
Fast Construction of an Index Tree for Large Non-ordered Discrete Datasets Using
Multi-way Top-down Split and MapReduce

Zhichao Zhou, Xiaoqiang Liu, Yinglan Wang
School of Computer Science and Technology

Donghua University
Shanghai 201620, China

chaosscitech@gmail.com, liuxq@dhu.edu.cn,
wangyl5@qq.com

Qiang Zhu
Department of Computer and Information Science

The University of Michigan, Dearborn
MI 48128, USA

qzhu@umich.edu

Abstract—Effective indexing schemes are crucial in supporting
efficient queries on large datasets from multidimensional Non-
ordered Discrete Data Spaces (NDDS) in many applications
such as genome sequence analysis in bioinformatics. Although
constructing an index structure for a large dataset in an NDDS
via a bulk loading technique is quite efficient (comparing to
using a conventional tuple loading technique), existing bulk
loading techniques cannot meet the scalability requirement for
the fast growing sizes of datasets in contemporary NDDS
applications. To tackle this challenge, we propose a new bulk
loading method for fast construction of an index structure,
called the PND-tree, for large datasets in NDDSs. Specifically,
utilizing the characteristics of an NDDS and a priori knowledge
of the given dataset, we suggest an effective multi-way top-down
dataset split strategy with a MapReduce implementation for
our bulk loading procedure. Experiments demonstrate that the
proposed bulk loading method is quite promising in terms of
the index construction efficiency and the resulting index quality,
comparing to the conventional tuple loading method and a
popular serial bulk loading method for a state-of-arts index tree
in NDDSs.

Keywords—Mulitdimensional Index Tree; Bulk Loading;
Non-orderd Discrete Data Space; MapReduce Programming;
Parallelism.

I. INTRODUCTION

Effective indexing schemes for large datasets in
multidimensional Non-ordered Discrete Data Spaces (NDDS)
[1] are becoming increasingly important for supporting
efficient queries in application areas such as bioinformatics,
social media, and data mining.

A main characteristic of an NDDS is that the data values
on each dimension are discrete and have no inherent ordering.
For example, each k-mer (i.e., a subsequence of fixed length
k) from a genome sequence can be considered as a vector in
a k-dimensional NDDS, where the value of such a vector on
each dimension is a letter chosen from alphabet � =
{�, �, �, �}. Such a data space is fundamentally different form
a traditional (ordered) Continuous Data Spaces (CDS),
where the values on each dimension are continuous and
ordered. Numerous index schemes such as the R-tree [2] and
its variants have been proposed to index datasets in a CDS,
using the geometric concepts such as the rectangle, length,

and area. The existing indexing schemes designed for a CDS
cannot directly be applied to an NDDS since the
corresponding geometric concepts/properties are missing in
the latter. Moreover, contemporary applications tend to
demand queries to be processed on massively large datasets
in an NDDS. As a result, effective indexing schemes and
their constructing/loading techniques are required for
NDDSs.

It was noticed [1][3][4] that, although existing indexing
schemes proposed for a CDS cannot directly be applied to an
NDDS, some of their concepts/strategies can be extended to
an NDDS, which include essential geometric concepts (e.g.,
area, minimum bounding rectangle, etc.), the strategies of
splitting an overflow node, and the policies of loading an
index tree. To support efficient similarity queries on large
datasets in an NDDS, the ND-tree [1] and the NSP-tree [3]
were proposed. The ND-tree adopts a data partitioning based
index structure, while the NSP-tree employs a space
partitioning based index structure. The key idea is to extend
the relevant geometric concepts as well as some indexing
strategies used in CDSs to NDDSs. More recently, the
BoND-tree [4] was proposed for supporting efficient box
queries (a type of query which is defined by specifying a set
of allowed values in each dimension) in an NDDS.

