean query in the training set. They first address the problem from a theoretical
perspective, characterizing its satisfiability and giving bounds on its computational complexity.
They then show how to solve it using well-established optimization techniques, adopting several
variants of the stochastic gradient descent algorithm. As discussed in Section 5, our Algorithm 2
can be used to perform a similar optimization task. The work of Dylla and Theobald is probably
the closest to ours amongst the existing literature, and the most suitable for an experimental
comparison. Concretely, our experiments aim to verify the following three conjectures: (i) our
MLE algorithm has comparable performance to the one proposed by Dylla and Theobald; (ii) our
algorithm scales well when used on large datasets; (iii) our algorithm can be polarized towards

11http://maybms.sourceforge.net/
12https://gitlab.odin.cse.buffalo.edu/niccolom/beta-maybms-public
13https://github.com/antononcube/MathematicaVsR/blob/master/Projects

/HandwrittenDigitsClassificationByMatrixFactorization/R/HandwrittenDigitsClassificationByMatrixFactorization.pdf

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

(1) (select * from ipums where AGE<=2 and EDUC>0) is empty
(2) (select * from ipums where AGE<=9 and EDUC>1) is empty
(3) (select * from ipums where AGE<=13 and EDUC>2) is empty
(4) (select * from ipums where AGE<=19 and EDUC>(AGE-11)) is empty
(5) (select * from ipums where AGE<=23 and EDUC>10) is empty
(6) (select * from ipums where AGE>=8 and EDUC=0) is empty
(7) (select * from ipums where AGE>=14 and AGE<=50 and EDUC<=1) is empty
(8) (select * from ipums where AGE<=16 and MARST<>6) is empty
(9) (select * from ipums where AGE>=74 and MARST=3) is empty
(10) (select * from ipums where AGE<40 and MARST=5) is empty
(11) (select * from ipums where AGE<=20 and MARST between 3 and 5) is empty
(12) (select * from ipums where AGE<=14 and CHBORN<>0) is empty
(13) (select * from ipums where AGE<=17 and CHBORN>1) is empty
(14) (select * from ipums where AGE<=19 and CHBORN>2) is empty
(15) (select * from ipums where AGE<=22 and CHBORN>3) is empty
(16) (select * from ipums where AGE<=30 and CHBORN>4) is empty
(17) (select * from ipums where AGE<=35 and CHBORN>5) is empty
(18) (select * from ipums where AGE<=45 and CHBORN>6) is empty
(19) (select * from ipums where AGE<=15 and EMPSTAT<>0) is empty
(20) (select * from ipums where AGE>=16 and EMPSTAT=0) is empty
(21) (select * from ipums where AGE>=62 and EMPSTAT=2) is empty
(22) (select * from ipums where AGE>=86 and EMPSTAT=1) is empty
(23) (select * from ipums where AGE<=15 and VETSTAT<>0) is empty
(24) (select * from ipums where AGE>=16 and VETSTAT=0) is empty
(25) (select * from ipums where YRIMMIG>0 and YRIMMIG<1990 and AGE<(1990-YRIMMIG))) is empty

Fig. 7. Query-answers for the IPUMS data set

a specific maximum of the likelihood, when needed, by setting the priors accordingly. Unlike
the previous section, all the experiments presented here use TI datasets and hierarchical queries.
Before discussing the experiments in details, we briefly describe our prototype implementation of
Algorithm 2.

While Beta-MayBMS is able compute belief updates for arbitrary queries, it requires to process
each update as a full SQL statement, going through the usual steps of parsing, planning, optimization
and execution of each query. This is not optimal for iterative processes like MLE, where the same
queries, plans and resources are reused many times until the algorithm converges. We decided to
provide an alternative implementation, targeted at the specific task of running MLE over B-PDBs
for tractable, hierarchical queries. We call our prototype BetaMLE: it consists of two components, a
query planner and an execution engine. The main purpose of the planner is to build, for a given set
of queries, a compact representation of the lineage formulas associated with their marginal and
conditional probabilities. For each query, the planner builds a CP-plan, by running Algorithm 3,
and then uses a standard SQL DBMS to ground it. It then computes the lineage formulas of the
grounded tuples and feeds them to the execution engine. The purpose of the execution engine is to
run Algorithm 2. At each iteration it uses the information provided by the planner to compute the
marginal and conditional probabilities for all the queries. It then applies Equation (33) to obtain
conditional probabilities in the form P[x |φ,H]. It eventually computes the Bayesian Updates, as
explained in Section 4. This decoupled architecture has several advantages: first it ensures that the
SQL optimizer is called only once per problem instance, even if the same set of queries is used over
many iterations of Algorithm 2; secondly it greatly simplifies locking, parallelism and memory
allocation in the execution engine. The query planner is implemented in Java; its output consists of
a SQL script that generates the ground CP-plans. The execution engine is implemented in C++11

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:31

data set YAGO YAGO YAGO TPCH TPCH TPCH TPCH TPCH TPCH
scaling factor - - - 0.1 0.1 0.5 0.5 1.0 1.0

query set P1 P2 P3 Q1 Q2 Q1 Q2 Q1 Q2
total # of Bool. queries 228,179 132,277 465,418 20,109 3,697,683 94,840 18.3 · 106 187,532 36.5 · 106

max lineage size 2,333 2,333 262 5,545 5,545 28,029 28,029 55,386 55,386
avg lineage size 2.220 2.715 3.745 7.156 3.304 8.617 3.340 8.977 3.346
total # of literals 217,860 217,860 1,742,928 765,572 765,572 3,824,671 3,824,671 7,651,215 7,651,215

total # of active literals 217,860 217,860 1,742,928 138,972 760,572 787,593 3,799,669 1,622,379 7,601,211
max # of inst. of a literal 13 2 1 4 610 7 663 7 693
avg # of inst. of a literal 2.325 1.648 1.0 1.0356 16.0662 1.0376 16.0916 1.0377 16.0981

Table 1. Statistics of the data- and query-sets used. A literal is said to be active when it appears in the lineage
of at least one query.

