
Multi-Granularity Locality-Sensitive Bloom Filter
Jiangbo Qian, Qiang Zhu, Senior Member, IEEE, and Huahui Chen

Abstract—In many applications, such as homeland security, image processing, social network, and bioinformatics, it is often required

to support an approximate membership query (AMQ) to answer a question like “is an (query) object q near to at least one of the objects

in the given data setV?” However, existing techniques for processing AMQs require a key parameter, i.e., the distance value, to be

defined in advance for the query processing. In this paper, we propose a novel filter, called multi-granularity locality-sensitive Bloom

filter (MLBF), which can process AMQs with multiple distance granularities. Specifically, the MLBF is composed of two Bloom filters

(BF), one is called basic multi-granularity locality-sensitive BF (BMLBF), and the other is called multi-granularity verification BF

(MVBF). The BMLBF is used to store the data objects. It adopts an alignable locality-sensitive hashing (LSH) function family to support

multiple granularities. The MVBF is used to reduce the false positive rate of the MLBF. The false negative rate of the MLBF is reduced

by applying AND-constructions followed by an OR-construction. In addition, based on the MLBF structure, we suggest a more space-

effective variant, called the MLBF�, to further reduce space cost. Theoretical analyses for estimating false positive/negative rates of the

MLBF/MLBF� are given. Experiments using synthetic and real data show that the theoretical estimates are quite accurate, and the

MLBF/MLBF� technique can handle AMQs with low false positive and negative rates for multiple distance granularities.

Index Terms—Approximate membership query, query processing, Bloom filter, locality-sensitive hashing, false positive/negative rates

Ç

1 INTRODUCTION

AN approximate membership query (AMQ) is used to
answer a question like “is an object qq close to at least one

of the objects in a given data set V?”, where the closeness is
measured by a given distance metric [1], [2]. There is an
increasing demand to efficiently process such AMQs in
numerous application domains including homeland security,
network security, image processing, social network, and bio-
informatics. For example, a homeland security officer may
want to check if an unknown substance (with some observed
characteristics) possibly belongs to a set of listed hazardous
chemicals; a physician may wish to check if the unusual
symptom of a patient shares some characteristics with a
known disease in the past; a network manager would like to
know if the behavior of a user demonstrates the characteris-
tics of some intruders identified in the past; a judge for a
photo competition may want to check if a submitted photo is
similar to one of existing photos from a large image database.

The above application examples showcase several main
characteristics of such AMQs: (1) the comparison of a query
object qq with an object in the given data set V is based on
multiple dimensions/features; (2) a large number of such
query objects have to be processed efficiently; (3) the
answers to most of AMQs are negative. Clearly, it is desir-
able to have an efficient processing method that can quickly
answer AMQs. This method can act as a filter to remove a

large number of negative AMQs (i.e., query objects) from
consideration. The survived AMQs (with a positive answer)
can be further investigated by running a conventional query
on data set V to identify the specific object(s) in V that is
(are) close to the corresponding query object. Since a con-
ventional query is typically expensive to run, filtering
unnecessary queries is an important mechanism to signifi-
cantly improve the overall performance of the system.

The AMQ problem has attracted research attention
recently. The existing work for processing AMQs in a multi-
dimensional space includes the distance-sensitive Bloomfilter
(DSBF) [2] and the locality-sensitive Bloom filter (LSBF) [1].
The DSBF is the first work to process AMQs by utilizing an
integrated method of locality-sensitive hashing (LSH) [3] and
Bloom filter (BF) [4]. The DSBF achieves improvement in both
time and space, comparing to the naivemethod that performs
costly comparisons of the given query object against the entire
givendata object set. The LSBF also uses LSH functions to con-
struct a BF to answer an AMQ. Furthermore, it employs an
additional verification BF to decrease the false positive rate.

One limitation for the DSBF and the LSBF is that they can
handle only a predetermined distance value for a given set
of AMQs on a given set V of data objects. This distance
value is a key parameter that indicates how close a query
object qq is to at least one of the (data) objects in set V is
acceptable. However, identifying such an appropriate dis-
tance value is a nontrivial task due to not only the chal-
lenges of capturing the application semantics but also the
probabilistic properties of the LSH utilized in the proposed
techniques. Too large or too small a distance value may
result in unacceptable query results [1]. Unfortunately, the
DSBF and the LSBF can support only one distance value. In
other words, once a distance value is determined, it cannot
be changed unless the BF structure is rebuilt.

To overcome the above problem, in this paper, we pro-
pose a new technique, called the multi-granularity locality-
sensitive Bloom filter (MLBF), to support multiple distance

� J. Qian and H. Chen are with the School of Information Science and
Engineering, Ningbo University, Zhejiang 315211, China.
E-mail: {qianjiangbo, chenhuahui}@nbu.edu.cn.

� Q. Zhu is with the Department of Computer and Information Science,
University of Michigan, Dearborn, MI 48128.
E-mail: qzhu@umich.edu.

Manuscript received 12 Jan. 2014; revised 20 Sept. 2014; accepted 26 Jan.
2015. Date of publication 5 Feb. 2015; date of current version 11 Nov. 2015.
Recommended for acceptance by A. El Abbadi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2401011

3500 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

values in processing AMQs without having to rebuild the
filter structure for each distance value. The MLBF structure
is composed of a basic multi-granularity locality-sensitive
BF (BMLBF) and a multi-granularity verification BF
(MVBF). The BMLBF is used to store data objects, while the
MVBF is used to verify the membership of a data object by
keeping the correlation information among the BMLBF loca-
tions used for the same data object. Both BMLBF and MVBF
are designed to have multiple granularities that can be used
to support AMQs with different distance values for their
closeness evaluation. Since we adopt strategies to nicely
embed information at a coarser granularity (corresponding
to a larger distance value) into one at a finer granularity
(corresponding to a smaller distance value), the space
needed by our MLBF structure is only for keeping the infor-
mation at the finest granularity without having to duplicate
the space for each supported granularity. In addition, based
on the MLBF structure, we suggest a more space-effective
variant, called the MLBF�, to further reduce space cost.

To develop the MLBF/MLBF� technique, we encounter
the following challenges: (1) how to select an LSH function
family which can support multiple granularities; (2) how to
incorporate a false positive verification scheme which can
handle different granularities; (3) what schemes to adopt
for controlling false negative rates; (4) how to derive theo-
retical models to estimate false positive and negative rates.

The main contributions of this paper are the following:

1. Novel MLBF and MLBF� structures using multiple
granularities to support the efficient processing of
AMQs with different distance values for their close-
ness evaluation are proposed. In particular, the rele-
vant strategies to share storage space among
different granularities and algorithms for structure
construction and query processing are suggested.

2. Theoretical analyses for choosing proper LSH func-
tions for the MLBF/MLBF� and estimating false pos-
itive and negative rates are presented.

3. Experiments on real and synthetic data were per-
formed, which show that the theoretical estimates
are accurate and the MLBF and MLBF� structures
can efficiently and effectively process AMQs with
high accuracy.

The rest of the paper is organized as follows. Section 2 gives
the preliminaries. Section 3 briefly illustrates the proposed
MLBF structure. Section 4 presents an alignable LSH function
family that can handle multiple granularities. Section 5 intro-
duces the verification BF with multiple granularities and the
MLBF� structure. Section 6 provides theoretical analyses and
models to estimate false positive and negative rates. Section 7
shows the experimental evaluation. Section 8 discusses some
relatedwork. Finally, Section 9 concludes the paper.

2 PRELIMINARIES AND PROBLEM DESCRIPTION

In this section, we review some basic knowledge of the LSH
and the Bloom filter that is essential to our proposed
technique.

2.1 Locality Sensitive Hashing

An LSH [3] can keep the locality of objects in a data set by
projecting close objects into the same hash bucket with a

high probability. This is achieved by choosing a hash func-
tion(s) from a given LSH function family. The meaning of
“locality sensitive” can be defined as follows.

Definition 1 (Locality Sensitive). An LSH function family

H ¼ fh : Rd ! Ug is called (r1, r2, P1, P2)-sensitive if, for

any oo; qq 2 Rd,

� Pr½hðooÞ ¼ hðqqÞ� � P1 when oo� qqk k � r1,
� Pr½hðooÞ ¼ hðqqÞ� � P2 when oo� qqk k > r2,

where 1 > P1 > P2 > 0, r2 > r1 > 0, �k k denotes the
Euclidean norm, and Pr½� denotes the probability of collision.
One such LSH family for the Euclidean distance is shown

as follows [5]:

Hðaa;bÞ ¼ hðaa;bÞðqqÞjhðaa;bÞðqqÞ ¼ aa � qq þ b

w

� �� �
; (1)

where hðaa;bÞðqqÞ represents an LSH in family Hðaa;bÞ; qq is the

vector representation of an object in Rd; aa is a d-dimensional
vector whose component values are chosen independently
from a p-stable distribution (e.g., the standard Gaussian dis-
tribution N(0,1)); w is a user-specified constant; and b is a
real number drawn uniformly at random from [0,w). Note
that the dot product aa � qq represents the projection of qq onto
aa. The vector (line) aa is split into equi-length segments with
an appropriate size w, which intuitively preserves the local-
ity, i.e., two close objects will be in the same segment with a
high probability.

The collision probability, pðaa;bÞðciÞ, for objects ooi and qq

under a hash function hðaa;bÞ chosen uniformly and randomly

fromHðaa;bÞ, can be computed as [5]:

pðaa;bÞðciÞ ¼ Pr½hðaa;bÞðooiÞ ¼ hðaa;bÞðqqÞ� ¼
Z w

0

1

ci
f1

t

ci

� �
1� t

w

� �
dt;

(2)

where ci ¼ ooi � qqk k, f1ðtÞ is the probability density function
of the absolute value of the p-stable distribution, e.g.,

f1ðtÞ ¼
ffiffiffi
2
p

q
e
�t2

2 , t � 0, for the Gaussian distribution.

