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ABSTRACT The proliferation of artificial intelligence systems and their reliance on massive datasets have
led to a renewed demand on privacy of data. Both the large data processing need and its associated data
privacy demand have led to the development of techniques such as Federated Learning, a distributed machine
learning technique with privacy preservation built-in. Within Federated Learning, as with other machine
learning based techniques, the concern and challenges of ensuring that the decisions being made are fair and
equitable to all users is paramount. This paper presents an up-to-date review of the motivations, concepts,
characteristics, challenges, and techniques/methods related to fairness in Federated Learning reported in
the literature. It also highlights open challenges and future research directions in evaluating and enforcing
fairness in Federated Learning systems.

INDEX TERMS Federated learning, fairness of data, individual fairness, group fairness, fairness of system,
algorithmic fairness, fairness measure, fairness evaluation.

I. INTRODUCTION
As the number of decisions made by the automated systems
that people interact with daily is ever-growing, an increas-
ing amount of attention is being paid to how the intelligent
algorithms in such systems make decisions. These automated
systems are demanded for a variety of reasons, from higher
productivity compared to a human doing the same task,
to their ability to process incomprehensible amounts of data.
Unfortunately, just like the humans they often replace, these
automated systems are not entirely objective and free from
bias when making their decisions. Often, the decisions made
by such systems are inherently biased due to existing biases
with the data from which the decision models are learned and
the system environments/settings with which these models
are built.

There are several causes that may lead to unfairness of
Machine Learning (ML) algorithms, which include biases
from datasets, biases frommissing data, biases from algorith-
mic goals, and biases from proxy variables for protected data
attributes. Much work on ML algorithmic fairness has been
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reported in the literature [1], [2]. Recently, researchers have
been attracted to fairness issues in the context of Federated
Learning (FL).

Federated Learning, as an emerging Machine Learning
approach, aims to train a model across multiple participat-
ing clients while retaining independence and privacy of the
clients participating in the model training by keeping training
data separate from the coordinating server. As an inherently
distributed technique, Federated Learning addresses critical
data issues (e.g., data access, security, and privacy) while
also accounting for non-IID (independent and identically
distributed) data due to the nature of the client participation.
While these features can help alleviate some of the concerns
related to the rise of automated decision systems, this tech-
nique still must address issues of bias and fairness in its
predictions.

This paper provides an up-to-date review of the current
state and challenges on the topic of fairness in Federated
Learning systems. Existing surveys on Federated Learning
have examined general Federated Learning system architec-
ture, applications, and implementations. Different from these
surveys, this paper focuses on reviewing the relevant motiva-
tions, concepts, characteristics, challenges, techniques, and
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future work of enforcing fairness in FL systems, based on
the studies reported in the literature. Fairness in FL has
become an increasingly important topic that has attracted
much attention from researchers and practitioners recently.
This survey advances the understanding of fairness in the con-
text of FL and identifies open challenges and potential future
work, which may serve as a guide for the future research.
To our knowledge, no similar work has been reported in the
literature.

The main contributions of this paper are listed as follows:

• The relevant background, concepts, causes, and chal-
lenges of fairness in the FL context are summarized.

• Update-to-date techniques/methods reported in the lit-
erature to address challenges of fairness for Federated
Learning systems are reviewed.

• Observations about the current state, characteristics and
trends of the relevant research are discussed.

• Open challenges and future work for further research
opportunities are highlighted.

The rest of this paper is organized as follows. Section II
provides an overview of the background techniques that are
related to fairness in Federated Learning. Section III presents
the core challenges of fairness in Federated Learning. Section
IV reviews existing works on fairness in Federated Learning
from the literature. Section V discusses observations about
current research characteristics and trends as well as open
challenges and future research directions. Section VI pro-
vides concluding remarks.

II. BACKGROUND AND RELATED TECHNIQUES
In this section, we highlight the background techniques
including machine learning, deep learning, algorithmic fair-
ness inML, and federated learning that are related to the topic
of fairness in Federated Learning.

