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Abstract—Effective indexing schemes are crucial in supporting 
efficient queries on large datasets from multidimensional Non-
ordered Discrete Data Spaces (NDDS) in many applications 
such as genome sequence analysis in bioinformatics. Although 
constructing an index structure for a large dataset in an NDDS 
via a bulk loading technique is quite efficient (comparing to 
using a conventional tuple loading technique), existing bulk 
loading techniques cannot meet the scalability requirement for 
the fast growing sizes of datasets in contemporary NDDS 
applications. To tackle this challenge, we propose a new bulk 
loading method for fast construction of an index structure,
called the PND-tree, for large datasets in NDDSs. Specifically, 
utilizing the characteristics of an NDDS and a priori knowledge 
of the given dataset, we suggest an effective multi-way top-down 
dataset split strategy with a MapReduce implementation for 
our bulk loading procedure. Experiments demonstrate that the 
proposed bulk loading method is quite promising in terms of 
the index construction efficiency and the resulting index quality, 
comparing to the conventional tuple loading method and a 
popular serial bulk loading method for a state-of-arts index tree 
in NDDSs. 

Keywords—Mulitdimensional Index Tree; Bulk Loading; 
Non-orderd Discrete Data Space; MapReduce Programming; 
Parallelism. 

I. INTRODUCTION

Effective indexing schemes for large datasets in 
multidimensional Non-ordered Discrete Data Spaces (NDDS) 
[1] are becoming increasingly important for supporting 
efficient queries in application areas such as bioinformatics, 
social media, and data mining. 

A main characteristic of an NDDS is that the data values 
on each dimension are discrete and have no inherent ordering. 
For example, each k-mer (i.e., a subsequence of fixed length 
k) from a genome sequence can be considered as a vector in 
a k-dimensional NDDS, where the value of such a vector on 
each dimension is a letter chosen from alphabet � =
{�, �, �, �}. Such a data space is fundamentally different form 
a traditional (ordered) Continuous Data Spaces (CDS), 
where the values on each dimension are continuous and 
ordered. Numerous index schemes such as the R-tree [2] and 
its variants have been proposed to index datasets in a CDS, 
using the geometric concepts such as the rectangle, length, 

and area. The existing indexing schemes designed for a CDS 
cannot directly be applied to an NDDS since the 
corresponding geometric concepts/properties are missing in 
the latter. Moreover, contemporary applications tend to 
demand queries to be processed on massively large datasets
in an NDDS. As a result, effective indexing schemes and 
their constructing/loading techniques are required for 
NDDSs. 

It was noticed [1][3][4] that, although existing indexing 
schemes proposed for a CDS cannot directly be applied to an 
NDDS, some of their concepts/strategies can be extended to 
an NDDS, which include essential geometric concepts (e.g., 
area, minimum bounding rectangle, etc.), the strategies of 
splitting an overflow node, and the policies of loading an 
index tree. To support efficient similarity queries on large 
datasets in an NDDS, the ND-tree [1] and the NSP-tree [3]
were proposed. The ND-tree adopts a data partitioning based 
index structure, while the NSP-tree employs a space 
partitioning based index structure. The key idea is to extend 
the relevant geometric concepts as well as some indexing 
strategies used in CDSs to NDDSs. More recently, the 
BoND-tree [4] was proposed for supporting efficient box 
queries (a type of query which is defined by specifying a set 
of allowed values in each dimension) in an NDDS. 

However, the original index constructing algorithms 
provided for all the above index trees in NDDSs employ the 
conventional dynamic tuple loading method [4]. A major 
weakness of such a loading method is the tremendous time 
incurred in constructing the index tree when the dataset is 
large. For a large dataset, constructing its index structure by 
a bulk loading technique [18] typically yields a faster 
construction as well as a better index tree structure [14].
Several generic bulk loading techniques were discussed in 
[19][20][5][6]. In general, bulk loading methods can be 
classified into three categories: sort-based, buffer-based, and 
sample-based. As a buffer-based bulk loading method, 
NDTBL [5] and NSPBT [6] were developed for the ND-tree 
and the NSP-tree in NDDSs, respectively. However, no bulk 
loading technique has been reported in the literature for the 
recent BoND-tree in NDDSs. In recent years, with the 
popularity of MapReduce, a number of indexing techniques 
[7][8][9][10] based on MapReduce [15] have been proposed. 
So far, the concept of parallel bulk loading for indexes in an 
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NDDS has not yet been explored. On the other hand, the 
concept of the tree topology was introduced to improve bulk 
loading techniques for high-dimensional indexes in [12][13]. 