From Formula 2, we can see that, for a fixed parameter w,
the probability of collision decreases monotonically with

the increase of ci. In fact, Hðaa;bÞ is (r1; r2; P1; P2)-sensitive for

P1 ¼ pðaa;bÞð1Þ, P2 ¼ pðaa;bÞðciÞ and r2=r1 ¼ ci [5].
However, one cannot directly use just one function from

H for an LSH, since the gap between probabilities P1 and P2

is usually quite small. To construct a useful LSH with
desired collision probabilities P 0

1 and P 0
2, an “amplification”

process, i.e., several AND-constructions followed by an OR-
construction [6], is needed. The process can amplify the gap
between the “high” probability P1 and the “low” probability
P2 by concatenating several functions. Specifically, for given
parameters k and L, kL hash functions ht;jðqqÞ ð1 � t � k; 1 �
j � LÞ are chosen independently and uniformly at random
from H. An AND-construction gjðqqÞ ðj 2 f1; 2; . . . ; LgÞ is
defined as gjðqqÞ ¼ ^ðh1;jðqqÞ; . . . ; hk;jðqqÞÞ for an object qq,
where gjðooÞ ¼ gjðqqÞ for two objects oo and qq if and only if
ðht;jðooÞ ¼ ht;jðqqÞÞ for any t 2 f1; 2; . . . ; kg. As each hash func-
tion ht;jðÞ in gjðÞ defines a hash table, the AND-construction
can be viewed as applying an AND operation to its k hash

QIAN ET AL.: MULTI-GRANULARITY LOCALITY-SENSITIVE BLOOM FILTER 3501

tables. Two objects are considered to be close to each other
under gjðÞ if and only if each of its hash tables places them in
the same bucket. An AND-construction increases the proba-
bility for identifying two true close objects, i.e., decreasing
the false positive rate. However, the AND-construction may
lead to a high false negative rate. Tomitigate the problem, an
OR-construction is used. Instead of relying on one AND-
construction, an OR-construction is formed with L different
AND-constructions, i.e., g0ðqqÞ ¼ _ðg1ðqqÞ; . . . ; gLðqqÞÞ, such that
g0ðooÞ ¼ g0ðqqÞ for two objects oo and qq if and only if
ðgjðooÞ ¼ gjðqqÞÞ for some j 2 f1; 2; . . . ; Lg. With such an AND-
and-OR construction, we can turn ðr1; r2; P1; P2Þ-sensitive
family into a ðr1; r2; P 0

1; P
0
2Þ-sensitive family where

P 0
1 ¼ 1� ð1� Pk

1 ÞL and P 0
2 ¼ 1� ð1� Pk

2 ÞL [6]. We could
adjust k andL to push P 0

1 closer to 1 and P 0
2 closer to 0.

Fig. 1 illustrates an LSH g0 ¼ _ðg1; g2Þ using four Hash
Tables (HT). Each table uses one hash function to map/store
objects into one of the five buckets. For example, object oo1 is
mapped in bucket h1;1ðoo1Þ ¼ 4 of HT1.1, and is mapped in
bucket h2;1ðoo1Þ ¼ 2 of HT2.1. g1 ¼ ^ðh1;1; h2;1Þ, i.e., AND-
construction 1, is composed of two hash tables h1;1 and h2;1.
g2 ¼ ^ðh1;2; h2;2Þ, i.e., AND-construction 2, is composed of
another two hash tables h1;2 and h2;2. Since query object qq is
close to object oo1, they are mapped into one bucket of a hash
table with a high probability. In contrast, object qq has a low
chance to be mapped in one bucket with object oo2 due to
their large Euclidean distance. As g2ðoo1Þ ¼ g2ðqqÞ, qq is consid-
ered to be close to oo1 under LSH g0.

2.2 Standard Bloom Filter

A standard Bloom filter is an m-bit array representing an n-
element/object set. All bits in the array are initially set to 0.
k hash functions, say, h1, h2; . . ., hk, are used to hash an
object to k random locations of the m-bit array with a uni-
form distribution. For each object x of the set, locations
h1ðxÞ, h2ðxÞ, . . ., hkðxÞ of the array are set to 1. To check
whether an object y is a member of the set, one needs to
check whether all hiðyÞ are 1 (1 � i � k). If so, y is regarded
as a member of the set. False positives are possible. How-
ever, a false negative is impossible. The false positives rate
can be defined as follows.

Definition 2 (False positive rate). For a given set of query
objects, its false positive rate FPR ¼ (number of false posi-
tive objects)/(number of truly negative objects).

The false positive rate can be calculated by the following
formula [7],

FPR ¼ ð1� 1� 1=mð ÞknÞk 	 ð1� e�kn=mÞk: (3)

In general, the false positive rate can be controlled by the
parameters n, m, and k. When m and n are given, the opti-
mal number of hash functions is given as follows:

k ¼ ln 2
 ðm=nÞ: (4)

In this case, the false positive rate is: FPR 	 0:6185m=n.

2.3 Approximate Membership Query and Locality
Sensitive Bloom Filter

Definition 3 (Approximate membership query). Given a set
V of objects, a query object qq, and a parameter (distance)
r > 0, qq is regarded as an approximate member of V if
9oo 2 V such that oo� qqk k � r, i.e., the answer to the corre-
sponding AMQ (for qq) is positive [1].

For a (r1; r2; P1; P2)-sensitive LSH family, we have the fol-
lowing definitions.

Definition 4 (False positive of AMQ). A query object qq is a
false positive to object set V if the query gets a positive answer
while in fact 8oo 2 V, oo� qqk k > r2 for a given parameter r2.

Definition 5 (False negative of AMQ). A query object qq is a
false negative to object setV if the query gets a negative answer
while in fact 9oo 2 V, oo� qqk k � r1 for a given parameter r1.

The false positive rate can be defined in the same way as
Definition 2. The false negative rate is defined as follows:

Definition 6 (False negative rate). For a given set of query
objects (AMQs), its false negative rate FNR ¼ (number of
false negative objects)/(number of truly positive objects).

Two techniques, i.e., the DSBF [2] and the LSBF [1],
have been suggested to combine the LSH and the BF to
process AMQs. The latter was an improvement over the
former. Fig. 2 shows the basic structure for the LSBF tech-
nique. In total, k locality-sensitive hash functions
hið1 � i � kÞ are chosen to hash an object into k bits in a
bit array. Once all the objects of a data set are inserted
/hashed, the array is a summary vector to support AMQs
on the set. When an AMQ for query object qq is issued, it is
processed like an insertion by hashing hiðqqÞ ð1 � i � kÞ to
k locations. If the bits at all k locations in the summary vec-
tor were set to 1, the answer to the AMQ for qq is deter-
mined to be positive. However, this basic scheme may lead
to many false positives. For example, the 1’s in shaded
locations in Fig. 2 are not set by a single data object. But in
this case, query object qq may be considered to have a posi-
tive answer because all hi ð1 � i � kÞ are 1. Therefore, the
LSBF employs an additional verification BF to decrease the
false positive rate. The mapped addresses/locations from a
single object are concatenated as a string, which is hashed
into another standard BF for verification. Using such a
scheme, an AMQ for object qq needs to check the LSBF

Fig. 1. An example of the LSH approach.

Fig. 2. The LSBF structure.

3502 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

basic array to see if all hashed bits are 1. If it is the case, the
concatenation of its addresses is further hashed into
the verification BF to check if the bits at the hashed
locations for the concatenated addresses are also 1. If it is,
object qq is regarded to have a positive answer to its AMQ.
Like the multi-probe LSH [8], the LSBF also performs the
multiple probes on neighboring buckets/bits to improve
the query accuracy. However, the LSBF have two short-
comings: (1) since OR-constructions are not used in the
LSBF structure, the false negative rate may be high; (2) the
LSBF structure cannot support AMQs with multiple dis-
tance values.

To overcome these shortcomings, we present a new
method and its variant, i.e., the MLBF and the MLBF�,
based on the BF and the LSH with multiple granularities
to process AMQs, which are to be discussed in the subse-
quent sections.

2.4 Important Notations

Table 1 lists some notations used in the paper.

3 MLBF STRUCTURE

For each AND-construction (e.g., in Fig. 1), we use the k
locality-sensitive hash functions to build a BF with the buck-
ets in hash tables being replaced with bit locations. For
example, as object oo1 is mapped in bucket 4 of HT1.1 and
bucket 2 of HT2.1, the locations 4 and 2 of BF1 are set to 1.
Here k ¼ 2. Then, an AMQ can be answered by checking all
such L different BFs. Once one of the BF results is positive,
the answer is positive. However, as this scheme employs
multiple BFs which require more space and calculation, we
combine all the L BFs into a combined BF using an OR oper-
ation as shown in Fig. 3.

Because the locations in the above combined BF to which
an AMQ (query object) is mapped may be set to 1 by differ-
ent AND-constructions, i.e., causing a possible false posi-
tive, an additional BF for verifying each AND-construction
is employed to reduce the false positive rate. Furthermore, a
directly combined BF like the one in Fig. 3 cannot support
multiple (distance) granularities. To solve these problems,
we have carefully designed our new MLBF structure which
is shown in Fig. 4.

The MLBF is composed of a BMLBF (which is similar to
the combined BF in Fig. 3) with m physical bit locations for
storing objects, and an MVBF for verifying set membership.
The BMLBF contains S � 1 Virtual LSH BFs (VLBF): VLBF 1,
. . ., VLBF S � 1, which are virtually built from the BMLBF

rather than physically exist and are composed of m=21,

m=22, . . .,m=2S�1 virtual bit locations, respectively. The basic
level BMLBF can also be considered as VLBF 0. Specifically,

one (bit) location for VLBF u (1 � u � S � 1) covers 21 loca-

tions for VLBF u � 1, 22 locations for VLBF u � 2, . . ., 2u loca-
tions for VLBF 0. If one of the locations in the VLBF 0 is set to
1, its covering virtual location in each of the VLBFs is regarded
as 1 too (see the shaded locations in Fig. 4).

The procedure of inserting an object ooi from setV into the

MLBF is as follows. Assume that there are L AND-construc-

tions and each has k hash functions h1;j, . . ., hk;j (j ¼ 1;

2; . . . ; L) from a hash function family used for the BMLBF.

For each j, we set the k locations of BMLBF (i.e., VLBF 0) at

addresses h1;jðooiÞ ,. . ., hk;jðooiÞ to 1. We then store

�jðooiÞ ¼ j�h1;jðooiÞ � . . . �hk;jðooiÞ into the MVBF, where 0�0

denotes the concatenation of the binary string values, e.g.,

“1”�“001”�“101”�. . .¼ “1001101. . .” forAND-construction 1

of oo1 in VLBF 0 in Fig. 4.
When an AMQ for query object qq is issued, a VLBF u (i.e.,

at granularity (level) u) is determined based on the applica-
tion requirement. For each j ¼ 1; 2; . . . ; L, we first check

TABLE 1
Important Notations

V: A set of data objects for Approximate Membership Query.
oo; qq: Two d-dimensional (data and query) objects.
�k k: The Euclidean norm.
ci: Euclidean distance between two objects ooi and qq.
aa: A d-dimensional object whose component values are
chosen randomly and independently based on the Gaussian
distribution.
w: A user-specified constant which positively correlated with
the query distance.
S: Number of different granularities.
u: Granularity level (0 � u � S � 1).