A. MACHINE LEARNING AND DEEP LEARNING
Originally termed by Arthur Samuel in the 1950s [3],
Machine Learning is one of the main branches within the
field of artificial intelligence [4]. In the past twenty years,
Machine Learning has seen an explosion of interest, fueled
by advances in computation and research into the backing
concepts that have led to significant advances in the field
and wide adoption of the technology in commercial use. The
general recent trends of modern Machine Learning can be
summarized as follows [5]:

• Rule-based systems: This is a category that includes
decision trees, tables, and logic programming that share
the commonality of utilizing hand-crafted rules and are
intuitive to understand.

• Bayesian statistics: This is a field that utilizes Bayesian
probability to make inferences, representing a prolific
category that has seen a lot of work in recent years due to
the emergence of probabilistic programming languages
and models.

• Kernel-based algorithms: This includes algorithms that
rely on the concept of neighborhood and adherence to
a definition of similarity. Examples of such algorithms
include k-Nearest Neighbor (KNN) and Support Vector
Machines (SVM). These algorithms tend to suffer from
poor scaling as the dataset increases, which has led to a
resurgence of the next trend.

• Deep Neural Networks (DNN): This technique is an
evolution of general neural networks that rely on many
layers of neurons (the deep portion of the name) that
are stacked in a hierarchical structure for data process-
ing. With typically millions or billions of parameters,
these networks are difficult to interpret, but have shown
incredible performance in many areas including com-
puter vision, language models, and speech recognition.

Deep Learning builds upon generalized machine learning
by introducing representation-based learning in the form of
the Deep Neural Network (DNN) [6]. This form of learning
utilizes multiple tiers of simple, non-linear representations
that transform the input data level by level until a complex
function can be learned [7]. Deep Learning has often been
compared to FL due to similarities with Deep Learning tech-
niques (primarily DNNs) and how these networks have been
utilized for purposes that are now being taken over by FL
systems. One notable drawback to the DNN architecture is
its complexity, whereas the dataset size increases so does
the complexity of the DNN, and proportionally, so does
the computation demand of the network. The performance
requirements of highly accurate DNNs necessitates the use of
a high-performance compute cluster, with the cost and con-
currency requirements that are associated with them. Tomake
efficient use of these systems, the introduction of parallelism
to code and the distribution of execution across clusters build
into forms of distributed learning.

B. ALGORITHMIC FAIRNESS WITHIN ML
As machine learning algorithms and the automated decisions
they make become more embedded in people’s lives, the con-
cerns about whether these algorithms are fair have led to an
ever increasing interest in algorithmic fairness. This increased
interest has led to a breadth of literature encompassing defin-
ing algorithmic fairness, evaluating fairness of algorithms,
and methods to improve fairness. Maintaining fairness of an
algorithm is a balancing act of trade-offs, as [1] demonstrates,
to achieve higher measures of fairness, accuracy inherently
is compromised. As noted in a survey on fairness within
machine learning [2], there are four main categories of causes
to algorithmic unfairness that can be identified from existing
literature:

• Biases included in the datasets: including data from
biased measurements or human decisions, from erro-
neous or biased reports, among other reasons. By their
nature, machine learning algorithms replicate these in-
built biases.
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• Biases caused by missing data: including missing data
entries, data values collected with a sample or selection
bias, or from poorly run data collections. This category
of bias results in non-representative datasets that can
differ greatly from the target populations.

• Biases from algorithmic goals: both due to unreliable
algorithms and from algorithms that result in the major-
ity group being favored over minorities due to minimiza-
tion of prediction errors.

• Biases resulting from the use of proxy variables in
the place of protected data attributes. These protected
data attributes are typically the variables that distinguish
between privileged and unprivileged groups and are not
considered permissible for predictions (protected vari-
ables are those typically protected from discrimination
by law, such as race, age, religious affiliation, gender,
etc.). Proxy variables can be used to infer protected
attributes that are available to the algorithm, therefore if
a dataset includes these proxies, the algorithmmaymake
biased decisions from these inferences.