We notice that data in an NDDS (such as k-mers from 
genome sequences) for many applications are fairly static, 
which implies that the properties of such a dataset can be 
utilized in developing a bulk loading technique. In this paper, 
we introduce a bulk loading method for fast construction of a
new index structure, called the PND-tree, for a large static 
dataset in NDDSs. The PND-tree is similar to the recent 
BoND-tree presented in [4] for supporting efficient box
queries in NDDSs. However, it is designed with a high 
flexibility for the node capacity so that a bulk loading 
approach can be effectively applied for the index 
construction. Our bulk loading method splits a given dataset 
using a multi-way top-down strategy with a MapReduce 
implementation and constructs the index nodes of the PND-
tree for the partitioned dataset from bottom up. The method 
exploits a priori knowledge of the given dataset to determine 
the tree topology in order to improve the construction 
performance. It also employs an unbalanced split policy to 
ensure the query performance for the resulting index tree. 
Our experiments demonstrate that the proposed method can 
achieve high efficiency for the index construction as well as 
good quality for the constructed index tree. 

The rest of the paper is organized as follows. Section II
discusses some closely related work. Section III presents the 
technical details of our bulk loading method. Section IV
discusses the experimental results. Section V concludes the 
paper and discusses some future research directions. 

II. RELATED WORK

In [7][8][9][10], MapReduce-based bulk loading (or 
packing) methods were suggested to speed-up the 
construction of an R-tree and ensure performance for large 
static spatial datasets. These methods have two main phases: 
first, using the MapReduce programming to parallel divide 
the given dataset into small groups that can fit into a disk
page (data page) in a top-down fashion; second, recursively 
constructing the index nodes of an R-tree from bottom up. In 
the first phase, both the index quality and the index 
construction speed depend on the split strategy which adopts 
clustering based on space filling curves (or fractals) [11].
Since sophisticated space filling curves are known to be 
good for grouping adjacent points in (continuous) 
multidimensional space and easy to implement using the 
MapReduce programming model, all of the above methods 
mainly focus on the second phase. In a CDS, space filling 
curves are used to impose a linear ordering on 
multidimensional objects in the space. Although they cannot 
be used in an NDDS, whose dimension values have no 
ordering, the idea of adopting MapReduce to improve the 
node splitting speed can be utilized. 

The bulk loading techniques proposed in [12][13] exploit 
a priori knowledge of a given static dataset to determine the 
topology of a tree in advance and then use a split strategy to 
partition the dataset on the basis of the topology. The 
topology of a tree involves the height of the tree, the fan-out 
of a directory (non-leaf) node, the capacity of a data page, 

and the number of objects stored in each subtree. The priori 
knowledge is static information which is invariant during the 
construction such as the number of objects, the 
dimensionality of the data space, the page capacity and the 
storage utilization [12]. According to their theoretical 
analysis and experimental results, the topology of the tree 
improves both construction time and query performance. 
Although the topology–based split strategies were designed 
for CDSs, we note that they may be utilized and extended for 
NDDSs as long as we can determine the split dimension and 
the deviation among the sizes of subsets/subtrees. 

III. BULK LOADING THE PND-TREE

A. Basic Concepts and Tree Structure 
Since all the concepts/properties pertaining to an NDDS 

are presented in detail in [1][3][4][5][6], we only introduce 
some essential geometric concepts that are closely related to 
our work. We assume that ��  (consisting of a finite number 
of non-ordered letters, 1 ≤ 	 ≤ 
) is the alphabet for the 	-th 
dimension of a 
-dimensional NDDS Ω� = � × �� × … ×
�� , and ��  (⊆Ai ) is the 	 -th component set of a discrete 
rectangle � = � × �� × … × ��  in Ω� . Thus, the 
(dimension) span (or length of the edge) on the 	 -th 
dimension of �  is |��| , and the area of �  is |�| × |��| ×
… × |��|. Moreover, the concept of the discrete minimum 
bounding rectangle (DMBR) of a set of given discrete 
rectangles/vectors is defined as follows: the 	-th component 
set of the DMBR is the union of the 	 -th component 
sets/values of all the discrete rectangles/vectors in the given 
set. To facilitate the discussion of our method, we will also 
present some new concepts when needed. 