Hðaa;bÞ: LSH function family with functions of
hðaa;bÞðqqÞ ¼ ðaa � qq þ bÞ=wb c.
HðaaÞ: Alignable LSH function family with functions of
hðaaÞðqqÞ ¼ ðaa � qqÞ=wb c.
ht;j: An LSH function fromHðaaÞ, t 2 f1; 2; . . . ; kg, j 2 f1; 2; . . . ; Lg.
n,m, k: Parameters for anm-bit BMLBF representing an
n-element set using k LSH functions.
n0,m0, k0: Parameters for anm0-bit MVBF representing an n0-ele-
ment set using k0 hash functions.
gjðqqÞ: The jth AND-construction gjðqqÞ ¼ ^ðh1;jðqqÞ; . . . ; hk;jðqqÞÞ.
�: The cancatenation operator for two binary string values.
�jðqqÞ: j�h1;jðqqÞ � . . . �hk;jðqqÞ for the jth AND-construction.
pi: The collision probability for hashing two objects ooi and qq

into one vector aa. That is, pi ¼ Pr½hðaaÞðooiÞ ¼ hðaaÞðqqÞ� for an LSH

function hðaaÞðxÞ inHðaaÞ.
p0i: The collision probability for hashing two objects ooi and qq

into two vectors aa0 and aa00. That is, p0i ¼ Pr½hðaa0ÞðooiÞ ¼ hðaa00ÞðqqÞ�
for two LSH functions hðaa0ÞðxÞ and hðaa00ÞðxÞ inHðaaÞ.

Fig. 3. Transform LSH buckets to a BF structure.

Fig. 4. The MLBF structure.

QIAN ET AL.: MULTI-GRANULARITY LOCALITY-SENSITIVE BLOOM FILTER 3503

if all the k locations of the VLBF u at addresses
h0
1;jðqqÞ; . . . ; h0

k;jðqqÞ are 1. If so, we further hash j�
h0
1;jðqqÞ � . . .�h0

k;jðqqÞ to check whether it is a member of

MVBF. If there exists one j such that both of its BMLBF and
MVBF results are positive, the object qq is regarded as an
approximate member of V at granularity (level) u.

It needs to be pointed out that two corresponding LSH
functions for VLBFs at different granularities are differ-
ent, e.g., h0

1;j 6¼ h1;j, in the above discussion. In our MLBF
structure, each bit location of a VLBF at one granularity
merges two neighbor bit locations of the VLBF at the next
finer granularity so that the space of the latter VLBF is
reused by the former VLBF. To realize this strategy, we
expect the LSH functions for the two VLBFs to be aligna-
ble in the sense of that objects hashed into two neighbor
locations of the finer VLBF are hashed into the corre-
sponding merged location of the coarser VLBF, and vice

versa. For the classical LSH functions hðaa;bÞðooÞ ¼ ðaa � oo þb
bÞ=wc where b 2 ½0; wÞ, parameter w is adjusted when han-
dling a different distance value for AMQs. However, we
cannot directly use this classical LSH function family
since its functions are not alignable due to parameter b. If
w is doubled for a specific VLBF, the parameter b may not
be doubled as b is a random number chosen from [0, w).
Therefore, we need to find an alignable LSH function
family for our MLBF structure.

Another critical issue is how to reduce the false positive
and negative rates. In traditional LSH methods, a collision
between two objects ooi and qq may occur when the results
are the same after being processed by the same hash func-
tion (referring to Fig. 4 �1), i.e., ht;jðooiÞ ¼ ht;jðqqÞ. However,
as we combine hash tables (BFs) into one BMLBF, another
type of collision could occur (referring to Fig. 4 �2), that is
ht;jðooiÞ ¼ ht0;j0 ðqqÞ, where t 6¼ t0 and/or j 6¼ j0. Such a collision

may increase the false positive rate. To reduce the false posi-
tive rate at different filter (distance) granularities, we use
the MVBF to add a verification measure. The MVBF only
stores �jðooiÞ ¼ j�h1;jðooiÞ � . . .�hk;jðooiÞ at the finest granu-
larity. However, such a concatenation can also represent
verification information at other granularities. We will
introduce the MVBF in Section 5. On the other hand, for
each object ooi in set V, as we apply L AND-constructions
followed by an OR-construction to map ooi into the BMLBF,
the false negative rate will decrease.

4 ALIGNABLE LSH FUNCTION FAMILY

In our MLBF structure, we modify the classical LSH family

Hðaa;bÞ in Formula 1 asHðaaÞ ¼ fhðaaÞðqqÞjhðaaÞðqqÞ ¼ baa�qqw cg.
A function from such a new LSH family supports the

merging operation of two neighbor locations from a finer
VLBF to a coarser VLBF (i.e., alignable). However, omitting

b from classical family Hðaa;bÞmay also cause a problem. For

example, consider oo ¼ ð1; 0; 0Þ and qq ¼ ð�1; 0; 0Þ in R3 and

let w ¼ 1. InHðaa;bÞ, there is a chance that oo and qq are mapped
into the same location because of the random variable b

over ½0; wÞ. While for our HðaaÞ, such a probability is zero
because oo � aa and qq � aa have different signs. This problem
can be solved by making all the coordinates of an object/
vector to be positive via adding (shifting) a constant vector

with a suitable large positive number for each dimension,
e.g., transforming oo to (3, 2, 2) and qq to (1, 2, 2). It can be eas-
ily verified that after the transformation, all the distances
between each two objects are preserved.

4.1 Collision Probability under Same Hash Function

Theorem 1. The collision probability of two objects ooi and qq
with distance ci ¼ ooi � qqk k under an LSH function

hðaaÞðxxÞ ¼ baa�xxw c 2 HðaaÞ is pðciÞ ¼ pi ¼ Pr½hðaaÞðooiÞ ¼ hðaaÞðqqÞ� ¼R w

0
1
ci
f1ð tciÞð1� t

wÞdt, where f1ðtÞ denotes the probability den-

sity function of the absolute value of the Gaussian distribution,

i.e., f1ðtÞ ¼
ffiffiffi
2
p

q
e
�t2

2 , t � 0.

Proof. Let t represent the distance of the two projected
points on aa from ooi and qq. As the random vector aa whose
component values are drawn from a Gaussian distribu-
tion, aa � ooi � aa � qqj j is distributed as ci Xj j from the stable
distribution theory, where X is a random variable drawn
from a Gaussian distribution, i.e., X Nð0; 1Þ. That is,
t ¼ aa � ooi � aa � qqj j ci Xj j. When t 2 ð0; wÞ, the probability
of falling into the same bucket is ðw� tÞ=w ¼ 1� t=w.

Now let us consider the probability of ci Xj j ¼ t.
Assume F ðÞ is the cumulative distribution function of
Xj j. Let Y ¼ ci Xj j be a random variable with cumulative
distribution function GðtÞ. Then, GðtÞ ¼ PrðY < tÞ ¼
Prðci Xj j < tÞ ¼ Prð Xj j < t=ciÞ ¼ F ðt=ciÞ. Because
F 0ðtÞ ¼ f1ðtÞ, where f1ðtÞ is the probability density func-
tion of Xj j, the probability of ci Xj j ¼ t is G0ðtÞ ¼
F 0ðt=ciÞ ¼ ð1=ciÞf1ðt=ciÞ.

Therefore,

pi ¼ pðciÞ ¼ Pr½hðaaÞðooiÞ ¼ hðaaÞðqqÞ� ¼
Z w

0

1

ci
f1

t

ci

� �
1� t

w

� �
dt

tu
From Theorem 1 we can see that, for a fixed parameter w,
the probability of collision decreases monotonically with ci.
We give the formal definition of our alignable LSH function
family as follows:

Definition 7 (Alignable LSH family HðaaÞ). A function of the

alignable LSH family HðaaÞ is defined as hðaaÞðqqÞ ¼ aa � qq=wb c,
where qq is the vector representation of an object in Rd, aa is a
d-dimensional vector whose elements are chosen independently
from a p-stable distribution; w is a user-specified constant.

The above function is (r1; r2; P1; P2)-sensitive for P1 ¼ pð1Þ
and P2 ¼ pðciÞwith r1 ¼ 1 and r2 ¼ ci, respectively.

4.2 Collision Probability under Two Hash Functions

As Fig. 4 �2 shows, two objects oo ¼ ðo1; o2; . . . odÞ and qq ¼
ðq1; q2; . . . qdÞ would collide when they are mapped into the
same bucket by two LSH functions with two random vec-
tors aa1 ¼ ða11 ; a12 ; . . . ; a1dÞ and aa2 ¼ ða21 ; a22 ; . . . ; a2dÞ. There-
fore, the condition of collision is bðPd

i¼1 a1i oiÞ=wc ¼
bðPd

i¼1 a2i qiÞ=wc. Let us consider the distribution of t ¼
jPd

i¼1 a1ioi �
Pd

i¼1 a2i qij. From the stable distribution

theory, the distribution of
Pd

i¼1 a1i oi and
Pd

i¼1 a2i qi are the

same as ook kX and qqk kX, respectively, where X Nð0; 1Þ.

3504 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

Therefore, ook kX Nð0; ook k2Þ, qqk kX Nð0; kqqk2Þ, and

t ¼ jPPd
i¼1a1i oi �PPd

i¼1a2i qij jNð0; ook k2þ qqk k2Þj.
Suppose f2ðtÞ is the probability density function of the

absolute value of the above Gaussian distribution. When
t 2 ð0; wÞ, the probability of falling into the same bucket
is ðw� tÞ=w ¼ 1� t=w. Therefore, we have,

Theorem 2. The collision probability of the two objects ooi and qq
under two different LSH hash functions with random vectors

aa0 and aa00 from HðaaÞ (i.e., hðxxÞðqqÞ ¼ xx � qq=wb c and xx ¼ aa0 or
aa00) is p0i ¼ Pr½hðaa0ÞðooiÞ ¼ hðaa00ÞðqqÞ� ¼ Rw

0 f2 tð Þ 1� t
w

	

dt,

where f2ðtÞ is the probability density function of the absolute

value of Gaussian distributionNð0; ooik k2þ qqk k2Þ.