(g++ 4.8.4). It uses OpenMP 14 for parallelism and CMinPack [14] for numerical optimization. As a
comparison point we used TPDB, the prototype system developed and made available15 by Dylla
and Theobald [16, 17].
MLE Experiment 1. This experiment focuses on parameter learning. We adopt a TI-PDB with
known parameters as ground truth and process a fixed set of queries to generate the evidence. We
then incrementally update our B-PDB, and observe how well it models the evidence over time.
We also run TPDB and compare the results. From now on we denote with T the parameters of
the ground-truth TI-PDB, with Q a fixed set of conjunctive hierarchical queries, with E the set of
marginal probabilities of Q w.r.t. T (the evidence), and withH the set of parameters learned by
either the B-PDB (a, b) or the TPDB (θ). Following [16], we measure both systems’ performances in
terms of their mean squared error:MSE

def
= 1
|Q |

∑
φ ∈Q (P[φ |H] − P[φ |T])2. When theMSE equals

zero, the likelihood P[E|H] is maximized. We mimic [16] for the choice of the data- and query-
sets; we use the query-sets P1, P2 and P3 as defined in Appendix A of [16], and reproduce the
“scalability” experiment over the YAGO216 knowledge base. As in [16], the ground-truth T is set up
by annotating each YAGO2 fact with a random probability, uniformly chosen in [0, 1]. The properties
of the resulting lineage formulas are summarized in Table 1. TPDB provides three parameter learning
algorithms, based on direct minimization of the MSE objective function: gradient descent (GD),
stochastic gradient descent (SGD), and stochastic gradient descent with per-tuple learning rate
(SGD+). We tested all of them, measuring the evolution of the MSE over time. Figures 8a to 8c
report our findings. Both the systems were executed in single-threaded mode. The execution time
is measured in seconds and does not include planning and grounding time, the MSE is reported in
log-scale, so to emphasize the trajectories near their convergence point. Our Bayesian-updating
algorithm is denoted as BU. Each point in the plot represents the execution of one iteration of
Algorithm 1, over all the available evidence. Over the three experiments we observe a common
behavior: BU follows a L-shape trajectory, characterized by a fast-start where theMSE is greatly
reduced in few iterations; the algorithm then slows progressively down, as it reaches its steady state.
The three gradient-based methods, on the other hand, exhibit a limited improving rate in the first
few iterations, followed by a speed-up as soon as they reach a steep sector of the objective function
surface. They then slow down as they reach a local minimum of theMSE. GD is consistently the
fastest of the three in reaching the fast-converging phase of the trajectory, but the less efficient
afterwards. Dylla and Theobald [16] analyze this behavior in great detail. Overall, this experiment
shows that the strict semantics of Bayesian updates does not pose a burden on performing MLE
efficiently. Additionally, BU offers good MLE performance without requiring the user to fine-tune
any parameter (like GD’s initial learning rate, for example). Looking at the good performance of
14http://www.openmp.org
15http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/software/tpdblearn/
16http://www.mpi-inf.mpg.de/yago-naga/yago/

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:32 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

0 100 200 300 400

10−6

10−5

10−4

10−3

10−2

10−1

100

Time (s)

M
SE

(lo
g
sc
al
e)

BU
GD
SGD
SGD+

(a) YAGO P1 (learning)

0 100 200 300 400
10−6

10−5

10−4

10−3

10−2

10−1

Time (s)
M
SE

(lo
g
sc
al
e)

BU
GD
SGD
SGD+

(b) YAGO P2 (learning)

0 50 100 150 200

10−4

10−3

10−2

10−1

Time (s)

M
SE

(lo
g
sc
al
e)

BU
GD
SGD
SGD+

(c) YAGO P3 (learning)

0 2 4 6 8

0.2

0.4

0.6

0.8

1

of threads

#
of

it
er
at
io
ns

pe
r
se
co
nd

sf=0.5
sf=1.0

(d) TPCH Q1 (scalability)

0 100 200 300
10−9

10−7

10−5

10−3

10−1

Time (s)

M
SE

(lo
g
sc
al
e)

sf=0.1
sf=0.3
sf=0.5
sf=0.7
sf=1.0

(e) TPCH Q1 (learning)

0 100 200 300 400

10−3

10−2

10−1

100

Time (s)

M
SE

(lo
g
sc
al
e)

sf=0.1
sf=0.3
sf=0.5
sf=0.7
sf=1.0

(f) TPCH Q2 (learning)

0 20 40 60 80 100
160

180

200

220

240

of belief updates

M
SE

(A
G
E)

(g) IPUMS (cleaning)

0 2 4 6 8 10

10−3

10−2

10−1

Time (s)

M
SE

-I
N
(lo

g
sc
al
e)

nr=0.01
nr=0.02
nr=0.05
nr=0.5

(h) TPCH Q1 (cleaning)

0 200 400 600

10−4

10−3

10−2

10−1

100

Time (s)

M
SE

-I
N
(lo

g
sc
al
e)

nr=0.01
nr=0.02
nr=0.05
nr=0.5

(i) TPCH Q2 (cleaning)

Fig. 8. Experimental results: (a)-(c): MLE Experiment 1. (d)-(f): MLE Experiment 2. (g): Bayesian updating.
(h),(i): MLE Experiment 3