The tree structure of a PND-tree is similar to that of a 
BoND-tree [4]. Each tree node occupies one disk page/block. 
A leaf node in a PND-tree contains an array of entries of the 
form (V, P), where V is an indexed vector (key) and P is the 
pointer to the object corresponding to V in the database. A 
non-leaf node in a PND-tree contains an array of entries of 
the form (D, P), where D is the DMBR of the child node 
corresponding to the relevant entry and P is the pointer to 
that child node. Each node in a PND-tree has a desired 
minimum space utilization. Like the BoND-tree, we also use 
a bitmap structure to represent DMBR information in a non-
leaf node entry. Although both the PND-tree and the BoND-
tree aim at supporting efficient box queries, they possess the 
following main differences: i) the minimum space utilization 
for the nodes of a PND-tree is desired (i.e., allowing certain 
tolerance) while it is required/guaranteed for a BoND-tree; ii)
the sets of splitting heuristics for the two trees are different. 
These differences allow the PND-tree to be constructed 
efficiently and effectively by applying our bulk loading 
method. 

B. Main Ideas of MapReduce-Based Bulk Loading 
Inspired by the ideas of the MapReduce-based bulk 

loading methods and the topology-based split strategies for 
CDSs mentioned in Section II, in conjunction with the 
consideration of the special characteristics of an NDDS, we 
propose a bulk loading method for the PND-tree in NDDSs. 
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In particular, a new split strategy is proposed to make use of 
the topology of tree and the parallel computing by 
MapReduce. More specifically, the proposed method mainly 
deals with the following subtasks: 

� Using a theoretical model to determine the tree 
topology (e.g., the height of the tree, the fan-out of a 
directory node); 

� Adopting a heuristic-based multi-way split strategy 
to partition a dataset; 

� Applying parallel partitioning  for a dataset with 
MapReduce; 

� Constructing the index tree according to the 
partitioned dataset. 

Similar to the approaches used in [7][8][9][10], our bulk 
loading method also has two main phases: the first three 
subtasks in the above list are the components of the first 
phase for splitting the dataset in a top-down fashion, and the 
last subtask in the above list is the job for the second phase 
for constructing index tree nodes from bottom up. A 
prerequisite for partitioning a dataset for indexing in our 
method is the topology of the target index tree. Moreover, 
the split of a subset depends on the results of the previous 
splits. Although the first three subtasks are performed in a 
nested fashion, we will present them separately to maintain 
clarity. Note that the last subtask is performed serially 
outside the first phase because the node information at all the 
levels (e.g., the number of directory entries or data objects, 
DMBR, etc.) has been calculated and saved during the 
partitioning process. 

C. Tree Topology 
Given a dataset, the first step of our method is to 

determine the topology of the target index tree. We use the 
user-specified minimum space utilization of a node to 
calculate the fan-out of the root node of the tree. For a tree 
with �  data objects, we let �������� and ��������  be the 
maximum and minimum capacities of a data (i.e., leaf) node, 
respectively, and ������������  and ������������  be the 
maximum and minimum fan-outs of a directory node, 
respectively. �������� and ������������  are determined by 
the node/page size and the data/directory entry size. There 
are relationships shown as follows:  �������� = !�������� ×
"	�#$��%&�	'	(��	��) , ������������ =  ⌈������������ ×
"	�#$��%&�	'	(��	��⌉. Hence the height of the tree is: 

ℎ = .log/��023456758 9 :
;456<>?@

BC + 1.                       ���
Thus, the fan-out of the root node of the tree can be 

calculated according to the following formula: 

������(�) = min(. �
����G���(ℎ − 1)C , ������������)

= min(. :
;456<>?@×/��023456758HIJC , ������������.    (2) 

All of the above involved parameters are determined by 
the size of a tree node, the size of a data object entry, the size 
of a directory entry and the minimum space utilization. In 
Section II, we have stated that the priori knowledge is static 
information, which means both the height and the fan-out of 
the root node of the tree are calculated easily according to (1) 

and (2). Note that we evaluate (1) and (2) only once to 
determine the height of the tree and the fan-out of the root 
node of the tree. Furthermore, we use ��������  (rather than 
�������� ) in the above formulas to achieve a better 
flexibility in splitting a dataset so that the sizes of the subsets 
can be either smaller or larger than an expected size (rather 
than be smaller only). This flexibility allows us to better 
balance between minimizing the overlap among subsets and 
making the index tree height smaller to achieve a good query 
performance using the target index tree. Efforts are also 
made to achieve a near-100% guarantee for the minimum 
space utilization to meet the user’s space requirement as 
much as possible. 