4.3 Correctness of the Virtual Technique

Fig. 5 exhibits the geometric illustration of locality sensitive
hash functions in a 2D space. Given a query object qq, aa � qq=wb c
maps qq into one of segments/buckets /locations (with length
w) along vector (line) aa. In such a transformation, two close
objects, e.g., qq and oo1, have a high probability to be projected/
mapped into the same segment. When enlarging the length
of the segment, e.g., 2w and 4w, oo2 and oo3 will also have a
chance to be an approximate answer, respectively. That is,
we can perform different closeness of AMQs by changing w.
Specifically, we have the following Theorem 3.

Theorem 3. Let pi be the collision probability of two objects with
distance ci and parameter w, and p00i be the collision probability
of two objects with distance 2ci and parameter 2w. Then we
have pi ¼ p00i .

Proof. From Theorem 1, the collision probability of two
objects with distance ci is pi ¼

R w

0
1
ci
f1ð tciÞð1� t

wÞdt. We use
a substitution t0 ¼ t=ci. As t 2 ð0; wÞ, then t0 2 ð0; w=ciÞ.
Thus, pi ¼

R w
ci
0

1
ci
f1 t0ð Þð1� t0ci

w Þd t0cið Þ ¼ R w
ci
0 f1 t0ð Þð1� t0ci

w Þdt0.
As 2w=ð2ciÞ ¼ w=ci, we have pi ¼ p00i . tu

The following Theorem 4 illustrates the correctness of
merging neighbor locations.

Theorem 4. If x 2 R, z 2 Zþ, then b xb c
z c ¼ bxzc.

Proof. From x=zb c � x=z < x=zb c þ 1, we have z x=zb c �
zðx=zÞ < z x=zb c þ z. Because z x=zb c 2 Z, z x=zb c þ zð Þ 2
Z, we have z x=zb c � xb c < z x=zb c þ z, then x=zb c �
xb c=z < x=zb c þ 1. Therefore, Theorem 4 holds. tu

Let x ¼ aa � qq=w, z ¼ 2. xb c ¼ aa � qq=wb c is an LSH for VLBF
0, and aa � qq=wb c=2b c is an LSH for VLBF 1 which is virtually
built from the VLBF 0. From Theorem 4, we can see the
VLBF 1 is the same as if a new VLBF 0 would be rebuilt
with k LSHs of x=zc ¼ aa � qq=ð2wÞb cb using k different aa‘s for
the coaser granularity.

5 MULTI-GRANULARITY VERIFICATION BLOOM

FILTER

To reduce the false positive rate, we add anMVBF (see Fig. 4)
to our structure to verify the concatenation of the addresses
of object ooi generated from each AND-construction j, i.e.,
j�h1;jðooiÞ � . . .�hk;jðooiÞ. However, the BMLBF includes
several VLBFs. All the concatenations of addresses from
different VLBFs for object ooi need to be stored in the verifica-
tion BF. As the number of verification elements (i.e., concate-
nations of addresses) in such a BF may be large, we have to
carefully design its structure.

5.1 A Naive Method

A naive design for the verification BF is to store all the con-
catenations that are generated from all the different VLBFs
of the BMLBF into a standard BF. Let us use g1ðoo1Þ in
Fig. 4 as an example. We store concatenations ‘0’ � ‘1’ � ‘1’
� ‘5’, ‘1’ � ‘1’ � ‘0’ � ‘2’, and ‘2’ � ‘1’ � ‘0’ � ‘1’ (in the
binary format) into the BF. The beginning of each string,
i.e., ‘0’, ‘1’, or ‘2’, indicates the granularity level. The
second letter of each string, i.e., ‘1’, represents the AND-
construction number (i.e., j). Thus, for each object, the
above scheme stores the verification elements for all the
granularities, i.e., storing n
 L
 S elements, where n is
the number of objects in the MLBF, L is the number of
AND-constructions for one object, and S is the number of
granularities supported in the MLBF. From Formula 3, we
can see that the false positive rate increases with the
increase of the number of set objects. One improving strat-
egy is to only store the concatenations from the BMLBF
and use them to represent the concatenations for all the
granularities, which will be discussed below.

5.2 MVBF Structure

Now let us present our improved multi-granularity verifica-
tion Bloom filter, as shown in Fig. 6. Different from the
above naive method, we store the concatenations of
addresses only for the BMLBF, i.e., u ¼ 0, in the MVBF.
However, the MVBF still supports multiple granularities.
From the figure, we can see that, like the VLBFs in Fig. 4,
two neighbor locations of basic verification BF, or virtual
verification BF 0 (BVBF/VVBF 0) comprise a virtual location
of VVBF 1, two neighbor locations of VVBF 1 comprise a vir-
tual location of VVBF 2, and so on. With such a containment
relationship between relevant locations at two consecutive
granularity levels, we notice that the address of a location at
the coarser level is a prefix of the two addresses of its con-
tained locations at the next finer level. For example, in
Fig. 4, the address “00” of a location in VLBF 1 is a prefix of
the addresses “000” and “001” of its two contained neighbor
locations in VLBF 0, while the address “0” of a location in
VLBF 2 is a prefix of the addresses “00” and “01” of its two
contained neighbor locations in VLBF 1. This property is uti-
lized to construct our MVBF, as discussed below.

Let �jðooÞ be the concatenation of addresses from the jth
AND-construction gjðooÞ, i.e., �jðooÞ ¼ j�h1;jðooÞ � . . .�hk;jðooÞ.
Assume that the MVBF has S granularities and adopts k0

hash functions to insert �jðooÞ into the MVBF.
The insertion procedure works as follows: (1) split each

binary address hi;jðooÞ ð1 � i � kÞ into two substrings s
ð1Þ
ij

Fig. 5. Geometric illustration of LSH projecting.

QIAN ET AL.: MULTI-GRANULARITY LOCALITY-SENSITIVE BLOOM FILTER 3505

and s
ð2Þ
ij such that hi;jðooÞ ¼ s

ð1Þ
ij � s

ð2Þ
ij and the length of s

ð2Þ
ij is

S � 1; (2) use k0 hash functions to hash the concatenation j�
s
ð1Þ
1j � . . .� s

ð1Þ
kj to k0 addresses AðS�1Þ1, AðS�1Þ2; . . . ; AðS�1Þk’ for

the coarsest VVBF S � 1; (3) use a hash function to hash the

concatenation s
ð2Þ
1j ½v� � . . .� s

ð2Þ
kj ½v� (v ¼ 1; . . . ; S � 1, respec-

tively) of the next leading bit of each lower substring s
ð2Þ
ij to

a k0-bit string: BðS�v�1Þ1BðS�v�1Þ2 . . .BðS�v�1Þk’; (4) the k0

addresses for VVBF S � v� 1 (v ¼ 1; . . . ; S � 1) from the
hashing are calculated as A(S-v-1) 1 ¼ A(S-v) 1 � B(S-v-1) 1,
A(S-v-1) 2 ¼ A(S-v) 2 � B(S-v-1) 2,. . .,A(S-v-1) k’ ¼ A(S-v) k’ �
B(S-v-1) k’; (5) for VVBF 0 (i.e., the finest granularity), set to 1
for all the locations at addresses A0 1, A0 2, . . ., A0 k’.

Let us use the insertion of �2ðooÞ in Fig. 6 as an example to
illustrate the above procedure. The number of granularities
in Fig. 6 is S ¼ 4 (i.e., u ¼ 0; 1; 2; 3). The MVBF in the figure
uses k0 ¼ 3 hash functions for the element insertion. In step
(1), each of the four addresses from the BMLBF for the object
in �2ðooÞ is split into two substrings (Fig. 6 �1). For example,
the first address “11011001” is split into “11011” (higher sub-
string) and “001” (lower substring). The length of the lower
substring is 3 since S � 1 ¼ 3. In step (2), three (k0 ¼ 3) hash
functions are used to hash the concatenation of jð¼ 2Þ and all
the higher substrings of hi;jðooÞ into 3 addresses for VVBF 3
(Fig. 6�2�3), e.g., the first address for VVBF 3 from the hash-
ing is “000000000”. In step (3), the first bits of all the lower
substrings are concatenated, and the concatenated string
“0010” is hashed to a 3-bit string “101” (Fig. 6 �4) with each
bit representing the suffix of one of the three addresses for
VVBF 2. For example, “000000000” � “1” ¼ “0000000001” is
the first address for VVBF 2, “011010010” � “0” ¼
“0110100100” is the second address for VVBF 2, etc.
Similarly, the concatenation of the second bits of all the lower
substrings is hashed to three suffix bits for the three
addresses for VVBF 1 (Fig. 6�5), and the concatenation of the

third bits of all the lower substrings is hashed to three suffix
bits for the three addresses for VVBF 0 (Fig. 6�6). In step (4),
the locations at the three addresses (e.g., “000000000101”) for
VVBF 0 from the hashing are set to 1 Fig. 6�7).

Since the address of a coarser VVBF is a prefix of the rele-
vant addresses of VVBF 0, we set to 1 only for the k0 loca-
tions of VVBF 0 with the addresses obtained from the
hashing. A location x in a coarser VVBF is considered to be
set to 1 if any location in VVBF 0 whose address having the
address of x as a prefix is set to 1. When verifying a query
object with �jðqqÞ at a granularity level u (�1), we follow the

same steps (1)-(4) in the insertion procedure to determine
the k0 addresses of the VVBF at granularity u, then examine
the contained locations in VVBF 0 to determine if the loca-
tions at these k0 addresses at granularity level u are all set to
1 or not. For example, to verify �2ðqqÞ at granularity level 1 in
Fig. 6, we determine the addresses (e.g., “00000000010”)
for VVBF 1 (Fig. 6 �8) and then check the locations at
the relevant addresses (e.g., “00000000010” � “0” and
“00000000010” � “1”) in VVBF 0 to see if any of them is set
to 1. Since all the k0 locations of VVBF 1 in Fig. 6 are consid-
ered to be 1, �2ðqqÞ passes the verification.

5.3 MLBF�: A Space-Efficient Variant of MLBF

TheMLBF structure uses the BMLBF to store the hashing bits
(from the LSH functions) of multiple AND-constructions
followed by an OR-construction. When there are many
objects in input set V, the BMLBF may produce many false
positive answers. There are two reasons for this phenome-
non: (1) the BMLBF/VLBFs may have too many 1’s; (2) the
LSH functions are based on the standard Gaussian distribu-
tion and do not scatter the 1’s uniformly among all the avail-
able locations, especially whenw is large. Hence, the filtering
power of the BMLBF/VLBFs is very weak in such a case.