However, the original index constructing algorithms
provided for all the above index trees in NDDSs employ the
conventional dynamic tuple loading method [4]. A major
weakness of such a loading method is the tremendous time
incurred in constructing the index tree when the dataset is
large. For a large dataset, constructing its index structure by
a bulk loading technique [18] typically yields a faster
construction as well as a better index tree structure [14].
Several generic bulk loading techniques were discussed in
[19][20][5][6]. In general, bulk loading methods can be
classified into three categories: sort-based, buffer-based, and
sample-based. As a buffer-based bulk loading method,
NDTBL [5] and NSPBT [6] were developed for the ND-tree
and the NSP-tree in NDDSs, respectively. However, no bulk
loading technique has been reported in the literature for the
recent BoND-tree in NDDSs. In recent years, with the
popularity of MapReduce, a number of indexing techniques
[7][8][9][10] based on MapReduce [15] have been proposed.
So far, the concept of parallel bulk loading for indexes in an

2016 International Conference on Advanced Cloud and Big Data

978-1-5090-3677-6/16 $31.00 © 2016 IEEE

DOI 10.1109/CBD.2016.45

49

NDDS has not yet been explored. On the other hand, the
concept of the tree topology was introduced to improve bulk
loading techniques for high-dimensional indexes in [12][13].

We notice that data in an NDDS (such as k-mers from
genome sequences) for many applications are fairly static,
which implies that the properties of such a dataset can be
utilized in developing a bulk loading technique. In this paper,
we introduce a bulk loading method for fast construction of a
new index structure, called the PND-tree, for a large static
dataset in NDDSs. The PND-tree is similar to the recent
BoND-tree presented in [4] for supporting efficient box
queries in NDDSs. However, it is designed with a high
flexibility for the node capacity so that a bulk loading
approach can be effectively applied for the index
construction. Our bulk loading method splits a given dataset
using a multi-way top-down strategy with a MapReduce
implementation and constructs the index nodes of the PND-
tree for the partitioned dataset from bottom up. The method
exploits a priori knowledge of the given dataset to determine
the tree topology in order to improve the construction
performance. It also employs an unbalanced split policy to
ensure the query performance for the resulting index tree.
Our experiments demonstrate that the proposed method can
achieve high efficiency for the index construction as well as
good quality for the constructed index tree.

The rest of the paper is organized as follows. Section II
discusses some closely related work. Section III presents the
technical details of our bulk loading method. Section IV
discusses the experimental results. Section V concludes the
paper and discusses some future research directions.

II. RELATED WORK

In [7][8][9][10], MapReduce-based bulk loading (or
packing) methods were suggested to speed-up the
construction of an R-tree and ensure performance for large
static spatial datasets. These methods have two main phases:
first, using the MapReduce programming to parallel divide
the given dataset into small groups that can fit into a disk
page (data page) in a top-down fashion; second, recursively
constructing the index nodes of an R-tree from bottom up. In
the first phase, both the index quality and the index
construction speed depend on the split strategy which adopts
clustering based on space filling curves (or fractals) [11].
Since sophisticated space filling curves are known to be
good for grouping adjacent points in (continuous)
multidimensional space and easy to implement using the
MapReduce programming model, all of the above methods
mainly focus on the second phase. In a CDS, space filling
curves are used to impose a linear ordering on
multidimensional objects in the space. Although they cannot
be used in an NDDS, whose dimension values have no
ordering, the idea of adopting MapReduce to improve the
node splitting speed can be utilized.

The bulk loading techniques proposed in [12][13] exploit
a priori knowledge of a given static dataset to determine the
topology of a tree in advance and then use a split strategy to
partition the dataset on the basis of the topology. The
topology of a tree involves the height of the tree, the fan-out
of a directory (non-leaf) node, the capacity of a data page,

and the number of objects stored in each subtree. The priori
knowledge is static information which is invariant during the
construction such as the number of objects, the
dimensionality of the data space, the page capacity and the
storage utilization [12]. According to their theoretical
analysis and experimental results, the topology of the tree
improves both construction time and query performance.
Although the topology–based split strategies were designed
for CDSs, we note that they may be utilized and extended for
NDDSs as long as we can determine the split dimension and
the deviation among the sizes of subsets/subtrees.

III. BULK LOADING THE PND-TREE

A. Basic Concepts and Tree Structure
Since all the concepts/properties pertaining to an NDDS

are presented in detail in [1][3][4][5][6], we only introduce
some essential geometric concepts that are closely related to
our work. We assume that �� (consisting of a finite number
of non-ordered letters, 1 ≤ 	 ≤
) is the alphabet for the 	-th
dimension of a
-dimensional NDDS Ω� = � × �� × … ×
�� , and �� (⊆Ai) is the 	 -th component set of a discrete
rectangle � = � × �� × … × �� in Ω� . Thus, the
(dimension) span (or length of the edge) on the 	 -th
dimension of � is |��| , and the area of � is |�| × |��| ×
… × |��|. Moreover, the concept of the discrete minimum
bounding rectangle (DMBR) of a set of given discrete
rectangles/vectors is defined as follows: the 	-th component
set of the DMBR is the union of the 	 -th component
sets/values of all the discrete rectangles/vectors in the given
set. To facilitate the discussion of our method, we will also
present some new concepts when needed.