D. Dateset Split Strategy 

Fig. 1. The split tree. 

Based on the tree topology, we know that the fan-out of 
the root node of the target index tree equals to ������(�)
and that of the non-leaf (directory) node of the target index 
tree equals to ������������ . Note that, for a reason similar 
to using �������� , we do not use ������������  here. After 
the fan-out K  of a specific directory node $  with � data 
objects of the target index tree has been determined, we have 
to apply a split strategy to determine K subsets of the current 
dataset. The split strategy adopted in [12][13] bisects a
dataset recursively, resulting in a binary split tree (see Fig. 1
(a)) for a directory node of the target index tree. However, 
our method divides the dataset into multiple subsets 
repeatedly based on the desired requirements of the PND-
tree. Therefore, our split strategy generates a multi-way split 
tree (see Fig. 1 (b)) for partitioning the dataset corresponding 
to a directory node p of the target index tree. We consider the 
root node of the split tree to be corresponded to the directory 
node $  of the target index tree. Thus, the leaf nodes at 
different levels of the split tree correspond to the child nodes 
of the directory node $ of the target index tree. That is to say, 
the total number of leaf nodes in the split tree is K. Note that 
the split dimensions of the datasets corresponding to each 
directory node in the split tree are typically different. 
Furthermore, our split strategy allows to produce an 
acceptable deviation � (e.g., under 1%) among the sizes of 
subsets corresponding to leaf nodes in the split tree. Let 
� =  ⌈�/K⌉ ∗ (1 − �), v = ⌈�/K⌉  ∗ (1 + �). Thus, the size 
of the subset corresponding to a leaf node in the split tree is 
in the interval  [�, N] . Although the deviation may not 
guarantee the minimum space utilization for the nodes of the 
target index tree, it accelerates the multi-way split procedure 
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while maintaining a balanced tree. The application of the 
split strategy has two main phases: choosing candidate 
partitions and choosing the best partition. At each level of
the split tree, splitting an arbitrary non-leaf node into child 
nodes need both the phases. The detailed strategy is 
described as follows.                                                                                                                                                       

Generating Candidate Partitions: In this phase, we 
need to find a set of candidate partitions. We group � data 
objects in the dataset X corresponding to the non-leaf node $
of the target index tree into a partition according to some 
special characteristics, such as occurrences and distributions 
of dimension values. It is necessary to examine each 
dimension and find out all candidate partitions on each 
dimension. Before describing the candidate partitions 
generating method for a certain dimension, let us first 
introduce several  necessary concepts/notations. Considering 
a partition Pi with O (O ≤ K) groups for X according to the 	-
th dimension, let ��P  (1 ≤ 	 ≤ 
, 1 ≤ Q ≤ |��|) be the data 
subset with data objects containing the Q-th letter (such as 
“�”) of the component set ��  of the corresponding DMBR 
for the 	-th dimension, #��  (1 ≤ 	 ≤ 
, 1 ≤ R ≤ O) be the 
data subset corresponding to the R-th group in the partition 
Pi, and ��� (1 ≤ 	 ≤ 
, 1 ≤ R ≤ O) be the 	-th component 
set of the discrete rectangle corresponding to the R-th group.
We obtain some statistics included letter-frequency S��PS
(∑ S��PSP = � ), span |��| , group-size |#��|  (∑ |#��|� = � ), 
and  group-span (or length of the edge) |���|. It is clear that 
letter-frequency and span represent the occurrences and 
distributions of dimension values. Meanwhile, group-size
and group-span represent the characteristics of a partition. 
Since span |��| (e.g., |��| = 4 in a genome sequence dataset) 
is usually smaller than the fan-out K and all letter-frequencies
S��PS’s in the dimension are not approximately equal, it is 
infeasible to ensure that each group contains only one letter 
in the dimension (i.e.,  |���| = 1). We apply some strategies 
to alleviate the problem. To further split a group into V�
( 1 ≤ R ≤ O ) smaller subgroups (corresponding to leaf 
nodes in the split tree) with a size in the interval [�, N], it is 
necessary to make sure that the group-size |#��|  of each 
group is in the interval  [� ∗ V�, N ∗ V�]  (i.e. |#��| ∈
[� ∗ V�, N ∗ V�]) if there exists a positive integer V� . To 
ensure query performance, we first put the data objects into 
|��| subsets according to letters in the dimension. That is to 
say, the size of a subset equals to S��PS . There is a 
straightforward two-step grouping method. In the first step, 
the method generates all combinations of |��| subsets. Let 
X(Y, Z)be the number of ways dividing Y different elements
into Z  groups. Clearly, X(Y, Z) = 1  where y=1,x , and 
X(Y + 1, Z) = ZX(Y, Z) + X(Y, Z − 1)  where 2 ≤ y ≤ x .
Thus, there are  X̂( |��|) = _∑ `( |;5|a3)