Fig. 6. The MVBF structure.

3506 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

This phenomenon can also be observed in the experiments
of Section 7.

Fortunately, the MLBF structure employs a verification
step (via the MVBF) to reduce the false positives produced
by the first step from the BMLBF. Since the MVBF uses the
concatenation of the addresses from the same AND-
construction as its input element, it avoids the false posi-
tives yielded by the addresses from different AND-con-
structions. On the other hand, the MLBF uses the LSH
functions to map close objects into the same locations in the
BMLBF. Such LSH functions are no longer needed for the
MVBF. Hence, the MVBF can adopt hash functions follow-
ing the uniform distribution to insert its elements. As a
result, it can better utilize all its locations. Our experiments
in Section 7 also demonstrate that the main filtering power
of the MLBF comes from its verification step via the MVBF
in the aforementioned scenario.

Based on the above observations, we propose a vari-
ant of the MLBF, called the MLBF�. The only difference
between the MLBF� and the MLBF is the following. The
MLBF� still applies the LSH functions to map an object
into k addresses. However, it has no physical BMLBF to
store the 1’s in the locations at these addresses. Instead,
the concatenation of these addresses is directly inserted
into the MVBF. Therefore, the MVBF provides the sole
filtering power for the MLBF�. The motivation behind
such a structure is that, since the filtering power of the
BMLBF is very weak in the aforementioned scenario, it
is wise to remove it and use its space more effectively to
enlarge the size of the MVBF.

In general, the MLBF is applicable for the cases in which
the input set is not large and the interested distance values
for AMQs are small, while the MLBF� is suitable for the
applications demanding large input sets and big distance
values for AMQs.

6 THEORETICAL ANALYSIS

In this section, we analyze the properties of the proposed
MLBF and MLBF� structures.

6.1 False Positive/Negative Rates of VLBF

Theorem 5 (False positive rate of VLBF). Assume that
objects ooi (1 � i � n) in set V are represented by a BMLBF

using LSH functions from HðaaÞ with parameters k and L. For
a query object qq, the false positive rate for the VLBF with

parameter w can be estimated as 1� ð1� aÞL, where a ¼ ð1�Qn
i¼1 ðð1� piÞð1� p0iÞkL�1ÞÞk, pi ¼ Pr½hðaaÞðooiÞ ¼ hðaaÞðqqÞ� ¼R w

0
1
ci
f1ð tciÞð1� t

wÞdt, ci is the distance between ooi and qq, f1ðtÞ
denotes the probability density function of the absolute value

of the Gaussian distribution, i.e., f1ðtÞ ¼
ffiffiffi
2
p

q
e
�t2

2 , p0i ¼
Pr½hðaa0ÞðooiÞ ¼ hðaa00ÞðqqÞ� ¼ R w

0 f2ðtÞð1� t
wÞdt, and f2ðtÞ is the

probability density function of the absolute value of

Nð0; kooik2 þ kqqk2Þ.
Proof. According to Theorems 1 and 2, the probability for two

objects qq and ooi to be mapped into one location (i.e., colli-
sion) by an identical vector aa is pi and the probability for
the two objects to be collided by two different vectors
aa0 and aa00 is p0i. We first discuss the collision probability for

one hashing, e.g., h1;1ðqqÞ, with object ooi. Aswe know, ooi has
been hashed kL times, i.e., ht;jðooiÞ ð1 � t � k; 1 � j � LÞ.
In those kL functions, there is only one function, i.e.,
h1;1ðooiÞ, is the same as h1;1ðqqÞ. Other kL� 1 functions are
different. Thus, the probability for h1;1ðqqÞ not to collide

with any locationmapped by ooi is ð1� piÞð1� p0iÞkL�1, and
the probability for h1;1ðqqÞ not to collide with any object in

set V is
Qn

i¼1 ðð1� piÞ ð1� p0iÞkL�1Þ. As a result, for h1;1ðqqÞ,
the collision probability is 1�Qn

i¼1 ðð1� piÞð1� p0iÞkL�1Þ.
Becauseweuse theAND-construction, for a g1ðqqÞ, the colli-
sion probability is a ¼ ð1�Qn

i¼1 ðð1� piÞð1� p0iÞkL�1ÞÞk.
Finally, after theOR-construction, The false positive proba-

bility can be estimated as 1� ð1� aÞL. tu
Note that Theorem 5 is derived based on an assumption that
all the locations to which the objects in V are mapped/
hashed are different. In fact, there is a small probability that
several objects are mapped to the same location. Therefore,
the actual false positive rate may be a slightly smaller than
the estimated one.

Theorem 6 (False negative rate of VLBF). Assume that objects
ooi (1 � i � n) in setV are represented by a BMLBF using LSH

functions fromHðaaÞ with parameters k andL. For a query object
qq which is close to at least one of the objects in set V, the false
negative rate for the VLBF with parameter w can be estimated

as ð1� aÞL, where a is the same as that in Theorem 5.

Proof. As the proof in Theorem 5, for a gjðqqÞ, the collision
probability is a. Therefore, the false negative rate can be

estimated as ð1� aÞL. tu
Note that the actual false negative rate may be slightly

larger than the estimated one due to the same reason men-
tioned after Theorem 5.

6.2 False Positive/Negative Rates of MLBF/MLBF�

(Typical Case)

We first discuss the typical case, that is, the concatenations
of addresses for the coarsest VLBF from objects in V are
different. In this case, objects are scattered among the
available locations, especially when the length of those
addresses is long. An extended case will be analyzed in
Section 6.3.

Theorem 7 (False positive rate of MVBF). Assume that, the
n0 concatenations of addresses for the coarsest VLBF from

objects in V are different. As VVBF u has m00 ¼ m0=2u loca-
tions and k0 hash functions, the false positive rate of VVBF u is

FPR ¼ ð1� ð1� 1
m00Þk

0n0 Þk0 	 ð1� e�k0n0=m00 Þk0 . When m0 and
n0 are given, the optimal number of hash functions for VVBF u

is k0 ¼ ln 2
 ðm00=n0Þ: In this case the false positive rate is

FPR ¼ ð1=2Þk0 	 0:6185m
00=n0 :

Proof. Because the concatenations of addresses for the
coarsest VLBF are different, n0 elements will be uni-
formly distributed in the coarsest VVBF after being
hashed by k0 hash functions. Comparing to the standard
Bloom filter, we use a special method to construct the
VVBF. However, we can just regard the special construc-
tion as k0 hash functions because each element is

QIAN ET AL.: MULTI-GRANULARITY LOCALITY-SENSITIVE BLOOM FILTER 3507

randomly mapped k0 times in VVBF u which has

m00 ¼ m0=2u locations. Therefore, all the theories for the
standard Bloom filter still hold. Note that the optimal sce-
nario occurs when the number of 1 bits equals to the
number of 0 bits in a Bloom filter. tu
Note that the MLBF/MLBF� uses AND-constructions fol-

lowed by an OR-construction. However, a VVBF only veri-
fies these AND-constructions. Theorem 8 reveals the effect
of the OR-construction.

Theorem 8 (False positive rate of MLBF/MLBF�). Assume
that objects ooi (1 � i � n) in set V are represented by the

MLBF/MLBF� using LSH functions from HðaaÞ with parame-

ters k and L, VVBF u has m00 ¼ m0=2u locations and use
k0 hash functions. Then, the false positive rate of the MLBF can

be estimated as aLð1� e�k0nL=m00 Þk0 , where a is the same as
that in Theorem 5. The false positive rate of the MLBF� can be

estimated as Lð1� e�k0nL=m00 Þk0 .
Proof. From the proof of Theorem 5, we can see that, after

the AND-construction, for a gjðqqÞ, the collision probabil-
ity is a. From Theorem 7, the probability of the AND-
construction, i.e., gjðqqÞ, to pass the verification of the

MVBF is að1� e�k0nL=m00 Þk0 . As being followed by an OR-
construction, the collision probability of an object is

1� ð1� að1� e�k0nL=m00 Þk0 ÞL. Because að1� e�k0nL=m00 Þk0 is
small, after applying the Taylor series expansion, we

have 1� ð1� að1� e�k0nL=m00 Þk0 ÞL 	 aLð1� e�k0nL=m00 Þk0 .
Similarly, the false positive rate of the MLBF� can be esti-

mated as Lð1� e�k0nL=m00 Þk0 . tu
Theorem 9 (False negative rate of MLBF/MLBF�). Assume

objects ooi (1 � i � n) in set V are represented by the MLBF

using LSH functions from HðaaÞ with parameters k and L. If,
among all the ooi‘s, only one object is close enough to the given
query object qq, the false negative rate for qq can be estimated as

ð1� pki ÞL.
Proof. Note that the probability of a hash collision should be

no less than pi in hk;j for objects qq and ooi. Thus, the collision

probability of qq and ooi under one gj is p
k
i , and the false neg-

ative rate is 1� pki . Then, the probability of qq does not col-

lidewith ooi under any gj can be estimated as ð1� pki ÞL. tu
If there is more than one object (in set V) that is close to

query object qq, we have,

Theorem 10. Assume that, in V, there are n00 objects (constitut-
ing a subset V0) close to query object qq. The false negative rate

of the MLBF/MLBF� can be estimated as
Q

ooi2V0 ð1� pki ÞL.
Proof. According to Theorem 9, Theorem 10 holds. tu

Since a VVBF has false positives, the real false negative
rate may be slightly smaller than the estimated one.

6.3 False Positive/Negative Rates of MLBF/MLBF�

(Extended Case)

Since we use concatenations of higher bits of addresses to
construct a VVBF at a coarser granularity level, it is possible
that some concatenations of the higher bits are the same
although the underlying full addresses are different.

Although the probability for this situation to occur may be
small (especially when the address length is long), it viola-
tes the assumption in Theorem 7 that such concatenations
for the coarsest VVBF are different. In such a case, the accu-
racy of the estimation formulas derived in Section 6.2 would
deteriorate. A new analysis is needed to drive better estima-
tion formulas for the false positive and negative rates of the
MLBF/MLBF� in the case of the assumption of Theorem 7
does not hold.