Lastly, to clarify, throughout this paper, the terms bias,
unfairness, and discrimination are used interchangeably to
mean similar things. This practice is common amongst fair-
ness literature, as can be seen in the following paper which
aims to establish standardized definitions of algorithmic fair-
ness within Machine Learning [8].The concepts of fairness
in this paper are in line with those established in the afore-
mentioned paper, however, are expanded to the context of
Federated Learning.

C. FEDERATED LEARNING
Originally introduced by researchers at Google in 2016 [9],
[10], Federated Learning has shown great promise and has
seen immense research progress as the technology becomes
more mature and its potential applications are explored. The
crux of FL is the concept of training a model without the need
for data to be centrally stored or transferred to a centralized
location, which necessitates a highly parallel and collabora-
tive system.

As research has continued further in the domain, FL has
been applied to a range of different applications, from
the Internet of Things to medical applications. Despite the
increasing popularity of the technology, its technical com-
ponents are only now becoming more broadly understood,
and resolving the specific challenges in implementing an
FL system is now becoming the focus of research. Further
driving the adoption of FL systems is the in-built data privacy
provided by these systems, as client data is not shared with
the central server and training occurs at the client devices
rather than adopting a main compute cluster as is the case
in traditional machine learning.

Building on the base idea of centralized machine learning
systems, Federated Learning differentiates itself through four
main criteria:

FIGURE 1. Example architecture of a horizontal federated learning
system.

• Datasets are not shared; namely, clients retain exclusive
access to their training data and share model updates
to be aggregated on a central server iteratively. This
unbalanced data access leads to the challenge of data
heterogeneity,

• Training is distributed and collaborative, taking place
typically across many edge devices (e.g., mobile phones,
autonomous vehicles, and Internet of Things (IoT)
devices). This inherent massive parallelism is both a
benefit and a challenge. Private FL systems can typically
involve 2-100 clients whereas public (cross-device) FL
can reach millions or even billions of clients, compared
to distributed machine learning which is typically dis-
tributed across several high-performance server clusters.

• Local model training is decentralized, taking place on
the clients where the data the clients train their local
models on is considered independent and identically
distributed (IID). This leads to a challenge at the global
model level due to the non-independent identical distri-
bution (non-IID) of client data (from the system perspec-
tive), as FL systems must reconcile the model updates of
clients as an individual client’s data is not representative
of the global dataset.

• Privacy preservation is inbuilt as sensitive user data is
not shared. Since the only data communicated between
the clients and central server are the aggregated model
updates, user privacy is retained.

Federated Learning systems come in a variety of archi-
tectures, with many improving upon deficiencies of ear-
lier models, being more focused upon specific applications,
or expanding the capabilities of the more generalized archi-
tectures. As defined in [11], there are two main types of FL
architectures, horizontal one and vertical one, which differ in
how they are structured, how they deal with client data, and
how they learn the model.

Horizontal FL, which has also been referred to in the
literature as sample-based FL, focuses on realizing secured
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FIGURE 2. Example architecture of a vertical federated learning system.

FL in scenarios where client datasets share the same feature
space but have different samples. Features are the same for the
local models, while client data differs from client to client.
This architecture assumes that each client is honest, with
security being inbuilt against the central server. The training
process of Horizontal FL is shown in Figure 1, where the
basic structure consists of a number of clients with the same
data structure computing local model updates and a central
server aggregating the locally-computed updates.

Vertical FL, also referenced as feature-based FL, focuses
on realizing FL for the scenarios in which features are dif-
ferent among clients while the client datasets share the same
sample identifier space. The training process of Vertical FL is
shown in Figure 2, wherein the clients perform training to col-
lect, group, and exchange the features of the model utilizing
a calculated training loss for building the model. Vertical FL
also assumes that clients are participating honestly, but due
to the calculation and exchange of features, a compromised
client can only expose that client’s data. This aspect of in-built
privacy helps reinforce the privacy constraints inherent to FL.