(3a)! ∙ � |;5|a |;5|
3d e − 1

possible combinations for this problem, where f(h) =
∑ (−1)j 

j!
Gjdk . For example, if |��| = 4 , then X̂(4) = 14 . 

Each combination can be considered as a partition. Thus, 
there are several groups in each combination, and each group 
consists of (i.e., merging) one or more subsets. In the second 
step, the method adds a combination into the set of candidate 

partitions if group-size |#��|  of each group in the 
combination is in the interval [� ∗ V�, N ∗ V�]. However, in 
general, it is possible that span |��| is large. To reduce the 
computation of combinations, we use a simple greedy 
approach with three steps. In the first step, we first mark a 
subset as a group if the size of the subset is in the 
interval  [� ∗ V�, N ∗ V�]  because such a group can be 
directly divided into V� smaller subgroups (corresponding to 
leaf nodes in the split tree) with a size in the interval [�, N].
In the second step, we generate all combinations of the 
remaining subsets. In the last step, if group-size |#��| of each 
group in a combination is in the interval [� ∗ V�, N ∗ V�],
we add a partition formed by the groups with one marked 
subset and the groups (with multiple subsets being merged)
in the combination into the set of candidate partitions. In 
addition, we record group-sizes and group-spans of groups 
in each candidate partition as the basis for choosing the best 
partition later on. 

Choosing the Best Partition: Before describing this 
phase, let us introduce two new concepts: the group-spans
area  of a partition is the product of its group-spans 
∏ |���|q�d , and the group-sizes area of a partition is the 
product of its group-sizes ∏ |#��|q�d . Based on them, we 
have identified the following two effective heuristics for 
choosing a partition (i.e., a split) of a dataset or subset: 

ST-1: Choose the partition that generates a minimum 
group-spans area (“Minimum Group-spans Area”).

ST-2: Choose the partition that generates a minimum 
group-sizes area (“Minimum Group-sizes Area”).

If the group-spans area is minimal (i.e., ST-1), the 
deviation on spans of groups is maximal. Thus, the number 
of groups with a small  group-span such as having one letter 
in the split dimension is maximized. That is to say, the 
partition meets the criterion “Minimum Balance”, which is 
one of the effective splitting heuristics suggested for the 
BoND-tree [4] in NDDSs. If there is a tie, then ST-2 is 
applied. If the group-sizes area is minimal, then the deviation 
on the sizes of groups is maximal. Thus, the number of 
groups with a small group-size such as being in the 
interval [�, N] is maximized. That is to say, the number of 
groups need to be further split is minimized. 

The above two phases can determine a good partition of 
the dataset associated with the non-leaf node $ in the target 
index tree which corresponds to the root node at level 1 in 
the split tree (see Fig. 1 (b)). For a group with size in [u, v], it 
becomes a leaf node at level 2 of the split tree. For a large 
group (i.e., size in  [� ∗ V�, N ∗ V�]) with one letter in the 
chosen partition, it is easy to divide it into V� smaller 
subgroups corresponding to the leaf nodes at level 2 in the 
split tree. The chosen partition may contain groups with 
multiple letters and sizes in [� ∗ V�, N ∗ V�]  in the split 
dimension. We consider such a group as a non-leaf node at 
next level 2 in the split tree and split the group by applying 
the same split process (i.e., first generate candidate 
subpartitions and then choose the best subpartition). Note 
that the first phase generates candidate subpartitions of such 
a group corresponding to a non-leaf node at next level 2 in 
the split tree (not the non-leaf node $ in the target index tree 
corresponding to the root node at level 1 in the split tree) and 
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the split dimension of each non-leaf node at level 2 in the 
split tree is typically different from that for level 1 in the split 
tree. According to this idea, we split the groups with multiple 
letters and sizes in [� ∗ V�, N ∗ V�]  in a split dimension 
recursively until that the sizes of the final groups are in the 
interval [�, N]. It is clear that the groups in the above chosen 
partition are overlap-free since the 	-th component sets of the 
DMBRs corresponding to the groups along the split 
dimension i are disjointed according to the above split 
strategy. However, it may not always be feasible to find such 
a good partition with no overlap (e.g., none of the sizes of 
the groups in any of the possible partitions is within  [� ∗ V�,
N ∗ V�]). In such a case, we choose a partition with overlap. 
Specifically, we randomly select a split dimension 	, sort the 
dataset ��P  in the descend order of their sizes and then 
distribute them into groups with an approximately equal size. 
To reduce overlap, we place the same letter in the same 
group as much as possible. 