SGD+ on P3, we feel it would be interesting to develop a stochastic variant of BU, where only a
randomly chosen portion of the evidence is processed at each iteration.
MLE Experiment 2. In this experiment we analyze the behavior of B-PDBs under stress conditions.
We use the dbgen utility [59] to generate a set of relations, that we annotate with synthetic
probabilities. We use two query-sets, Q1 and Q2. The former consists of queries Q3, Q4 and Q6
from the TPC-H benchmark (this choice mirrors [3, 9]); the latter extends Q1 with 12 additional
join/group-by queries, devoid of any selection predicate. By varying the dbgen’s scaling factor
parameter (sf) between 0.1 and 1.0, we build several instances of T , whose sizes range between 100
MB and 1 GB. Table 1 summarizes the properties of the resulting lineage formulas. We designed this
experiment to test several corner-cases in the parameter learning problem: (i) having large lineage
formulas in E, (ii) having literals that appear in many formulas, (iii) having a large number of
formulas in E. We replicate the same measurements as in Experiment 1, but we run our prototype
in multi-threaded mode. Figures 8e and 8f show that the behavior of BU is very consistent over
multiple tests, as it follows the usual L-shaped trajectory, drifting towards a local minimum of the
MSE. Figure 8d shows the speedup achieved by multi-threading.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:33

MLE Experiment 3. In this experiment we adopt a different metric:

MSE-IN
def
= 1

n

n∑
i=1
(P[xi |H] − P[xi |T])2

Our goal is to measure the ability of a B-PDB to rebuild the ground-truth T by only looking at E.
As exemplified in Figure 5, identifying a global maximum of the likelihood does not guarantee the
ability of deriving T , as E may be implicitly ambiguous. One way to circumvent this problem is to
polarize the B-PDB’s priors towards T . The goal of this experiment is to simulate such process. We
repeat Experiment 2 (with sf = 0.1), but we jump-start the BU algorithm by setting up a fraction of
the B-PDB’s parameters so to mirror T , in a low-entropy configuration (a + b = 106). The results
are shown in Figures 8h and 8i, where nr (noise ratio) denotes the fraction of parameters that are set
to random values. Overall we observe that Bayesian updates do not guarantee a steady decrease in
MSE-IN, especially when the evidence is too ambiguous (as in Q1). On the other hand, we observe
that better priors lead to better estimates of T .

9 RELATEDWORK
Stoyanovich et al. [57] derive probability distributions for the missing parts of incomplete databases,
using the complete parts as evidence. Dylla and Theobald [16] study the problem of deriving the
parameters of a TI-PDB from a set of Boolean queries, labeled with their marginal probabilities.
They prove the problem is #P-hard in the general case, and provide a sound criterion to identify
problem instances that admit a solution. Rather than computing a maximum-likelihood estimate of
the parameters, like we advocate in this paper, they propose to derive them by direct minimization
of the mean squared error. Their approach does not consider Bayesian updates. Parameter learning
has been proposed in the context of Probabilistic Logic Programming, either by minimizing the
mean squared error [28] or by maximum likelihood estimation [29]. It is also a central feature for
many knowledge-based model construction (KBMC) frameworks, including Probabilistic Relational
Models [41], Markov Logic [53], Multi-entity Bayesian Networks [42] and many others. All the
above approaches rely on probabilistic models that are significantly more sophisticated than TI-
PDBs, but without the complexity guarantees provided by the dichotomy theorem [11]. Koch and
Olteanu [40] were the first to address the problem of conditioning in probabilistic databases. Their
work relies on U-databases, while ours focuses on TI-/BI-PDBs and hierarchical queries.

10 CONCLUSIONS AND FUTUREWORK
“Where do the probabilities come from?” is an often-asked question related to probabilistic databases.
The approach suggested in this paper is to learn the parameters from query answers. We devise a
method for incorporating new evidence in an incremental fashion, by performing belief updates as
soon as new query answers are observed. A fundamental ingredient to our approach is the use of
Beta/Dirichlet priors: we show how to derive the posterior distribution in closed form and how to
update the parameters in a principled way. In the future we propose to generalize our framework
as to model continuous domains. We also plan to test alternative inference methods to handle
non-hierarchical conjunctive queries [22] and even non-monotone queries [8].
Acknowledgements: The authors would like to thank the anonymous reviewers for their con-
structive comments. This work was supported by a gift from Oracle and NSF Awards ACI-1640864,
CAREER IIS-1750460, and CAREER IIS-1762268. The conclusions and opinions in this work are
solely those of the authors and do not represent the views of Oracle or the National Science
Foundation.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:34 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley. http://webdam.

inria.fr/Alice/
[2] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha U. Nabar, Tomoe Sugihara, and Jennifer

Widom. 2006. Trio: A System for Data, Uncertainty, and Lineage. In VLDB. http://dl.acm.org/citation.cfm?id=1164231
[3] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu. 2008. Fast and Simple Relational Processing of

Uncertain Data. In ICDE. https://doi.org/10.1109/ICDE.2008.4497507
[4] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. 2006. ULDBs: Databases with Uncertainty

and Lineage. In VLDB. http://dl.acm.org/citation.cfm?id=1164209
[5] Jihad Boulos, Nilesh N. Dalvi, Bhushan Mandhani, Shobhit Mathur, Christopher Ré, and Dan Suciu. 2005. MYSTIQ: a

system for finding more answers by using probabilities. In SIGMOD. https://doi.org/10.1145/1066157.1066277
[6] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. 2001. Why andWhere: A Characterization of Data Provenance.