The tree structure of a PND-tree is similar to that of a
BoND-tree [4]. Each tree node occupies one disk page/block.
A leaf node in a PND-tree contains an array of entries of the
form (V, P), where V is an indexed vector (key) and P is the
pointer to the object corresponding to V in the database. A
non-leaf node in a PND-tree contains an array of entries of
the form (D, P), where D is the DMBR of the child node
corresponding to the relevant entry and P is the pointer to
that child node. Each node in a PND-tree has a desired
minimum space utilization. Like the BoND-tree, we also use
a bitmap structure to represent DMBR information in a non-
leaf node entry. Although both the PND-tree and the BoND-
tree aim at supporting efficient box queries, they possess the
following main differences: i) the minimum space utilization
for the nodes of a PND-tree is desired (i.e., allowing certain
tolerance) while it is required/guaranteed for a BoND-tree; ii)
the sets of splitting heuristics for the two trees are different.
These differences allow the PND-tree to be constructed
efficiently and effectively by applying our bulk loading
method.

B. Main Ideas of MapReduce-Based Bulk Loading
Inspired by the ideas of the MapReduce-based bulk

loading methods and the topology-based split strategies for
CDSs mentioned in Section II, in conjunction with the
consideration of the special characteristics of an NDDS, we
propose a bulk loading method for the PND-tree in NDDSs.

50

In particular, a new split strategy is proposed to make use of
the topology of tree and the parallel computing by
MapReduce. More specifically, the proposed method mainly
deals with the following subtasks:

� Using a theoretical model to determine the tree
topology (e.g., the height of the tree, the fan-out of a
directory node);

� Adopting a heuristic-based multi-way split strategy
to partition a dataset;

� Applying parallel partitioning for a dataset with
MapReduce;

� Constructing the index tree according to the
partitioned dataset.

Similar to the approaches used in [7][8][9][10], our bulk
loading method also has two main phases: the first three
subtasks in the above list are the components of the first
phase for splitting the dataset in a top-down fashion, and the
last subtask in the above list is the job for the second phase
for constructing index tree nodes from bottom up. A
prerequisite for partitioning a dataset for indexing in our
method is the topology of the target index tree. Moreover,
the split of a subset depends on the results of the previous
splits. Although the first three subtasks are performed in a
nested fashion, we will present them separately to maintain
clarity. Note that the last subtask is performed serially
outside the first phase because the node information at all the
levels (e.g., the number of directory entries or data objects,
DMBR, etc.) has been calculated and saved during the
partitioning process.

C. Tree Topology
Given a dataset, the first step of our method is to

determine the topology of the target index tree. We use the
user-specified minimum space utilization of a node to
calculate the fan-out of the root node of the tree. For a tree
with � data objects, we let �������� and �������� be the
maximum and minimum capacities of a data (i.e., leaf) node,
respectively, and ������������ and ������������ be the
maximum and minimum fan-outs of a directory node,
respectively. �������� and ������������ are determined by
the node/page size and the data/directory entry size. There
are relationships shown as follows: �������� = !�������� ×
"	�#$��%&�	'	(��	��) , ������������ = ⌈������������ ×
"	�#$��%&�	'	(��	��⌉. Hence the height of the tree is:

ℎ = .log/��023456758 9 :
;456<>?@

BC + 1. ���
Thus, the fan-out of the root node of the tree can be

calculated according to the following formula:

������(�) = min(. �
����G���(ℎ − 1)C , ������������)

= min(. :
;456<>?@×/��023456758HIJC , ������������. (2)

All of the above involved parameters are determined by
the size of a tree node, the size of a data object entry, the size
of a directory entry and the minimum space utilization. In
Section II, we have stated that the priori knowledge is static
information, which means both the height and the fan-out of
the root node of the tree are calculated easily according to (1)

and (2). Note that we evaluate (1) and (2) only once to
determine the height of the tree and the fan-out of the root
node of the tree. Furthermore, we use �������� (rather than
��������) in the above formulas to achieve a better
flexibility in splitting a dataset so that the sizes of the subsets
can be either smaller or larger than an expected size (rather
than be smaller only). This flexibility allows us to better
balance between minimizing the overlap among subsets and
making the index tree height smaller to achieve a good query
performance using the target index tree. Efforts are also
made to achieve a near-100% guarantee for the minimum
space utilization to meet the user’s space requirement as
much as possible.