D. LIMITATIONS OF PREVIOUS SURVEYS
Most recent surveys on the progress of FL have focused on
technical considerations of FL including framework architec-
tures and applications [11], enabling software/hardware tools
and platforms for FL [12], system challenges in FL (such
as communication costs, security and privacy, and resource
allocation) [13].
In the survey [11], the authors present different system

challenges of FL with accompanied solutions. They also
discuss the three main architectures: Horizontal FL, Vertical
FL, and Federated Transfer Learning. Each architecture is
discussed from a technical standpoint and presented with
current applications. At the end, the authors show that Feder-
ated Learning is an efficient technique to build data networks
among multiple organizations while preserving user privacy.

The work of [12] presents differences between FL and
traditional and centralized ML. The survey covers a range
of enabling technologies that are used to learn a model in
an FL setting and provides a summary of relevant protocols,
platforms and real-world applications of FL. The authors also
discuss existing key challenges in recent literature and best
practices in the design of FL-based models.

The article [13] presents a comprehensive survey that
shows how Deep Learning on Edge Computing is currently
used in a variety of applications due to the massive computing
power present on edge devices (such as smartphones) nowa-
days. The authors introduce concepts of FL by discussing
the intersection between Deep Learning and Edge Computing
as well as discussing the challenges of the implementation
process of running Deep Learning on edge devices with sug-
gested solutions. Finally, their work highlights four existing
FL applications within the scope of Edge Computing.

The survey from [14] discusses the development process
of FL and how the common challenges are resolved during
implementation of such systems. The authors provide an
overview of the evolution of FL frameworks over time and
how these frameworks were developed in response to differ-
ent challenges encountered. Furthermore, the authors discuss
the future direction of FL applications, while primarily focus-
ing on the domain of industrial engineering applications.

To our knowledge, there is no survey about the current state
and challenges of fairness in FL, which will be presented
in this paper. The overview, classification and analysis of
related concepts, challenges and techniques of fairness in FL
given in this paper will facilitate identifying new problems
and developing novel solutions by researchers, developers
and probationers in the field.

III. CORE CHALLENGES OF FAIRNESS IN FL
The concept of fairness within Federated Learning can be
defined broadly in two ways: fairness in the context of data
and fairness in the context of the system. Fairness of data can
be defined similarly to fairness within the broader domain
of Machine Learning, typically defined as individual-based
fairness and group-based fairness. Fairness has been typically
considered as an optimization problem in the domain of ML,
where it acts as a constraint on the performance of a given
model in respect to model accuracy [15].

A. FAIRNESS OF DATA - INDIVIDUAL FAIRNESS
Individual fairness is based upon the principle of similarity,
that is, within the context of a given task, similar individuals
can be assumed to be classified as similar [16]. Measuring
this similarity is the core challenge of assessing individual
fairness, as similarity of individuals can differ depending on
the underlying specific data and applications. Another way to
define individual fairness, as noted by [17], is the constraints
that bind pairs of individuals rather than the average that binds
a group.

One of the difficulties with defining individual fairness
is the assumptions that one must make when selecting an
approach, as these assumptions can make individual defini-
tions of fairness impractical. The article [17] also explores
existing definitions of statistical and individual fairness, their
impact on intersectionality, and other pertinent questions on
the topic of fairness within ML. Intersectionality in this
context refers to how different types of bias can interact for
individuals who belong to multiple protected classes. This
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work can serve as a good starting point for further reading
into individual fairness. Much of the focus on improving
individual-level fairness in FL looks at the stage of client
selection, as ensuring similarity at this stage of the training
process can address unfairness before model updates.