In ICDT. https://doi.org/10.1007/3-540-44503-X_20
[7] Zhuhua Cai, Zografoula Vagena, Luis Leopoldo Perez, Subramanian Arumugam, Peter J. Haas, and Christopher M.

Jermaine. 2013. Simulation of database-valued Markov chains using SimSQL. In SIGMOD. https://doi.org/10.1145/
2463676.2465283

[8] Li Chou, Wolfgang Gatterbauer, and Vibhav Gogate. 2018. Dissociation-Based Oblivious Bounds for Weighted Model
Counting. In UAI. http://auai.org/uai2018/proceedings/papers/312.pdf

[9] Nilesh N. Dalvi and Dan Suciu. 2004. Efficient Query Evaluation on Probabilistic Databases. In VLDB. http://www.
vldb.org/conf/2004/RS22P1.PDF

[10] Nilesh N. Dalvi and Dan Suciu. 2007. Management of probabilistic data: foundations and challenges. In SIGMOD.
https://doi.org/10.1145/1265530.1265531

[11] Nilesh N. Dalvi and Dan Suciu. 2012. The dichotomy of probabilistic inference for unions of conjunctive queries. J.
ACM 59, 6 (2012), 30. https://doi.org/10.1145/2395116.2395119

[12] Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum likelihood from incomplete data via the EM
algorithm. JRSS-B (1977), 1–38.

[13] Maarten Van den Heuvel, Floris Geerts, Wolfgang Gatterbauer, and Martin Theobald. 2018. A General Framework for
Anytime Approximation in Probabilistic Databases. In 8th International Workshop on Statistical Relational (StarAI).
https://arxiv.org/pdf/1806.10078

[14] Frédéric Devernay. 2007. C/C++ Minpack. http://devernay.free.fr/hacks/cminpack/. (2007).
[15] Jennie Duggan and Michael L Brodie. 2015. Hephaestus: Data Reuse for Accelerating Scientific Discovery.. In CIDR.
[16] Maximilian Dylla and Martin Theobald. 2014. Learning Tuple Probabilities in Probabilistic Databases. Technical Report.

Max-Planck-Institut für Informatik. http://pubman.mpdl.mpg.de/pubman/item/escidoc:2028353/component/escidoc:
2028364/MPI-I-2014-5-001.pdf

[17] Maximilian Dylla, Martin Theobald, and Iris Miliaraki. 2014. Querying and Learning in Probabilistic Databases. In
Reasoning Web. https://doi.org/10.1007/978-3-319-10587-1_8

[18] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G Tricomi. 1954. Tables of Integral Transforms:
Vol.: 1. McGraw-Hill Book Company, Incorporated.

[19] Robert Fink, Andrew Hogue, Dan Olteanu, and Swaroop Rath. 2011. SPROUT2: A squared query engine for uncertain
web data. In SIGMOD. https://doi.org/10.1145/1989323.1989481

[20] Robert Fink, Jiewen Huang, and Dan Olteanu. 2013. Anytime approximation in probabilistic databases. VLDB J. 22, 6
(2013), 823–848. https://doi.org/10.1007/s00778-013-0310-5

[21] Norbert Fuhr and Thomas Rölleke. 1997. A Probabilistic Relational Algebra for the Integration of Information Retrieval
and Database Systems. ACM TOIS 15, 1 (1997), 32–66. https://doi.org/10.1145/239041.239045

[22] Wolfgang Gatterbauer and Dan Suciu. 2014. Oblivious bounds on the probability of Boolean functions. ACM TODS 39,
1 (2014), 5. https://doi.org/10.1145/2532641

[23] Wolfgang Gatterbauer and Dan Suciu. 2015. Approximate Lifted Inference with Probabilistic Databases. PVLDB 8, 5
(2015), 629–640. http://www.vldb.org/pvldb/vol8/p629-gatterbauer.pdf

[24] Martin Charles Golumbic, Aviad Mintz, and Udi Rotics. 2006. Factoring and recognition of read-once functions using
cographs and normality and the readability of functions associated with partial k-trees. DAM 154, 10 (2006), 1465–1477.
https://doi.org/10.1016/j.dam.2005.09.016

[25] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. 2010. Provenance in ORCHESTRA. IEEE
Data Eng. Bull. 33, 3 (2010), 9–16. http://sites.computer.org/debull/A10sept/green.pdf

[26] Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance semirings. In PODS. https://doi.org/10.
1145/1265530.1265535

[27] Nitin Gupta, Lucja Kot, Gabriel Bender, Sudip Roy, Johannes Gehrke, and Christoph Koch. 2011. Coordination Through
Querying in the Youtopia System. In SIGMOD. 4. https://doi.org/10.1145/1989323.1989490

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/
http://dl.acm.org/citation.cfm?id=1164231
https://doi.org/10.1109/ICDE.2008.4497507
http://dl.acm.org/citation.cfm?id=1164209
https://doi.org/10.1145/1066157.1066277
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1145/2463676.2465283
https://doi.org/10.1145/2463676.2465283
http://auai.org/uai2018/proceedings/papers/312.pdf
http://www.vldb.org/conf/2004/RS22P1.PDF
http://www.vldb.org/conf/2004/RS22P1.PDF
https://doi.org/10.1145/1265530.1265531
https://doi.org/10.1145/2395116.2395119
https://arxiv.org/pdf/1806.10078
http://devernay.free.fr/hacks/cminpack/
http://pubman.mpdl.mpg.de/pubman/item/escidoc:2028353/component/escidoc:2028364/MPI-I-2014-5-001.pdf
http://pubman.mpdl.mpg.de/pubman/item/escidoc:2028353/component/escidoc:2028364/MPI-I-2014-5-001.pdf
https://doi.org/10.1007/978-3-319-10587-1_8
https://doi.org/10.1145/1989323.1989481
https://doi.org/10.1007/s00778-013-0310-5
https://doi.org/10.1145/239041.239045
https://doi.org/10.1145/2532641
http://www.vldb.org/pvldb/vol8/p629-gatterbauer.pdf
https://doi.org/10.1016/j.dam.2005.09.016
http://sites.computer.org/debull/A10sept/green.pdf
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1989323.1989490