D. Dateset Split Strategy

Fig. 1. The split tree.

Based on the tree topology, we know that the fan-out of
the root node of the target index tree equals to ������(�)
and that of the non-leaf (directory) node of the target index
tree equals to ������������ . Note that, for a reason similar
to using �������� , we do not use ������������ here. After
the fan-out K of a specific directory node $ with � data
objects of the target index tree has been determined, we have
to apply a split strategy to determine K subsets of the current
dataset. The split strategy adopted in [12][13] bisects a
dataset recursively, resulting in a binary split tree (see Fig. 1
(a)) for a directory node of the target index tree. However,
our method divides the dataset into multiple subsets
repeatedly based on the desired requirements of the PND-
tree. Therefore, our split strategy generates a multi-way split
tree (see Fig. 1 (b)) for partitioning the dataset corresponding
to a directory node p of the target index tree. We consider the
root node of the split tree to be corresponded to the directory
node $ of the target index tree. Thus, the leaf nodes at
different levels of the split tree correspond to the child nodes
of the directory node $ of the target index tree. That is to say,
the total number of leaf nodes in the split tree is K. Note that
the split dimensions of the datasets corresponding to each
directory node in the split tree are typically different.
Furthermore, our split strategy allows to produce an
acceptable deviation � (e.g., under 1%) among the sizes of
subsets corresponding to leaf nodes in the split tree. Let
� = ⌈�/K⌉ ∗ (1 − �), v = ⌈�/K⌉ ∗ (1 + �). Thus, the size
of the subset corresponding to a leaf node in the split tree is
in the interval [�, N] . Although the deviation may not
guarantee the minimum space utilization for the nodes of the
target index tree, it accelerates the multi-way split procedure

51

while maintaining a balanced tree. The application of the
split strategy has two main phases: choosing candidate
partitions and choosing the best partition. At each level of
the split tree, splitting an arbitrary non-leaf node into child
nodes need both the phases. The detailed strategy is
described as follows.

Generating Candidate Partitions: In this phase, we
need to find a set of candidate partitions. We group � data
objects in the dataset X corresponding to the non-leaf node $
of the target index tree into a partition according to some
special characteristics, such as occurrences and distributions
of dimension values. It is necessary to examine each
dimension and find out all candidate partitions on each
dimension. Before describing the candidate partitions
generating method for a certain dimension, let us first
introduce several necessary concepts/notations. Considering
a partition Pi with O (O ≤ K) groups for X according to the 	-
th dimension, let ��P (1 ≤ 	 ≤
, 1 ≤ Q ≤ |��|) be the data
subset with data objects containing the Q-th letter (such as
“�”) of the component set �� of the corresponding DMBR
for the 	-th dimension, #�� (1 ≤ 	 ≤
, 1 ≤ R ≤ O) be the
data subset corresponding to the R-th group in the partition
Pi, and ��� (1 ≤ 	 ≤
, 1 ≤ R ≤ O) be the 	-th component
set of the discrete rectangle corresponding to the R-th group.
We obtain some statistics included letter-frequency S��PS
(∑ S��PSP = �), span |��| , group-size |#��| (∑ |#��|� = �),
and group-span (or length of the edge) |���|. It is clear that
letter-frequency and span represent the occurrences and
distributions of dimension values. Meanwhile, group-size
and group-span represent the characteristics of a partition.
Since span |��| (e.g., |��| = 4 in a genome sequence dataset)
is usually smaller than the fan-out K and all letter-frequencies
S��PS’s in the dimension are not approximately equal, it is
infeasible to ensure that each group contains only one letter
in the dimension (i.e., |���| = 1). We apply some strategies
to alleviate the problem. To further split a group into V�
(1 ≤ R ≤ O) smaller subgroups (corresponding to leaf
nodes in the split tree) with a size in the interval [�, N], it is
necessary to make sure that the group-size |#��| of each
group is in the interval [� ∗ V�, N ∗ V�] (i.e. |#��| ∈
[� ∗ V�, N ∗ V�]) if there exists a positive integer V� . To
ensure query performance, we first put the data objects into
|��| subsets according to letters in the dimension. That is to
say, the size of a subset equals to S��PS . There is a
straightforward two-step grouping method. In the first step,
the method generates all combinations of |��| subsets. Let
X(Y, Z)be the number of ways dividing Y different elements
into Z groups. Clearly, X(Y, Z) = 1 where y=1,x , and
X(Y + 1, Z) = ZX(Y, Z) + X(Y, Z − 1) where 2 ≤ y ≤ x .
Thus, there are X̂(|��|) = _∑ `(|;5|a3)