B. FAIRNESS OF DATA - GROUP FAIRNESS
Group fairness focuses on the issues that arise from quantify-
ing the sensitive characteristics of populations (e.g., gender,
race, and age) and mitigating the bias that can exist inherently
from the use of such sensitive data. This notion is con-
nected to statistical parity, which is the property of population
sub-groups receiving identical classifications as that of the
entire population [16]. Statistical parity aims to standardize
the outcomes across both protected and non-protected groups.
However, this can have the effect of unfair outcomes from the
perspective of the individual.

The goal of group fairness is to ensure that the predicted
outcome and the sensitive attributes of the data are inde-
pendent, and any effect of potential biases are minimized.
As a result, statistical parity between the protected and
non-protected groups is ensured. The core challenge of group
fairness under Federated Learning comes from the inherent
use of sensitive data characteristics to attempt to mitigate
potential bias, which stands in stark contrast to the core
principle of FL that protects client privacy by not allowing
access to client data [18].

It should be noted that the decisions and predictions made
by these automated systems and algorithms will be biased
towards the privileged groups and individuals (that is, there is
inherent bias in these systems, and it is a fact that should be
accounted for) [19]. This fact inevitably leads to the concern
and need to reduce discrimination in models that interpret
sensitive data, as miscalibrations caused by bias in these
models can cause harm to some groups [20].

The type of data may also influence how the various
approaches to addressing fairness challenges should work.
For example, as seen in the article [21] in regards to tabular
data, the context around the boundaries of features and what
data these features relate to is important. Using a ‘‘month’’
feature, for example, any relevant method should understand
the valid range of the feature (i.e., 1 - 12) and the valid
type of data (i.e., an integer rather than a string or float
(e.g., 6.5 is invalid)). This would differ from the approach
needed in an image-based dataset, where features may not be
explicitly defined as they are in tabular data. Any approach
to addressing the challenges of fairness needs to be tailored
to the type of data being used, including temporal vs. spatial
properties to be discussed in Section IV-D.

C. FAIRNESS OF THE SYSTEM
Fairness of FL systems differs from that of fairness in the
context of data, as it looks at the clients within the net-
work and the challenges that arise from the asymmetric
nature of the network. Fairness of the system can be defined

as balancing the contributions and performance of clients
across the network. This balancing is done with the goal
that clients are equitably participating in the model learning,
while minimizing the differences due to factors such as geo-
graphic location, client data distribution, and individual client
performance.

Due to the distributed structure of a Federated Learning
system, there are multiple challenges that come from the
concept of system fairness. As the network is asymmetric and
client data is inherently unbalanced, both the quality of the
data used and rewards for a given client’s contributions are
difficult to address. The limited bandwidth and inconsistent
data distribution from network clients, along with the associ-
ated expensive communication costs, can result in difficulty
of maintaining reasonable and satisfactory performance for
the diverse clients on the network. The distributed nature of
the FL network is a challenge, as such a network (especially
mobile based ones) may havemillions of clients across a large
geographic area, compared to traditional distributed machine
learning models which may only reside on 10s nodes within
a data center [22].

It should be noted that there can be additional causes of
bias in the system that are independent of the type of data,
resulting in or resulting from the local or global models being
biased. One example of such additional biases is caused by
the choice of hyper-parameters used on the local models that
can inadvertently introduce biases in the global model. Since
these parameters may affect the learning process of both the
local and global models in an FL system, they can have
an out-sized influence on the outcomes of the model. Some
approaches to mitigating FL model biases have examined
methods that prevent this cause of bias entirely by not relying
on hyper-parameter tuning of the FL models [23].
Similar to biases with causes independent of the data,

the models in an FL system can become biased due to
malicious attacks resulting from malicious clients. The most
pertinent example of such attacks on FL systems with regards
to fairness are the poisoning attacks. These attacks are
characterized by malicious clients submitting bad updates
with the intent of either preventing the global model from
converging or covertly introducing artificial bias to the
model [24]. Addressing the negative effects on model bias
and overall system fairness these attacks can have without
adversely over-detecting poison attempts is an emerging area
of focus [25], [26].