Learning FromQuery-Answers 1:35

[28] Bernd Gutmann, Angelika Kimmig, Kristian Kersting, and Luc De Raedt. 2008. Parameter Learning in Probabilistic
Databases: A Least Squares Approach. In ECML/PKDD. 473–488. https://doi.org/10.1007/978-3-540-87479-9_49

[29] Bernd Gutmann, Ingo Thon, and Luc De Raedt. 2011. Learning the Parameters of Probabilistic Logic Programs from
Interpretations. In ECML/PKDD. 581–596. https://doi.org/10.1007/978-3-642-23780-5_47

[30] HO Hartley. 1958. Maximum likelihood estimation from incomplete data. Biometrics 14, 2 (1958), 174–194.
[31] Ralf Herbrich. 2005. Minimising the Kullback–Leibler divergence. Technical Report. Microsoft Research.
[32] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. 2009. MayBMS: A probabilistic database manage-

ment system. In SIGMOD. https://doi.org/10.1145/1559845.1559984
[33] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher M. Jermaine, and Peter J. Haas. 2008. MCDB: A

Monte Carlo approach to managing uncertain data. In SIGMOD. https://doi.org/10.1145/1376616.1376686
[34] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. 2008. Pay-as-you-go user feedback for dataspace systems. In

SIGMOD. https://doi.org/10.1145/1376616.1376701
[35] Norman L Johnson, Samuel Kotz, and N Balakrishnan. 1995. Continuous univariate distributions, vol. 2. (1995).
[36] Bhargav Kanagal, Jian Li, and Amol Deshpande. 2011. Sensitivity analysis and explanations for robust query evaluation

in probabilistic databases. In SIGMOD. https://doi.org/10.1145/1989323.1989411
[37] Paris C Kanellakis and Dina Q Goldin. 1994. Constraint programming and database query languages. In International

Symposium on Theoretical Aspects of Computer Software. Springer, 96–120.
[38] Richard M. Karp, Michael Luby, and Neal Madras. 1989. Monte-Carlo Approximation Algorithms for Enumeration

Problems. J. Algorithms 10, 3 (1989), 429–448. https://doi.org/10.1016/0196-6774(89)90038-2
[39] Oliver Kennedy and Christoph Koch. 2010. PIP: A database system for great and small expectations. In ICDE.

https://doi.org/10.1109/ICDE.2010.5447879
[40] Christoph Koch and Dan Olteanu. 2008. Conditioning probabilistic databases. PVLDB 1, 1 (2008), 313–325. http:

//www.vldb.org/pvldb/1/1453894.pdf
[41] Daphne Koller. 1999. Probabilistic Relational Models. In ILP-99. 3–13. https://doi.org/10.1007/3-540-48751-4_1
[42] Kathryn B. Laskey. 2008. MEBN: A language for first-order Bayesian knowledge bases. Artif. Intell. 172, 2-3 (2008),

140–178. https://doi.org/10.1016/j.artint.2007.09.006
[43] Aida C. G. Verdugo Lazo and Pushpa N. Rathie. 1978. On the entropy of continuous probability distributions (Corresp.).

IEEE TOIT 24, 1 (1978), 120–122. https://doi.org/10.1109/TIT.1978.1055832
[44] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/. (2010).

http://yann.lecun.com/exdb/mnist/
[45] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. 2011. Reverse Data Management. PVLDB 4, 11 (2011),

1490–1493. http://www.vldb.org/pvldb/vol4/p1490-meliou.pdf
[46] Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer. 2017. Beta Probabilistic Databases: A Scalable

Approach to Belief Updating and Parameter Learning. In SIGMOD. ACM, New York, NY, USA, 573–586. https:
//doi.org/10.1145/3035918.3064026

[47] Radford M Neal and Geoffrey E Hinton. 1998. A view of the EM algorithm that justifies incremental, sparse, and other
variants. In Learning in graphical models. Springer, 355–368.

[48] Dan Olteanu and Jiewen Huang. 2008. Using OBDDs for Efficient Query Evaluation on Probabilistic Databases. In
SUM. https://doi.org/10.1007/978-3-540-87993-0_26

[49] Dan Olteanu and Jiewen Huang. 2009. Secondary-storage confidence computation for conjunctive queries with
inequalities. In SIGMOD. ACM, 389–402. https://doi.org/10.1145/1559845.1559887

[50] Dan Olteanu, Jiewen Huang, and Christoph Koch. 2010. Approximate confidence computation in probabilistic databases.
In ICDE. https://doi.org/10.1109/ICDE.2010.5447826

[51] David Poole. 1993. Probabilistic Horn Abduction and Bayesian Networks. Artif. Intell. 64, 1 (1993), 81–129.
[52] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. ProbLog: A Probabilistic Prolog and Its Application in

Link Discovery. In IJCAI. 2462–2467. http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-396.pdf
[53] Matthew Richardson and Pedro M. Domingos. 2006. Markov logic networks. Machine Learning 62, 1-2 (2006), 107–136.