(3a)! ∙ � |;5|a |;5|
3d e − 1

possible combinations for this problem, where f(h) =
∑ (−1)j

j!
Gjdk . For example, if |��| = 4 , then X̂(4) = 14 .

Each combination can be considered as a partition. Thus,
there are several groups in each combination, and each group
consists of (i.e., merging) one or more subsets. In the second
step, the method adds a combination into the set of candidate

partitions if group-size |#��| of each group in the
combination is in the interval [� ∗ V�, N ∗ V�]. However, in
general, it is possible that span |��| is large. To reduce the
computation of combinations, we use a simple greedy
approach with three steps. In the first step, we first mark a
subset as a group if the size of the subset is in the
interval [� ∗ V�, N ∗ V�] because such a group can be
directly divided into V� smaller subgroups (corresponding to
leaf nodes in the split tree) with a size in the interval [�, N].
In the second step, we generate all combinations of the
remaining subsets. In the last step, if group-size |#��| of each
group in a combination is in the interval [� ∗ V�, N ∗ V�],
we add a partition formed by the groups with one marked
subset and the groups (with multiple subsets being merged)
in the combination into the set of candidate partitions. In
addition, we record group-sizes and group-spans of groups
in each candidate partition as the basis for choosing the best
partition later on.

Choosing the Best Partition: Before describing this
phase, let us introduce two new concepts: the group-spans
area of a partition is the product of its group-spans
∏ |���|q�d , and the group-sizes area of a partition is the
product of its group-sizes ∏ |#��|q�d . Based on them, we
have identified the following two effective heuristics for
choosing a partition (i.e., a split) of a dataset or subset:

ST-1: Choose the partition that generates a minimum
group-spans area (“Minimum Group-spans Area”).

ST-2: Choose the partition that generates a minimum
group-sizes area (“Minimum Group-sizes Area”).

If the group-spans area is minimal (i.e., ST-1), the
deviation on spans of groups is maximal. Thus, the number
of groups with a small group-span such as having one letter
in the split dimension is maximized. That is to say, the
partition meets the criterion “Minimum Balance”, which is
one of the effective splitting heuristics suggested for the
BoND-tree [4] in NDDSs. If there is a tie, then ST-2 is
applied. If the group-sizes area is minimal, then the deviation
on the sizes of groups is maximal. Thus, the number of
groups with a small group-size such as being in the
interval [�, N] is maximized. That is to say, the number of
groups need to be further split is minimized.

The above two phases can determine a good partition of
the dataset associated with the non-leaf node $ in the target
index tree which corresponds to the root node at level 1 in
the split tree (see Fig. 1 (b)). For a group with size in [u, v], it
becomes a leaf node at level 2 of the split tree. For a large
group (i.e., size in [� ∗ V�, N ∗ V�]) with one letter in the
chosen partition, it is easy to divide it into V� smaller
subgroups corresponding to the leaf nodes at level 2 in the
split tree. The chosen partition may contain groups with
multiple letters and sizes in [� ∗ V�, N ∗ V�] in the split
dimension. We consider such a group as a non-leaf node at
next level 2 in the split tree and split the group by applying
the same split process (i.e., first generate candidate
subpartitions and then choose the best subpartition). Note
that the first phase generates candidate subpartitions of such
a group corresponding to a non-leaf node at next level 2 in
the split tree (not the non-leaf node $ in the target index tree
corresponding to the root node at level 1 in the split tree) and