Let us consider the false positive rates of the VVBFs from
the current granularity u to the coarsest granularity S. We
extend the notation of pi and �jðÞ as follows. Let pi;2uw denote

the collision probability of two objects ooi and qq under
parameter w at granularity u, and �j;uðooÞ denote a concatena-
tion of addresses from gjðooÞ for object o at granularity u. A
query object qq passes the verification of VVBF u if all the rel-
evant k0 bits are 1. For one of the k0 bits, say, bit z, the proba-
bility for z to be set to 1 by object ooi in different scenarios
can be estimated as follows:

� If �j;uðqqÞ ¼ �j;uðooiÞ, i.e., the concatenations of
addresses for qq and ooi are the same at granularity u,

the probability is pk
i;2uw

;

� If �j;uþ1ðqqÞ ¼ �j;uþ1ðooiÞ and �j;uðqqÞ 6¼ �j;uðooiÞ, i.e., the
concatenations of addresses for qq and ooi are the same
at granularity u þ 1, but different at granularity u, the

probability is ðpk
i;2uþ1w

� pk
i;2uw

Þ=21;
� . . .
� If �j;S�1ðqqÞ ¼ �j;S�1ðooiÞ and �j;S�2ðqqÞ 6¼ �j;S�2ðooiÞ, the

probability is ðpk
i;2S�1w

� pk
i;2S�2w

Þ=2S�u�1;

� If �j;S�1ðqqÞ 6¼ �j;S�1ðooiÞ, the probability is ð1� pk
i;2S�1w

Þ
ð1� e�k0L=m00 Þ, wherem00 ¼ m0=2u.

Therefore, the probability for bit z not to be set to 1 by
ooi is

ti ¼
	
1� pk

i;2uw

	
1� 	

pk
i;2uþ1w

� pk
i;2uw

=21

ð1� 	

pk
i;2uþ2w

� pk
i;2uþ1w

=22Þ . . . 	1� 	

pk
i;2S�1w

� pk
i;2S�2w

=2S�u�1

	
1� 	

1� pk
i;2S�1w

ð1� e�k0L=m00

:

(5)

The probability for bit z not to be set by any ooi (1 � i � n)
inV is

Qn
i¼1 ti. Thus, the probability for all the k0 bits to be set

to 1, i.e., the collision probability of an AND-construction, is

’ ¼ ð1�Qn
i¼1 tiÞk

0
. After the OR-construction, we have,

Theorem 11. The false positive rates of the MLBF and the
MLBF� can be estimated as 1� ð1� a’ÞL and 1� ð1� ’ÞL,
respectively, where a is the same as that in Theorem 5,

’ ¼ ð1�Qn
i¼1 tiÞk

0
and ti is given in Formula 5.

Theorem 11 is consistent with Theorems 7 and 9. When
w is small, as hk;jðooÞ ¼ baa � oo=wc, the concatenation of
addresses from objects in V are different to each other with
a high probability. On the other hand, if the distance
between ooi1 and ooi2 ð1 � i1; i2 � nÞ is large, the concatena-

tions are also different. In those cases, as pk
i;2uw

, pk
i;2uþ1w

, . . .,

are almost zero,ti is degenerated as follows:

ti ¼
	
1� 	

1� pk
i;2S�1w

	
1� e�k0L=m00

 ¼ e�k0L=m00

:

3508 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

Hence, ’ ¼ ð1 � Qn
i¼1 tiÞk

0 ¼ ð1� e�k0nL=m00 Þk0 ¼ ð1 �
e�k0n0=m00 Þk0 , which is consistent with Theorem 7.

Theorem 12. The false negative rate of the MLBF/MLBF� can be
estimated as ð1� ’ÞL, where f is the same as that in Theorem 11.

Proof. As explained in Theorem 11, for anAND-construction,
the collision probability is ’. Therefore, the false negative

rate can be estimated as ð1� ’ÞL. tu

6.4 Selection of Parameters

Definition 3 uses a distance r to define an AMQ. However,
for the MLBF/MLBF�, we use parameter w to filter AMQs.
Thus, we need to use the given user requirements, i.e.,
r, FNR < dn, and FPR < dp, to determine the parameters w,
k, L, k0, andm0 of the MLBF/MLBF�. Let us discuss the selec-
tion of the parameters for the BMLBF (u ¼ 0) as an example.

First, let us consider the requirement of FNR < dn. For a
given set V, we assume that there is only one object that is
close to the query object qq and has a distance ¼ r. If the dis-
tance is smaller or there are more than one close object in V,
from Theorems 9 and 10, we can see that the FNR will
decrease and still satisfy for the requirement of dn. From
Theorem 9, we have

	
1� Pk

1

L � dn; i:e:; L � ln dn

ln
	
1� Pk

1

 : (6)

Second, let us consider the requirement of FPR < dp. A
false positive occurs in two scenarios: (1) The distance of
two objects is larger than r2 (refer to Definition 4), while
they are regarded as close objects due to some AND-
construction gj. We denote this probability as d0p. (2) The

query object passes the membership test of the BMLBF and
also passes the verification of the MVBF although it is not
close to any object in V. We denote this probability as d00p .
Obviously, d0p þ d00p ¼ dp.

Thus, for scenario 1, we have

1� 	
1� Pk

2

nL � d0p; i:e:; L � ln
	
1� dp

n ln

	
1� Pk

2

 : (7)

Here parameter P2 corresponds to the distance r2. If the
distance is larger, d0p will decrease and still satisfy the

requirement.
From Formulas 6 and 7, we have

ln dn

ln
	
1� Pk

1

 � ln
	
1� d0p

n ln

	
1� Pk

2

 : (8)

As r1, r2, and P1 are defined, we can use numerical meth-
ods to determine w and P2 according to Theorem 1. For

example, suppose r1 ¼ ð20
 0:12Þ0:5, P1 ¼ 0:80, we can get
w ¼ 1:78. We then use w, r2 ¼ 10r1, and Theorem 1 to calcu-
late P2 ¼ 0:16.

More specifically, suppose dn ¼ 0:1, d0p ¼ 0:09, n ¼ 100.
From Formula 8, we can get k � 5. As a large k will cause
much computation cost, we choose k ¼ 5. Then from For-
mula 6, we have L � 5:8; and from Formula 7, we have
L � 9:0. As a large L also causes much computation cost,
we choose L ¼ 6.

If we choose appropriate parameters for scenario 2, i.e.,
k0 and m0, we can control the false positive rate d00p of the

MVBF to be sufficiently small. According to Theorem 7, the

false positive rate of VVBF u is FPR 	 ð1� e�k0n0=m00 Þk0 ,
wherem00 ¼ m0=2u. Hence, the probability for scenario 2 is

	
1� Pk

2

n0	
1� e�k0n0=m00
k0 � d00p:

For different granularities, we can choose appropriate
m0 and k0 to represent n0 ¼ nL concatenations of
addresses with a low false positive rate. For example,
suppose d00p ¼ 0:001, n ¼ 100, L ¼ 6, k ¼ 5, we can get

appropriate parameters to satisfy the requirement of d00p ,
e.g., m0 ¼ 65;536, u ¼ 0; 1; 2 and k0 ¼ 4.

The above method is suitable for the case in which only a
few objects (in V) that are close to query object qq. Some-
times, there may be many close objects in V. In that case, the
above method may not be accurate because the FNR will
decrease by many close objects in V. A sample method can
be used in such a case. Specifically, the relevant parameters
are determined by minimizing the FPR and the FNR for
some sample query objects.

7 EXPERIMENTAL RESULTS

We conducted extensive experiments to evaluate the accu-
racy of the MLBF and MLBF� structures using both syn-
thetic and real data. All experimental results were
measured from a large number of repeated executions
(�104) to achieve accurate mathematical expectations. The
synthetic data were randomly generated with 20 dimen-
sions that follow the uniform distribution over [1, 1000]. In
the theoretical estimation, we applied the Monte Carlo
method and Simpson’s rule to calculate the integrals in the
estimation models.

7.1 Collision Probability of LSH Function

To verify Theorems 1 and 2, we randomly generate syn-
thetic object pairs (oo1, oo2) and (oo3, oo4). The values of each
dimension in oo1, oo2, and oo3 are uniformly distributed
over [1, 1000], and the difference in each dimension
between oo3 and oo4 is 0.1. Hence, the distance between
oo1 and oo2 is expected to be larger than the distance
between oo3 and oo4. In this way, we can test both scenar-
ios in which the query object is close to or not close to
the data object. We project (oo1, oo2) and (oo3, oo4) into one
vector (i.e., aa1 for one LSH function) and two vectors
(i.e., aa1 and aa2 for two LSH functions) to investigate the
relevant collision probabilities. In experiments, we use

107 randomly generated Gaussian-distribution-based vec-
tors aa1 and aa2 for LSH functions, e.g., baa1 � oo1=wc, and
then count the number of collisions. The results are sum-
marized in Tables 2 and 3, which demonstrate that
Theorems 1 and 2 are quite accurate.

7.2 False Positive Rates of MVBF

We also compared the false positive rates of the MVBF
and the standard BF to verify Theorem 7. Both the MVBF
and the BF in the experiments had 65,536 locations. The BF

QIAN ET AL.: MULTI-GRANULARITY LOCALITY-SENSITIVE BLOOM FILTER 3509

used the naive method presented in Section 5.1 to store (ver-
ification) elements. The elements stored in the MVBF were
�jðooÞ ¼ j�h1;jðooÞ � � � � �hk;jðooÞ, where k ¼ 5, hk;jðooÞ here is a
random integer in [0, 2
 105) to represent an address in the
BMLBF, j is a random integer in [0, 5]. The tested MVBF
had five granularities, i.e., u ¼ 0, 1, 2, 3, and 4. Therefore, if
the MVBF stored n0 elements, the BF stored 5n0 elements.
We used Theorem 7 to estimate the false positive rates for
all different granularities of the MVBF. To test the false posi-

tive rates, we used 5
 105 additional elements, i.e., �jðooÞ, as
testing objects. We also used Formula 3 to estimate the false
positive rates of the BF.

Fig. 7 shows the comparisons of the false positive rates of
the VVBF and the BF for different parameters. The optimal
number k00 of hash functions for the BF was calculated by
Formula 4. Although different VVBFs have the same number
n0 of elements and use the same number k0 of hash functions,
they have different numbers of locations. Therefore, an opti-
mal parameter k0 is just for a specific VVBF. k0 in Figs. 7a, 7c,
7dwas optimized for VVBF 3, and k0 in Fig. 7bwas optimized
for VVBF 4. In fact, which VVBF for optimization can be
determined based on application requirements. For example,
we can choose the VVBFwhich is usedmost frequently in the
application for optimization. Because the BF stored much
more elements than the MVBF, i.e., 5n0 vs n0, the false posi-
tive rates of the VVBFs 0-2 in Figs. 7a, 7c, 7d (i.e., u ¼ 0, 1, 2)
are much smaller than those of the BF. However, when
the granularity becomes coarser, the number of locations

decreases and the false positive rates increases. The accuracy
of the estimation given by Theorem 7 is also verified because
the results from experiments and theoretical estimation
matchwith each other well.