https://doi.org/10.1007/s10994-006-5833-1
[54] Steven Ruggles, Sarah Flood, Ronald Goeken, Josiah Grover, Erin Meyer, Jose Pacas, and Matthew Sobek. 2018. IPUMS

USA: Version 8.0 [dataset]. In IPUMS. https://doi.org/10.18128/D010.V8.0
[55] Prithviraj Sen, Amol Deshpande, and Lise Getoor. 2009. PrDB: managing and exploiting rich correlations in probabilistic

databases. VLDB J. 18, 5 (2009), 1065–1090. https://doi.org/10.1007/s00778-009-0153-2
[56] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne E. Hambrusch, and Rahul Shah. 2008. Orion 2.0:

native support for uncertain data. In SIGMOD. https://doi.org/10.1145/1376616.1376744
[57] Julia Stoyanovich, Susan B. Davidson, Tova Milo, and Val Tannen. 2011. Deriving probabilistic databases with inference

ensembles. In ICDE. 303–314. https://doi.org/10.1109/ICDE.2011.5767854

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1007/978-3-540-87479-9_49
https://doi.org/10.1007/978-3-642-23780-5_47
https://doi.org/10.1145/1559845.1559984
https://doi.org/10.1145/1376616.1376686
https://doi.org/10.1145/1376616.1376701
https://doi.org/10.1145/1989323.1989411
https://doi.org/10.1016/0196-6774(89)90038-2
https://doi.org/10.1109/ICDE.2010.5447879
http://www.vldb.org/pvldb/1/1453894.pdf
http://www.vldb.org/pvldb/1/1453894.pdf
https://doi.org/10.1007/3-540-48751-4_1
https://doi.org/10.1016/j.artint.2007.09.006
https://doi.org/10.1109/TIT.1978.1055832
http://yann.lecun.com/exdb/mnist/
http://www.vldb.org/pvldb/vol4/p1490-meliou.pdf
https://doi.org/10.1145/3035918.3064026
https://doi.org/10.1145/3035918.3064026
https://doi.org/10.1007/978-3-540-87993-0_26
https://doi.org/10.1145/1559845.1559887
https://doi.org/10.1109/ICDE.2010.5447826
http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-396.pdf
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.18128/D010.V8.0
https://doi.org/10.1007/s00778-009-0153-2
https://doi.org/10.1145/1376616.1376744
https://doi.org/10.1109/ICDE.2011.5767854

1:36 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

[58] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Morgan & Claypool
Publishers.

[59] TPC. 2017. TPC-H Benchmark. http://www.tpc.org/tpch/. (2017).
[60] Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver Kennedy. 2015. Lenses: An On-demand

Approach to ETL. PVLDB 8, 12 (2015), 1578–1589. https://doi.org/10.14778/2824032.2824055

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://www.tpc.org/tpch/
https://doi.org/10.14778/2824032.2824055

Learning FromQuery-Answers 1:37

A NOMENCLATURE

Symbol Meaning
H Beta Probabilistic DB / Dirichlet Probabilistic Database
D Tuple-Independent Probabilistic DB / Disjoint-Independent Probabilistic DB
p[·] Probability density function
P[·] Probability measure
⟨f (θ)⟩p[θ] Expected value of f (θ) when θ ∼ p[·]
h [·] differential entropy
E Evidence
Be(ai , bi) P.d.f. of a Beta distribution
a, b Shape parameters of the Beta distribution
Dir (α) P.d.f. of a Dirichlet distribution
α Concentration parameters of the Dirichlet distribution
B(·) (Generalized) Beta function
Γ(·) Gamma function
ψ (·) Digamma function
ψ ′(·) Trigamma function
w Possible world
x1, . . . , xn Tuples (TI model) / Blocks (DI model)
xu,1, . . . , xu,c Tuples in a given block xu (DI model)
θ1, . . . , θn Tuples’ marginal probabilities (TI model)
θu,1, . . . , θu,c Tuples’ marginal probabilities for a given block xu (DI model)
θ Vector (θ1, . . . , θn) (TI model)
θu Vector (θu,1, . . . , θu,c) (DI model)
θi Abbreviation for (1 − θi)
q1, . . . , qk Conjunctive queries
φ1, . . . , φk Lineage formulas
φ j Abbreviation for ¬φ j
tj Observed frequency of positive answers to φ j
τj Observed relative freq. of positive answers to φ j
k Number of queries
s Number of samples per query
n Number of tuples (TI model) / Number of blocks (DI model)
R, S, T , . . . Relations’ names
X , Y , Z , . . . First-order logic variables
ADom(·) Active domain
hvar(qj) The head variables of query qj
evar(qj) The existential variables of query qj
T Ground-truth

Table 2. Nomenclature

B PROOFS
Theorem 4.1 and Theorem 7.2 show how to compute the marginal posteriors for B-PDBS and
D-PDBs, respectively. In this section we first provide the proof for Theorem 7.2. Since B-PDBs
represent a special case of D-PDBs, obtaining a proof for Theorem 4.1 is straightforward, and will
be addressed as a corollary.

Proof of Theorem 7.2. LetH be a D-PDB and φ be a lineage formula defined over its tuples.
Let’s denote by Θ the set of all the latent random vectors in H , i.e. Θ def

= ∪nu=1θu . Our goal is to

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:38 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

prove that
p[θu |φ,H] =

∑
y∈{ε,1, ..,c }

P[xu,y |φ,H] · p[θu |xu,y ,H] (47)

By definition the u-th marginal of p[Θ | φ,H] is

p[θu | φ,H] =
∫
..