52

the split dimension of each non-leaf node at level 2 in the
split tree is typically different from that for level 1 in the split
tree. According to this idea, we split the groups with multiple
letters and sizes in [� ∗ V�, N ∗ V�] in a split dimension
recursively until that the sizes of the final groups are in the
interval [�, N]. It is clear that the groups in the above chosen
partition are overlap-free since the 	-th component sets of the
DMBRs corresponding to the groups along the split
dimension i are disjointed according to the above split
strategy. However, it may not always be feasible to find such
a good partition with no overlap (e.g., none of the sizes of
the groups in any of the possible partitions is within [� ∗ V�,
N ∗ V�]). In such a case, we choose a partition with overlap.
Specifically, we randomly select a split dimension 	, sort the
dataset ��P in the descend order of their sizes and then
distribute them into groups with an approximately equal size.
To reduce overlap, we place the same letter in the same
group as much as possible.

E. Parallel Partition with MapReduce
Since splitting a dataset at level L takes a resulting subset

from a dataset at level L-1 as input, it is infeasible to split the
datasets at different levels at the same time. Therefore, to
speed up the split process, we put effort in introducing
parallelism into splitting datasets at one level. For simplicity
of the description, let us consider a dataset as input. The first
step is to calculate the spans and letter-frequencies on each
dimension of the input dataset. In this step, we set the
number of the Reducers to 1 and the algorithm is described
as follow.

Algorithm 1 Calculation of Spans and Letter-frequencies
1. function MAP(key, value)

// value is a data object in a d-dimensional NDDS vector
2. // key is the offset of a data object in the input file
3. emit(key, value);
4. end function
5. n ← 0; // the size of dataset
6. letterSet[
] ← ∅ ; // sets of letters in different

dimensions
7. letterFrequency[
][|�|] ← 0;

// frequencies of letters in different dimensions
8. function REDUCE(key, values)

//calculate span and frequency
9. for i =1 to length(values):
10. letterFrequency[i][values[i])] + +;
11. if values[i] ∉ letterSet[i]:
12. letterSet[i] = letterSet[i] ∪ {values[i]};
13. end if
14. end for;
15. n++;
16. end function
17. function CLEANUP() // output span and frequency
18. emit(n);
19. for i =1 to
:
20. emit(null, |letterSet[i]|);
21. for j = 1 to|A|:
22. emit(null, letterFrequency [i][j]);
23. end for;
24. end for;
25. end function

After obtaining the spans and letter-frequencies, we use
the split strategy described in detail in the last subsection to
find the best partition. Meanwhile we calculate the relevant
DMBRs, which will be used to construct the target index tree
in the second phase of our entire bulk loading method (i.e.,
constructing index tree nodes from bottom up). We then
distribute data objects to subsets according to the split
dimension 	 and the split position determined by the best
partition. Note that the split position is given by the letters in
each group. The number of Reducers is set to the number O
of groups. We use the following algorithm to distribute data
objects to subsets.

Algorithm 2 Distributing Data Objects
1. function MAP(key, value)
2. for m = 1 to O :
3. if value[i] ∈ group[m]:
4. emit(m, value);
5. end if;
6. end for;
7. end function
8. function REDUCE(key, values)
9. for value in values:
10. emit(null, value);
11. end for;
12. end function
It is worth mentioning that we use a partitioning function

(e.g., Q mod O) to send the data objects from the same group
to the same Reducer. It is necessary to divide these groups
with multiple letters and sizes in [� ∗ V�, N ∗ V�] in the
split dimension further. Thus, for these groups, we need to
apply the parallel partitioning process again. The procedure
is similar to the above, except that these groups become the
input. To split continually, we exploit the iterative
MapReduce.

F. Index Nodes Construction
During the top-down split process, we get DMBRs

according to the spans and letter-frequencies. Each DMBR
represents a space or subspace corresponding to a dataset or
subset at a level. We make use of the DMBRs to construct
the index tree. The bottom-up fashion is adopted to simply
merge the DMBRs of datasets at level L as the DMBRs of
level L-1 (see Fig. 2). Note that this process is performed
sequentially outside the MapReduce environment. The
description of this process is not given in this paper since it is
quite straightforward.

Fig. 2. The index nodes construction process.

53

IV. EXPERIMENTS

To evaluate the performance of our method, we
conducted extensive experiments. In this section, we present
some typical results.