7.3 False Positive/Negative Rates without MVBF

To validate Theorems 5 and 6, we stored 500, 300, and 100
synthetic objects as three data sets V into the MLBF,
respectively. To compare the false positive rates from
experiments and theoretical estimation, we used addi-

tional 105 test objects which were not close to any of the
objects in set V. In the experiments, we counted the num-
bers of false positives. Fig. 8 shows the results. As we
know, every VLBF has a specific parameter w. The w in
Fig. 8 is the parameter for BMLBF (i.e., VLBF 0). From the
figure, we can see that the curve from theoretical estima-
tion matches well with the curve from experiments for
the same parameters. Note that, the more objects exist in
the BMLBF, the more collisions will occur, which results
in higher false positive rates. Furthermore, the theoretical
estimation is based on an assumption that all hashed loca-
tions (i.e., bits) which store objects in set V are different.
However, there may exist some objects hashed into iden-
tical locations with a small probability in reality. There-
fore, the more objects exist in the VLBFs, the more
hashing collisions will occur, which results in an over-
estimate than the observed result from experiments.

To compare the false negative rates from experiments
and theoretical estimation, we randomly generated objects
close to one of the objects in the BMLBF as test objects. The
difference in each dimension of two close objects was set to
0.05. Fig. 9 shows the results. From the figure, we can see
that the two curves from experiments and theoretical

TABLE 2
Collision Probabilities of Hashing (oo1, oo2)

p0 (aa1 and aa2) p (aa1)

w theoretical experimental theoretical experimental

1.00 0.0001133 0.0001137 0.0002086 0.0002104
2.00 0.0002267 0.0002258 0.0004168 0.0004224
3.00 0.0003398 0.0003471 0.0006261 0.0006167
4.00 0.0004534 0.0004657 0.0008336 0.0008481
5.00 0.0005667 0.0005569 0.0010431 0.0010281
6.00 0.0006801 0.0006679 0.0012507 0.0012378
7.00 0.0007932 0.0007950 0.0014604 0.0014666
8.00 0.0009071 0.0008962 0.0016706 0.0016722
9.00 0.0010198 0.0010370 0.0018772 0.0018856

TABLE 3
Collision Probabilities of Hashing (oo3, oo4)

p0 (aa1 and aa2) p (aa1)

w theoretical experimental theoretical experimental

0.50 0.0000571 0.0000555 0.4047870 0.4048746
1.00 0.0001143 0.0001204 0.6471178 0.6473068
1.50 0.0001714 0.0001749 0.7621785 0.7620237
2.00 0.0002286 0.0002268 0.8215880 0.8216179
2.50 0.0002859 0.0002771 0.8572701 0.8573130
3.00 0.0003428 0.0003398 0.8810584 0.8811977
4.00 0.0004572 0.0004623 0.9107938 0.9108332
5.00 0.0005712 0.0005679 0.9286350 0.9286575
6.00 0.0006856 0.0006948 0.9405292 0.9406059
7.00 0.0008000 0.0007967 0.9490250 0.9490090
8.00 0.0009146 0.0009276 0.9553969 0.9554052
9.00 0.0010288 0.0010417 0.9603528 0.9604059

Fig. 7. Comparisons of false positive rates.

Fig. 8. FPRs without MVBF.

3510 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

estimation for the same parameters match very well. In
addition, the more objects exist in the VLBF, the more hash-
ing collisions will occur, which results in lower false nega-
tive rates. Thus the false negative rates decrease with the
increase of the number n of elements in set V.

From Figs. 8 and 9, we can see that the false positive rates
increase with the increase of w, while the false negative rates
decrease with the increase of w. When w is small, e.g.,
w ¼ 0:2, although the false positive rates are low, the false
negative rates may be high. When w is large, e.g., w ¼ 1, the
opposite results are observed. As a result, a VLBF without
the MVBF verification cannot handle approximate member-
ship queries well.

7.4 False Positive/Negative Rates of MLBF

To compare the false positive rates from experiments and
theoretical estimation for granularities 0, 1, and 2, respec-
tively, 500 synthetic objects were stored in the BMLBF, and
additional 105 synthetic objects which are not close to any
of the objects in the BMLBF were used as test objects. For
each granularity, we counted the number of false positives.
Comparing to Fig. 8, Fig. 10 shows that the MLBF tech-
nique can control the false positive rates to a low level for
different granularities. Note that, in Fig. 10, the results for
granularity level 0 (u ¼ 0) are magnified 100 times and the
results for granularity level 1 (u ¼ 1) are magnified 10 times.
It can be seen that, as the accuracy is highly correlated with
the number of locations in a VVBF, namely, the finer the
granularity, the higher the accuracy. The two curves from
theoretical estimation and experiments for the same granu-
larity show the similar pattern. In fact, the estimates for
u ¼ 0 are more accurate than those for u ¼ 1 or 2.

To compare the false negative rates from experiments
and theoretical estimation, we randomly generated query
objects close to one of the objects in the MLBF as test
objects. In other words, in each execution, there exists only
one object in set V being close to the query object. The dif-
ference in each dimension of two objects was set to 0.05.
Fig. 11 shows the results for different granularities u ¼ 0, 1,

and 2. From the figure, we can see that the two curves
from theoretical estimation and experiments for the same
parameters match very well. It can also be seen that, as the
accuracy is highly correlated with the number of locations
in a VVBF, the finer the granularity, the higher the accu-
racy. For the same granularity, if w is small, the false nega-
tive rates are high because of the LSH functions. Let us
calculate the collision probability of two close objects with

a distance ð20
 0:052Þ0:5. When w ¼ 0:25 and u ¼ 0, the col-
lision probability for one LSH function is 0.4 from Theorem
1. After the AND-and-OR constructions, the collision prob-

ability is 1� ð1� 0:45Þ5 ¼ 0:05. In other words, the false
negative rate is about 0.95, which is consistent with the
experimental results.

Fig. 12 shows the comparisons of the false negative rates
for the scenarios with two objects in set V being close to the
query object. As discussed in Theorem 10, the false negative
rates of the MLBF do not change much with the number n
of objects in the set. However, the false negative rates can
decrease with the increase of the close objects in set V.
Thus, the more close objects are in the set, the lower false
negative rate is obtained.

From Figs. 10–12 we can see that, for different w‘s, the
MLBF structure can control the false positive and false nega-
tive rates to a low level for different granularities, which
implies that the structure can handle approximate member-
ship queries with a high accuracy. For example, when
n ¼ 500 and w ¼ 2:5, the false positive rate for granularity

level 0 is 6:6
 10�4, while the false negative rate is

2:0
 10�3, both are very small.

7.5 False Positive/Negative Rates of MLBF�

We compared false positive rates between estimations by
Theorem 11 and experimental results with S ¼ 4, u ¼ 3; 2; 1,
and 0, respectively. Like the experiments in Fig. 9, we stored
500 synthetical objects in the MLBF/MLBF� (i.e., in V), and

Fig. 9. FNRs without MVBF.

Fig. 10. FPRs of MLBF.

Fig. 11. FNRs of MLBF (one close object).

Fig. 12. FNRs of MLBF (two close objects).

QIAN ET AL.: MULTI-GRANULARITY LOCALITY-SENSITIVE BLOOM FILTER 3511

used additional 106 synthetical objects which are not close to
any of the objects (inV) as test objects. The difference is that,
in this series of experiments, we set w much larger so that
some objects (in V) are projected into identical locations of
the relevant VVBF. From Fig. 13, we can see that the results
of experiments of the MLBF and the MLBF� are almost
same. This scenario can also be observed from Fig. 8: with
the increase of w, the filtering ability of a VLBF is rather
weak. Three curved lines in Fig. 13, one for estimation and
the other two for experimental results, at the same granular-
ity are close.

When w is small in Fig. 13, the least FPRs for granular-
ities 3, 2, 1, and 0 can be estimated by Theorem 7, respec-
tively, as Theorem 11 being consistent with Theorem 7. For
example, if u ¼ 3, FPR for one AND-construction is

ð1� e�k0n0=m00 Þk0 ¼ ð1� e�5
2500=ð65536=8ÞÞ5 ¼ 0:293. Thus, after

OR-construction, the FPR is 1� ð1� 0:293Þ5 ¼ 0:823. Simi-
larly, if u ¼ 2, the FPR is 0.197; if u ¼ 1, the FPR is 0.015; if

u ¼ 0, the FPR is 7:90
 10�4. These results testify the accu-
racy of Theorems 7 and 11.

We also used the real-world handwriting digit Letter
Recognition Data Set1 to evaluate the accuracy of the MLBF
and MLBF� structures. The data set has 5,620 unique objects.
Each objects has 64 features to represent one of the ten
handwriting digit letter (i.e., ‘0’, ‘1’, . . ., ‘9’). Each feature is
an integer in the range of 0..16. We added 1 to each feature
due to the positive dimension requirement of HðaaÞ. We
divided the set of objects for letter ‘0’ into two groups: one

as the input data setV, and the other as test data to show the
false negative rates. We used the set of objects for letter ‘1’ as
test data to show the false positive rates. Fig. 14 shows the
experimental results. From the figure, we can see that, with
the increase of w, the false positive rates increase, and the
false negative rates decrease. When u ¼ 0, as the MVBF can
obtain the best accuracy, the MLBF and MLBF� structures
have the lowest false positive rates. Each pair of lines, one
for MLBF and the other for MLBF�, at the same granularity
are almost overlapping. For a specific application, we can
choose an appropriate value of w according to sample data.
For example, if u ¼ 0, we can choose w ¼ 5 with the false
positive and negative rates are both close to 0.08. If u ¼ 1,
we can choose w ¼ 4 with the false positive and negative
rates are both close to 0.07.