∫
p[Θ | φ,H] dθ 1 . . .dθu−1dθu+1 . . .dθn (48)

To be more concise, we denote by Θ∗ the set Θ \ {θu }, hence

p[θu | φ,H] =
∫

p[Θ | φ,H] dΘ∗ (49)

Applying the Bayes’ rule we can write

p[θu | φ,H] =
∫

p[Θ,φ | H]
P[φ | H] dΘ∗ (50)

Since event φ is independent fromH given a certain Θ, we have that

p[θu | φ,H] =
∫
P[φ | Θ] · p[Θ | H]

P[φ | H] dΘ∗ (51)

Since P[φ | H] does not depend on Θ we can write

p[θu | φ,H] = 1
P[φ | H] ·

∫
P[φ | Θ] · p[Θ | H] dΘ∗ (52)

We can expand the content of the integral, noticing that

P[φ | Θ] =
∑

w :w |=φ
P[w | Θ] (53)

p[Θ | H] =
n∏
l=1

p[θ l | α l] (54)

Hence we can write

p[θu | φ,H] = 1
P[φ | H] ·

∫ ∑
w :w |=φ

P[w | Θ] ·
n∏
l=1

p[θ l | α l] dΘ∗ (55)

Since P[w | Θ] =∏n
l=1 P[w(l) | θ l] and P[w(l) | θ l] is a categorical distribution, we can write

p[θu | φ,H] = 1
P[φ | H] ·

∫ ∑
w :w |=φ

n∏
l=1
P[w(l) | θ l] · p[θ l | α l] dΘ∗ (56)

We now partition the worlds that satisfy φ w.r.t. the value they assign to block xu ; we denote by φy
the conjunction φ ∧ xu,y . Notice that if y ′ , y ′′ then φy′ and φy′′ are mutually exclusive.

p[θu | φ,H] = 1
P[φ | H] ·

∑
y∈{ε,1, ..,c }


∫ ∑

w :w |=φy

n∏
l=1
P[w(l) | θ l] · p[θ l | α l] dΘ∗

 (57)

If we denote by L∗ the set {1, . . . ,n} \ {u} then we can write

p[θu | φ,H] = 1
P[φ | H] ·

∑
y∈{ε,1, ..,c }


∑

w :w |=φy
P[xu,y | θu] · p[θu | αu] ·

∏
l ∈L∗
P[w(l) | α l]

 (58)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:39

Since xu,y and αu are independent given θu , we can write

p[θu | φ,H] = 1
P[φ | H] ·

∑
y∈{ε,1, ..,c }


∑

w :w |=φy
P[xu,y ,θu | αu] ·

∏
l ∈L∗
P[w(l) | α l]

 (59)

Or equivalently

p[θu | φ,H] = 1
P[φ | H] ·

∑
y∈{ε,1, ..,c }


∑

w :w |=φy
P[θu | xu,y ,αu] · p[xu,y | αu] ·

∏
l ∈L∗
P[w(l) | α l]


(60)

We can simplify to

p[θu | φ,H] = 1
P[φ | H] ·

∑
y∈{ε,1, ..,c }


∑

w :w |=φy
p[θu | xu,y ,αu] · P[w | H]

 (61)

=
1

P[φ | H] ·
∑

y∈{ε,1, ..,c }
p[θu | xu,y ,αu] · P[φy | H] (62)

=
∑

y∈{ε,1, ..,c }
p[θu | xu,y ,αu] · P[xu,y | φ,H] (63)

This proves Equation (47). To prove Theorem 7.2 it is sufficient to notice that p[θu | xu,y ,αu] is the
standard posterior of a Dirichlet-Categorical compound distribution. Hence p[θu | xu,y ,αu] is a
Dirichlet distribution with the same parameters as the prior Dir (αu) except for parameter αu,y ,
that is increased by one. In other words: p[θu | xu,y ,αu] = Dir (αu + ey). □

Corollary. We can use Equation (47) to prove Theorem 4.1. First we observe that a B-PDB is
just a D-PDB where each block contains exactly one tuple. If we set αu = (au ,bu) then Dir (αu) =
Be(au ,bu). Therefore Equation (47) can be rewritten as the sum of two terms

p[θu |φ,H] = P[xu,1 |φ,H] · p[θu |xu,1,H] + P[xu,ε |φ,H] · p[θu |xu,ε ,H] (64)

Or, using B-PDBs notation,

p[θi |φ,H] = P[xi |φ,H] · p[θi |xi ,H] + P[xi |φ,H] · p[θi |xi ,H] (65)

Where p[θi |xi ,H] and p[θi |xi ,H] are just the standard posterior probabilities for a Beta-Bernoulli
compound distribution; hence p[θi |xi ,H] = Be(ai + 1,bi) and p[θi |xi ,H] = Be(ai ,bi + 1). □

C REPRESENTING COMPLEX EVENTS FROM INDEPENDENT VARIABLES
We show next that any correlation between variables can be captured by general Boolean functions
over independent events only (not just disjoint-independent events). We repeat here the argument
that was presented in this form in [22], but is well known folklore.
It is known from Poole’s independent choice logic [51] that arbitrary correlations between

events can be composed from disjoint-independent events only. A disjoint-independent event is
represented by a non-Boolean independent random variable y which takes either of k values
v = ⟨v1, . . . ,vk ⟩ with respective probabilities q = ⟨q1, . . . ,qk ⟩ and

∑
i qi = 1. Poole writes such a

“disjoint declaration” as y([v1 :q1, . . . ,vk :qk]).
In turn, any k disjoint events can be represented starting from k − 1 independent Boolean

variables z = ⟨z1, . . . , zk−1⟩ and probabilities P[z] = ⟨q1,
q2
q̄1
,

q3
q̄1q̄2
, . . . ,

qk−1
q̄1 ...q̄k−2

⟩, by assigning the

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:40 Niccolò Meneghetti, Oliver Kennedy, and Wolfgang Gatterbauer

disjoint-independent event variable y its value vi whenever event Ai is true, with Ai defined as:

(y = v1) ≡ A1 B z1

(y = v2) ≡ A2 B z̄1z2
...