A. Experiment Setup
Datasets: To evaluate the performance of our bulk-

loading method, we performed experiments on real genome
sequence datasets of various sizes. The genomic data was
extracted from GenBank [16], which were broken into k-
mers /vectors of 25 characters long (i.e., 25 dimensions) [17].

Competitors: Since our PND-tree is similar to the
BoND-tree with a few changes aiming to facilitate the bulk
loading process, we compare the construction efficiency as
well as the query performance of the two index trees to
check if the former indeed can be constructed more
efficiently with a comparable quality. Hence, the first
competitor for the PND-tree constructed from our bulk
loading method in the experiments is the original BoND-tree
constructed from the original tuple loading algorithm. The
second competitor is the buffered BoND-tree built from a
buffer-based bulk loading method extended from the one for
the ND-tree [5], which uses an auxiliary buffer-tree to bulk
load the target index tree. The third one is our own PND-tree
constructed from the method described in the above section.
The fourth one is similar to the third one except that the
partition process adopts a sequential (i.e., non-parallel/non-
MapReduce) implementation. For simplicity, we call it the
SND-tree in the discussion.

Hardware: The experiments were conducted on eleven
machines. Each of them runs 64 bit CentOS 6.5 operating
system with 4 Core Intel Xeon 2.4 GHz CPU and 8GB
memory. The experiments for the original BoND-tree, the
buffered BoND-tree and the SND-tree were run on three
individual machines, respectively. The experiments for the
PND-tree were run on the Hadoop [21] Cluster, where one of
the remaining eight machines was used as the master and the
others are the slaves in the cluster.

Measurement: Both the index tree construction
efficiency and the query performance using the constructed
index tree are considered. To evaluate the index tree
construction efficiency, we measured the construction time
on datasets of various sizes. To compare the query
performance, 18000 random uniform box queries were
executed and the average number of query I/Os was
measured.

B. Index Tree Construction Efficiency
Fig. 3 shows the comparison of construction times for

the four index tree constructing methods. Although the
buffered BoND-tree is constructed from a bulk loading
algorithm which runs on one machine like the tuple loading
algorithm for the original BoND-tree, it exploits the buffer-
based bulk loading strategies to speed up the index
construction process. Therefore, the construction of the
buffered BoND-tree is faster than that of the original BoND-
tree. On the other hand, the Hadoop/MapReduce
environment can greatly speed up the time-consuming data
partitioning phase of our bulk loading process. Note that the

time for the second phase of our method for the index tree
construction is too small, comparing to the first phase,
which can actually be neglected. It is clear that our method
outperforms the others in terms of the construction time,
especially, for large datasets.

Fig. 3. Comparison of index construction performance.

C. Query Performance Using Index
Fig. 4 shows the comparison of query performance in

terms of the number of I/Os when queries were processed
using the index trees constructed from the four respective
methods. Note that the PND-tree and the SND-tree are
essentially the same except using different constructing
methods. From the figure, we can see that the query
performance of the PND-tree/SND-tree is comparable to
those of the original BoND-tree and the buffered BoND-tree.
This demonstrates that our bulk loading method is quite
promising since it can construct an index tree with a
comparable quality but using much less time, especially for a
large dataset.

Fig. 4. Comparison of query performance using the built index trees.

V. CONCLUSION

This paper presents an efficient bulk loading method for
an index structure (i.e., the PND-tree) supporting box queries
on large datasets in NDDSs. To speed up the index
construction and ensure the query performance, we adopt an
effective multi-way top-down dataset split strategy enhanced
with a MapReduce implementation. Experimental results
demonstrate that our method can improve the index tree

54

construction efficiency without losing the quality of the
resulting index tree for a large dataset in an NDDS.

Our work only represents an initial research effort in
developing efficient index tree constructing methods using
MapReduce for NDDSs. Further research is needed to solve
all the relevant challenges. In particular, we will explore
efficient MapReduce-based parallel strategies for bulk
loading other index trees such as the ND-tree and the NSP-
tree for large datasets in NDDSs.

ACKNOWLEDGMENT

This study was supported by Innovation Program of
Shanghai Municipal Education Commission (12ZZ060).

REFERENCES

[1] Qian G., Zhu Q., Xue Q., and Pramanik S. “The ND-Tree : A
Dynamic Indexing Technique for Multidimensional Non-ordered
Discrete Data Spaces.” Proceedings of VLDB, 2003:620-631.