E. Parallel Partition with MapReduce 
Since splitting a dataset at level L takes a resulting subset 

from a dataset at level L-1 as input, it is infeasible to split the 
datasets at different levels at the same time. Therefore, to 
speed up the split process, we put effort in introducing 
parallelism into splitting datasets at one level. For simplicity 
of the description, let us consider a dataset as input. The first 
step is to calculate the spans and letter-frequencies on each 
dimension of the input dataset. In this step, we set the 
number of the Reducers to 1 and the algorithm is described 
as follow. 

Algorithm 1 Calculation of Spans and Letter-frequencies
1. function MAP(key, value)  

// value is a data object in a d-dimensional NDDS vector
2. // key is the offset of a data object in the input file
3.     emit(key, value); 
4. end function
5. n ← 0; // the size of dataset
6. letterSet[
] ← ∅ ; // sets of letters in different 

dimensions
7. letterFrequency[
][|�|] ← 0;

// frequencies of letters in different dimensions
8. function REDUCE(key, values) 

//calculate span and frequency
9.     for i =1 to length(values):
10.          letterFrequency[i][values[i])] + +;
11.          if values[i] ∉ letterSet[i]:
12.               letterSet[i] = letterSet[i] ∪ {values[i]};
13.          end if
14.     end for;
15.     n++;
16. end function
17. function CLEANUP() // output span and frequency
18.     emit(n);
19.     for i =1 to 
:
20.          emit(null, |letterSet[i]|);
21.          for j = 1 to|A|:
22.              emit(null, letterFrequency [i][j]);
23.          end for;
24.     end for;
25. end function

After obtaining the spans and letter-frequencies, we use 
the split strategy described in detail in the last subsection to 
find the best partition. Meanwhile we calculate the relevant 
DMBRs, which will be used to construct the target index tree 
in the second phase of our entire bulk loading method (i.e., 
constructing index tree nodes from bottom up). We then 
distribute data objects to subsets according to the split 
dimension 	  and the split position determined by the best 
partition. Note that the split position is given by the letters in 
each group. The number of Reducers is set to the number O
of groups. We use the following algorithm to distribute data 
objects to subsets. 

Algorithm 2 Distributing Data Objects
1. function MAP(key, value)
2.    for m = 1 to O :
3.          if value[i] ∈ group[m]:
4.              emit(m, value);
5.          end if;
6.    end for;
7. end function
8. function REDUCE(key, values)
9.     for value in values:
10.       emit(null, value);
11.     end for;
12. end function
It is worth mentioning that we use a partitioning function 

(e.g.,  Q mod O) to send the data objects from the same group 
to the same Reducer. It is necessary to divide these groups 
with multiple letters and sizes in [� ∗ V�, N ∗ V�] in the 
split dimension further. Thus, for these groups, we need to 
apply the parallel partitioning process again. The procedure 
is similar to the above, except that these groups become the 
input. To split continually, we exploit the iterative 
MapReduce. 

F. Index Nodes Construction 
During the top-down split process, we get DMBRs 

according to the spans and letter-frequencies. Each DMBR 
represents a space or subspace corresponding to a dataset or 
subset at a level. We make use of the DMBRs to construct 
the index tree. The bottom-up fashion is adopted to simply 
merge the DMBRs of datasets at level L as the DMBRs of 
level L-1 (see Fig. 2). Note that this process is performed 
sequentially outside the MapReduce environment. The 
description of this process is not given in this paper since it is 
quite straightforward. 