(y = vk−1) ≡ Ak1 B z1 . . . z̄k−2zk−1

(y = vk) ≡ Ak B z̄1 . . . z̄k−2z̄k−1 .

For example, a disjoint-independent event y(v1 : 1
5 ,v2 : 1

2 ,v3 : 1
5 ,v4 : 1

10) can be represented with three
independent Boolean variables z = (z1, z2, z3) and P[z] = (15 , 5

8 ,
2
3).

It follows that arbitrary correlations between events can be modeled starting from independent
Boolean random variables alone. For example, two complex events A and B with P[A] = P[B] = q and
varying correlation can be represented as composed events A B z1z2 ∨z3 ∨z4 and B B z̄1z2 ∨z3 ∨z5
over the primitive events z with varying probabilities P[z]. Events A and B become identical for
P[z] = (0, 0,q, 0, 0), independent for P[z] = (0, 0, 0,q,q), and disjoint for P[z] = (0.5,q, 0, 0, 0) with
q ≤ 0.5.

D BETA-MAYBMS
MayBMS [3] is a state-of-the-art probabilistic database built on top of PostgreSQL 8.3.3. We devel-
oped Beta-MayBMS, an extension of MayBMS that supports Bayesian updating. In this Section
we briefly highlight the differences between the two systems. The first difference lies in the data
model: rather than storing straight probabilities for each record, Beta-MayBMS associates each
block of records with a Dirichlet prior. Let’s assume a Beta-MayBMS instance contains the following
deterministic relation:

select * from edu;
person | level | hyp
--------+-------+-----
Ada | phd | 7
Ada | ms | 2
Ada | bs | 1
Bob | phd | 3
Bob | ms | 3
Bob | bs | 4
Carl | ms | 3
Carl | bs | 7
(8 rows)

As in MayBMS, the above can be turned into a block-independent probabilistic relation by running
a repair key statement:

create table eduP as repair key person in edu weight by hyp;
select * from eduP;
person | level | hyp | _hyp | _v0 | _d0 | _p0
--------+-------+-----+------+-----+-----+-----
Ada | phd | 7 | 7 | 1 | 5 | 0.7
Ada | ms | 2 | 2 | 1 | 8 | 0.2
Ada | bs | 1 | 1 | 1 | 3 | 0.1
Bob | phd | 3 | 3 | 2 | 6 | 0.3
Bob | ms | 3 | 3 | 2 | 4 | 0.3
Bob | bs | 4 | 4 | 2 | 1 | 0.4

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Learning FromQuery-Answers 1:41

Carl | ms | 3 | 3 | 3 | 7 | 0.3
Carl | bs | 7 | 7 | 3 | 2 | 0.7
(8 rows)

Similarly to MayBMS, each block is associated with a unique identifier (_v0) and each tuple is
associated with a probability and an identifier (_d0 and _p0). Beta-MayBMS uses an additional
column (_hyp) to store the parameters of the Dirichlet prior. The user can compute a Bayesian
update by running a posterior of statement:

posterior of eduP given (select * from eduP where level='phd') is not empty;
_v0 | _d0 | _hyp | _p0
-----+-----+-------------------+--------------------

1 | 5 | 7.56053753051323 | 0.716805615782907
1 | 8 | 1.99066547181542 | 0.188732637538479
1 | 3 | 0.996339265815391 | 0.0944617466786136
2 | 6 | 3.06707966333329 | 0.306833717581594
2 | 4 | 2.97023626766526 | 0.29714540740456
2 | 1 | 3.9585857173191 | 0.396020875013846

(6 rows)

The following statement computes the above relation and updates the relevant hyper-parameters.

update eduP given evidence (select * from eduP where level='phd') is not empty;

Internally, Beta-MayBMS reuses the MayBMS query-engine for computing conditional proba-
bilities in the form P[xi |φ j ,H], through query rewriting. New internal functions were added for
computing the actual Bayesian update and identify the new set of hyper-parameters that minimize
the relative entropy w.r.t. the posterior. Beta-MayBMS does not use CP-plans. All the querying
capabilities of MayBMS are maintained, without performance loss. For example, the following
query will return the probability of someone having a PhD:

select conf() from (select * from eduP where level='phd') sq;
conf

0.79
(1 row)

Received December 2017; revised August 2018; accepted September 2018

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Background
	2.1 Relational Databases
	2.2 Tuple-independent Probabilistic Databases

	3 Beta Probabilistic Databases
	3.1 Modeling Independent Observations from H

	4 Belief Updating
	4.1 Simple case: s=k=1
	4.2 Intermediate case: k=1, s>1
	4.3 General case: k>1, s>1

	5 Parameter Learning (MLE)
	6 Computing conditional probabilities
	6.1 CP-plans: Extensional Evaluation of P[xi|j,H] for Hierarchical Queries

	7 Extension to mutually exclusive events
	7.1 Disjoint-Independent PDBs
	7.2 Dirichlet-Probabilistic Databases (D-PDBs)

	8 Experiments
	8.1 Bayesian updates and D-PDBs
	8.2 Maximum Likelihood Estimation and B-PDBs

	9 Related Work
	10 Conclusions And Future Work
	References
	A Nomenclature
	B Proofs
	C Representing Complex Events from Independent Variables
	D Beta-MayBMS