7.6 MLBF� versus LSBF

We used the above real-world handwriting digit Letter data
to compare performance between the MLBF� and the LSBF.
The focused issues are the FPR/FNR, space cost and com-
putation cost. The results are shown in Fig. 15. As the
MLBF� adopts an OR-constructions to reduce the FNR,
Fig. 15 shows that a more accurate result can be achieved
from it. However, the accuracy is not achieved for free.
LSBF only spends 0.116 ms to filter an object, while MLBF�

costs 0.351 ms for the OR-constructions’ computation.
Fig. 16 shows the space cost comparison. Because the
MLBF� only uses the MVBF with a virtual BMLBF, even for
one granularity, the MLBF� is space-effective. With the
increase of the number of different granularities, the space
cost of the LSBF increases, while that of the MLBF� remains
constant. From the comparison, we can see that, with extra
computation cost, the MLBF� is more accurate and more
space-effective than the LSBF.

8 RELATED WORK

The Bloom filter was proposed by B. H. Bloom in 1970 [4],
which has been playing an important role in numerous
applications since then. A number of variants of the

Fig. 14. FPRs/FNRs with real data.

Fig. 15. FPR/FNR comparison.

Fig. 16. Space cost comparison.

Fig. 13. FPRs for different granularities.

1. http://archive.ics.uci.edu/ml/datasets/OpticalþRecognitionþ
ofþHand writtenþDigits

3512 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

standard Bloom filter have been proposed. The hierarchical
Bloom filter (HBF) [9] was designed for sub-string match-
ing. To handle element deletions, the counting Bloom filter
(CBF) [10] extends the 1-bit locations to 4-bit counters to
avoid counter overflows. To process multi-attributes
objects, Xiao and Hua [11] proposed auxiliary structures to
capture the inherent dependency among the attributes of an
object. To delete one attribute value according to another
attribute value for a set of data objects with two correlated
attributes, Qian et al. [12] proposed the improved associa-
tive deletion Bloom filter (IABF) to realize the associative
deletion operation. A good survey of bloom filters can be
found in [7], [13].

Similarity indices are desirable for building content-based
search systems for multi-dimensional data such as audios,
images, and sensor data. Indyk and Motwani [3] first pro-
posed the well-known LSH technique in 1998. Nowadays,
the LSH technique and its variants are the state-of-the-art
indexing techniques for the approximate similarity search in
a multi-dimensional space. Gionis et al. [14] proposed a
method to process an in-memory data set in the Hamming
space. Datar et al. [5] proposed the LSH functions based on
the p-stable distribution. Motwani et al. [15] discussed the
lower bounds for LSH functions. Andoni and Indyk [16] pre-
sented an algorithm which can almost achieve the lower
bounds. The multi-probe LSH presented in [8] systemati-
cally probes multiple buckets that are likely to contain query
results, instead of probing only the bucket that contains the
query object, to improve both space and time efficiencies.
The Collision Counting LSH (C2LSH) reported in [17] uses a
base of several single LSH functions to construct dynamic
composite hash functions with a pre-specified collision
threshold. The BayesLSH from [18] is able to quickly prune
away a large majority of the false positive candidate pairs,
leading to significant speedups over the baseline approaches.
To reduce the probability of false conflicts, Quislant et al. [19]
proposed a novel design for sharing nearby locations that
exploits the spatial locality in transactional memories. Tao
et al. [20] improved the LSH by proposing an access method
called the LSB-tree to enable fast, accurate, high-dimensional
NN search in relational databases. Hua et al. [21] proposed
SmartStore to exploit metadata semantics of files to judi-
ciously aggregate correlated files into semantic-aware groups
by using information retrieval tools.

Research on using a Bloom filter and LSH functions to
process approximate membership queries has not been
fully explored. The DSBF [2] can provide speed and
space improvements for network and database applica-
tions, avoiding full nearest-neighbor queries or costly
comparison operations against the entire set. The LSBF
in [1] extends the standard Bloom filter by replacing
hash functions with LSH functions to provide the AMQ
processing service. The LSBF also uses a bit vector which
verifies multiple attributes belonging to one object to
reduce false positives. However, the key parameter, i.e.,
the closeness, in both techniques has to be defined in
advance before the query processing. Our MLBF/MLBF�

technique can process AMQs under multiple distance
granularities with low false positive and negative rates.
To our knowledge, no similar work has been reported in
the literature.

9 CONCLUSION

Aiming for processing approximate membership queries for
broad applications, we propose a novel filter structure
MLBF, and its variant MLBF�, which can process AMQs
under multiple distance granularities. The new structures
use a modified version of a classical LSH function family to
achieve an alignable property that is required for support-
ing multiple granularities in a BF. We show that the new
LSH functions are also locality-sensitive for multi-dimen-
sional objects with positive coordinates. The number of false
negatives of the MLBF/MLBF� structure is reduced by
using multiple AND-constructions followed by an OR-
construction. Detailed theoretical analyses for the false posi-
tive/negative rates are given. Experiments on synthetic and
real data sets show that the theoretical estimates for false
rates are quite accurate, and the new techniques can handle
AMQs with low false positive/negative rates for multiple
distance granularities.

Further studies will be conducted in the future. For
example, in the MLBF/MLBF� structure, the current dis-
tance parameter is restricted to a special form, i.e., 2uw. If a
given distance parameter x is not of this form, we can set

the distance parameter to 2uw for the structure such that x 2
(2u�1w, 2uw). In this conservative way, we can still remove
some useless AMQs with regards to distance parameter

x (< 2uw) in the query result set. However, more survived
AMQs need to be further examined via the conventional
query execution, comparing to a method that uses exact x.
Extending the MLBF/MLBF� structure to allow an arbitrary
distance granularity is an interesting open research issue.
Furthermore, a trade-off among accuracy, computing over-
head, and space cost will be further studied.

ACKNOWLEDGMENTS

This work was supported in part by China NSF Grant No.
61472194, Zhejiang NSF Grant No. LY13F020040, Ningbo
NSF Grants No. 2014A610023, No. 2013A610063 as well as
programs sponsored by K.C.Wong Magna Fund in Ningbo
University. They wish to thank the anonymous reviewers
for their valuable time and suggestions to improve the
paper.

REFERENCES

[1] Y. Hua, B. Xiao, B. Veeravalli, and D. Feng, “Locality-sensitive
Bloom filter for approximate membership query,” IEEE Trans.
Comput., vol. 61, no. 6, pp. 817–830, Jun. 2012.

[2] A. Kirsch and M. Mitzenmacher, “Distance-sensitive Bloom fil-
ters,” in Proc. 8th Workshop Algorithm Eng. Exper., 2006, pp. 41–50.

[3] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc. 30th
Annu. ACM Symp. Theory Comput., 1998, pp. 604–613.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[5] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in Proc.
20th Annu. Symp. Comput. Geometry, 2004, pp. 253–262.

[6] A. Rajaraman and J. D. Ullman, Mining of Massive Databases. New
York, NY, USA: Cambridge Univ. Press, 2011.

[7] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.

[8] Q. Lv, W. Josephson, and Z. Wang, “Multi-probe LSH: Efficient
indexing for high-dimensional similarity search,” in Proc. 33rd Int.
Conf. Very Large Data Bases, 2007, pp. 950–961.

QIAN ET AL.: MULTI-GRANULARITY LOCALITY-SENSITIVE BLOOM FILTER 3513

[9] K. Shanmugasundaram, H. Bronnimann, and N. Memon,
“Payload attribution via hierarchical Bloom filters,” in Proc. 11th
ACM Conf. Comput. Commun. Security, 2004, pp. 31–41.

[10] L. Fan, et al., “Summary cache: A scalable wide-area web cache
sharing protocol,” IEEE/ACM Trans. Netw., vol. 8, no. 3, pp. 281–
293, Jun. 2000.

[11] B. Xiao and Y. Hua, “Using parallel Bloom filters for multiattri-
bute representation on network services,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 21, no. 1, pp. 20–32, Jan. 2009.

[12] J. Qian, Q. Zhu, and Y. Wang, “Bloom filter based associative dele-
tion,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 8, pp. 1986–
1998, Aug. 2014.

[13] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and
practice of Bloom filters for distributed systems,” IEEE Commun.
Surveys Tutorials, vol. 14, no. 1, pp. 131–155, Apr. 2011.

[14] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. 25th Int. Conf. Very Large Data
Bases, 1999, pp. 518–529.

[15] R. Motwani, A. Naor, and R. Panigrahy, “Lower bounds on local-
ity sensitive hashing,” SIAM J. Discr. Math., vol. 21, pp. 930–935,
2005.

[16] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” in Proc. 47th
Annu. IEEE Symp. Found. Comput. Sci., 2006, pp. 459–468.

[17] J. Gan, J. Feng, Q. Fang, and W. Ng, “Locality-sensitive hashing
scheme based on dynamic collision counting,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2012, pp. 541–552.

[18] V. Satuluri and S. Parthasarathy, “Bayesian locality sensitive hash-
ing for fast similarity search,” Proc. VLDB Endowment, vol. 5,
pp. 430–441, 2012.

[19] R. Quislant, E. Gutierrez, and O. Plata, “LS-Sig: Locality-sensitive
signatures for transactional memory,” IEEE Trans. Comput.,
vol. 62, no. 2, pp. 322–335, Feb. 2013.

[20] Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Efficient and accurate near-
est neighbor and closest pair search in high dimensional space,”
ACM Trans. Data. Syst., vol. 35, no. 3, pp. 1–46, 2010.

[21] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “Semantic-aware
metadata organization paradigm in next-generation file systems,”
IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 2, pp. 337–344, Feb.
2012.

Jiangbo Qian received the PhD degree in com-
puter science from Southeast University, China, in
2006. He is currently a professor at the College of
Information Science and Engineering, Ningbo
University, China. He was a visiting scholar at the
Department of Computer and Information Science,
University of Michigan-Dearborn. His research
interests include databasemanagement, streaming
data processing, multidimensional indexing, query
optimization, and hardware/software co-design.

Qiang Zhu received the PhD degree in computer
science from the University of Waterloo, Canada,
in 1995. He is currently a professor at the Depart-
ment of Computer and Information Science, Uni-
versity of Michigan-Dearborn. He is also an ACM
distinguished scientist, an IBM CAS faculty fel-
low, and a senior member of the IEEE. His
current research interests include query optimiza-
tion, streaming data processing, multidimen-
sional indexing, self-managing databases, and
web information systems.

Huahui Chen received the PhD degree in com-
puter science from Fudan University, China, in
2009. He is currently a professor at the College
of Information Science and Engineering, Ningbo
University, China. His research interests include
database management, streaming data process-
ing, and query optimization.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3514 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