Fig. 2. The index nodes construction process. 
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IV. EXPERIMENTS

To evaluate the performance of our method, we 
conducted extensive experiments. In this section, we present 
some typical results. 

A. Experiment Setup 
Datasets: To evaluate the performance of our bulk-

loading method, we performed experiments on real genome 
sequence datasets of various sizes. The genomic data was 
extracted from GenBank [16], which were broken into k-
mers /vectors of 25 characters long (i.e., 25 dimensions) [17].

Competitors: Since our PND-tree is similar to the 
BoND-tree with a few changes aiming to facilitate the bulk 
loading process, we compare the construction efficiency as 
well as the query performance of the two index trees to 
check if the former indeed can be constructed more 
efficiently with a comparable quality. Hence, the first 
competitor for the PND-tree constructed from our bulk 
loading method in the experiments is the original BoND-tree 
constructed from the original tuple loading algorithm. The 
second competitor is the buffered BoND-tree built from a 
buffer-based bulk loading method extended from the one for 
the ND-tree [5], which uses an auxiliary buffer-tree to bulk 
load the target index tree. The third one is our own PND-tree 
constructed from the method described in the above section. 
The fourth one is similar to the third one except that the 
partition process adopts a sequential (i.e., non-parallel/non-
MapReduce) implementation. For simplicity, we call it the 
SND-tree in the discussion. 

Hardware: The experiments were conducted on eleven 
machines. Each of them runs 64 bit CentOS 6.5 operating 
system with 4 Core Intel Xeon 2.4 GHz CPU and 8GB 
memory. The experiments for the original BoND-tree, the 
buffered BoND-tree and the SND-tree were run on three 
individual machines, respectively. The experiments for the 
PND-tree were run on the Hadoop [21] Cluster, where one of 
the remaining eight machines was used as the master and the 
others are the slaves in the cluster. 

Measurement: Both the index tree construction 
efficiency and the query performance using the constructed 
index tree are considered. To evaluate the index tree 
construction efficiency, we measured the construction time 
on datasets of various sizes. To compare the query 
performance, 18000 random uniform box queries were 
executed and the average number of query I/Os was 
measured. 

B. Index Tree Construction Efficiency 
Fig. 3 shows the comparison of construction times for 

the four index tree constructing methods. Although the 
buffered BoND-tree is constructed from a bulk loading 
algorithm which runs on one machine like the tuple loading 
algorithm for the original BoND-tree, it exploits the buffer-
based bulk loading strategies to speed up the index 
construction process. Therefore, the construction of the 
buffered BoND-tree is faster than that of the original BoND-
tree. On the other hand, the Hadoop/MapReduce 
environment can greatly speed up the time-consuming data 
partitioning phase of our bulk loading process. Note that the 

time for the second phase of our method for the index tree 
construction is too small, comparing to the first phase, 
which can actually be neglected. It is clear that our method 
outperforms the others in terms of the construction time, 
especially, for large datasets. 

Fig. 3. Comparison of index construction performance. 

C. Query Performance Using Index 
Fig. 4 shows the comparison of query performance in 

terms of the number of I/Os when queries were processed 
using the index trees constructed from the four respective 
methods. Note that the PND-tree and the SND-tree are 
essentially the same except using different constructing 
methods. From the figure, we can see that the query 
performance of the PND-tree/SND-tree is comparable to 
those of the original BoND-tree and the buffered BoND-tree. 
This demonstrates that our bulk loading method is quite 
promising since it can construct an index tree with a 
comparable quality but using much less time, especially for a 
large dataset. 

Fig. 4. Comparison of query performance using the built index trees. 

V. CONCLUSION

This paper presents an efficient bulk loading method for 
an index structure (i.e., the PND-tree) supporting box queries 
on large datasets in NDDSs. To speed up the index 
construction and ensure the query performance, we adopt an 
effective multi-way top-down dataset split strategy enhanced 
with a MapReduce implementation. Experimental results 
demonstrate that our method can improve the index tree 
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construction efficiency without losing the quality of the 
resulting index tree for a large dataset in an NDDS. 

Our work only represents an initial research effort in 
developing efficient index tree constructing methods using 
MapReduce for NDDSs. Further research is needed to solve 
all the relevant challenges. In particular, we will explore 
efficient MapReduce-based parallel strategies for bulk 
loading other index trees such as the ND-tree and the NSP-
tree for large datasets in NDDSs. 
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