[2] Guttman A. “R-trees: a Dynamic Index Structure for Spatial
Searching.” ACM SIGMOD Record, 1984, 14(2):47-57.

[3] Qian G., Zhu Q., Xue Q., and Pramanik S. “A Space-partitioning-
based Indexing Method for Multidimensional Non-ordered Discrete
Data Spaces.” ACM Transactions on Information Systems, 2006,
31(2):439-484.

[4] Chen C., Watve A., Pramanik S., and Zhu Q. “The BoND-Tree: An
Efficient Indexing Method for Box Queries in Nonordered Discrete
Data Spaces.” IEEE Transactions on Knowledge & Data Engineering,
2013, Vol. 25(No. 11):2629-2643.

[5] Seok H. J., Qian G., Zhu Q., Oswald A. R., and Pramanik S. “Bulk-
Loading the ND-Tree in Non-ordered Discrete Data Spaces.”
Proceedings of the 13th International Conference on Database
systems for advanced applications. Springer-Verlag, 2008:156-171.

[6] Qian G., Seok H. J., Zhu Q., and Pramanik S. “Space-Partitioning-
Based Bulk-Loading for the NSP-Tree in Non-ordered Discrete Data
Spaces.” Lecture Notes in Computer Science, 2008, 5181:404-418.

[7] Cary A., Sun Z., Hristidis V., and Rishe N. “Experiences on
Processing Spatial Data with MapReduce.” Scientific and Statistical
Database Management, 21st International Conference, SSDBM 2009,
2009:302-319.

[8] Liu Yi, Jing Ning, Chen Luo, and Chen Huizhong. “Parallel Bulk-
Loading of Spatial Data with MapReduce: An R-tree Case.” Wuhan
University Journal of Natural Sciences, 2011, 16(6):513-519.

[9] Tan H., Luo W., Mao H., and Ni L. M. “On Packing Very Large R-
trees.” Proceedings of IEEE 14th International Conference on Mobile
Data Management. IEEE, 2012:99-104.

[10] Li C., Chen J., Jin C., Zhang R., and Zhou A. “MR-tree: an efficient
index for MapReduce.” International Journal of Communication
Systems, 2014, 27(6):828-838.

[11] Lawder J. K., and King P. J. H. “Using Space-Filling Curves for
Multi-dimensional Indexing.” Proceedings of British National
Conference on Databases: Advances in Databases. Springer-Verlag,
2000:20-35.

[12] Berchtold S., Böhm C., and Kriegel H. P. “Improving the Query
Performance of High-Dimensional Index Structures Using Bulk-Load
Operations.” Lecture Notes in Computer Science, 1998, 1377:216-
230.

[13] Böhm C., and Kriegel H. P. “Efficient Bulk Loading of Large High-
Dimensional Indexes.” Proceedings of International Conference on
Data Warehousing and Knowledge Discovery. Springer-Verlag,
1999:251-260.

[14] Leutenegger S. T., Lopez M. A., Edgington J. “STR: A Simple and
Efficient Algorithm for R-Tree Packing.” Proceedings of 13th
International Conference on Data Engineering. IEEE, 1997:497-506.

[15] Dean J., and Ghemawat S. “MapReduce: Simplified Data Processing
on Large Clusters.” Proceedings of Operating Systems Design and
Implementation (OSDI), 2004, 51(1):107-113.

[16] Genbank. http://www.ncbi.nlm.nih.gov/Genbank/
[17] Kent W. J. “BLAT--the BLAST-like alignment tool.” Genome

Research, 2002, 12(4):656-664.
[18] Dewitt D. J., Kabra N., Luo J., Patel J. M., and Yu J. B.

“Client─Server Paradise.” Proceedings of the 20th International
Conference on Very Large Data Bases. Morgan Kaufmann Publishers
Inc., 2001:558-569.

[19] Bercken J. V. D., Seeger B., and Widmayer P. “A Generic Approach
to Bulk Loading Multidimensional Index Structures.” Proceedings of
the 23rd International Conference on Very Large Databases,
1997:406-415.

[20] Bercken J. V. D., and Seeger B. “An Evaluation of Generic Bulk
Loading Techniques.” Proceedings of the 27th International
Conference on Very Large Data Bases, 2001:461-470.

[21] Apache Hadoop. http://hadoop.apache.org

55