There has been some work integrating complementing
technologies with FL to better address challenges of privacy
and integrity. For example, FL systems are integrated with
blockchains, a distributed ledger technology whose records
are linked securely using cryptographical hashes [27]. With
blockchain records being immutable, blockchain empow-
ered systems can support both integrity and privacy at a
high level. To achieve improved scalablity of these systems,
a lightweight blockchain approach like [28] could be utilized.
Enforcing fairness in such systems is challenging as demon-
strated in [29] and [30].
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FIGURE 3. Simple diagram of how the categories of fairness may overlap.

D. OVERLAP OF FAIRNESS IN FL
The above categories of fairness are not mutually exclusive.
The ML based systems often run into multiple fairness chal-
lenges since they can overlap. An example of this challenge
overlap would be a hypothetical FL system for diagnosing
melanoma, a skin cancer, based on photos of an area of skin,
with clients participating from locations around the world.
In this system, individual fairness would be a concern for
the individual clients participating, as an accurate diagnosis
is of utmost importance to the client. Group fairness concerns
manifest themselves at the system level, where ensuring that
different skin type groups are diagnosed fairly and there is no
in-built bias in the systemwould be of paramount importance.
Fairness of the system would then apply to how the clients
are participating in the system and ensuring that regardless of
where a client may be located, their participation is accounted
for fairly. This overlap of fairness can be modeled by a simple
Venn diagram, as shown in Figure 3.With the base challenges
of fairness established and outlined, the next section will
organize recent works in the field that aim to address the
challenges.

IV. STATE OF EXISTING WORKS ON FL FAIRNESS
While the challenges of fairness related to data are common to
the broad ML field beyond just Federated Learning, fairness
of the system is quite unique to FL due to the distributed
structure that is utilized. Much work has been done since FL
emerged, with a lot of interest being focused upon applica-
tions and the privacy preserving aspects. More recently, some
work has been done to address the challenges of fairness as
it becomes clearer how impactful fairness is in the context of
an FL system. In this section, we review existing works that
aim to address the challenges presented in Section III.

A. ALGORITHMIC APPROACHES TO ADDRESSING
FAIRNESS
In this subsection, we summarize the characteristics of recent
algorithms that aim to address the challenges of fairness
within a FL system.

Asynchronous Federated Learning systems deal withmany
of the same challenges as synchronous FL systems but must
address them in distinct ways due to the difference among
approaches. The study [31] explores asynchronous FL frame-
works that aim to resolve the issue of straggling clients. This
is a problem widely present within synchronous FL systems
wherein the system must wait to collect all client models
before performing the model aggregation. While waiting for
straggling clients, the system may suffer from degraded per-
formance. The paper proposes to overcome this by using
asynchronous FL frameworks and by attempting to utilize
both client availability and long-term fairness to reduce the
training latency caused by client selection.

Due to the different approaches to dealing with client
data, horizontal and vertical FL systems must address the
challenges of fairness in different ways. In [22], the authors
propose an algorithm, FedFa, that aims to achieve better
fairness and accuracy within horizontal federated learning
systems through the introduction of a double momentum gra-
dient optimization scheme, and an appropriate weight selec-
tion algorithm to assist training aggregation with more fair
weights. This can be contrasted by the study [32], in which
the challenges of fairness within a vertical federated learning
system are discussed. The authors propose a framework to
approach the challenge of fairness as a constrained optimiza-
tion problem that can be solved by an asynchronous gradient
coordinate-descent ascent algorithm.

The client selection stage is a key point at which fairness
criteria can be enforced, as the FL system is able to better
accommodate for changes in the distribution of clients at this
time. The paper [33] explores the impact of client selection,
demonstrating that during the client selection stage of FL
training, both performance (in terms of the efficiency of
training) and fairness of the final model can be adversely
impacted by the choice of clients selected. The authors pro-
pose a method to guarantee fairness during client selection,
termed RBCS-F, which aimed to solve this challenge through
approaching client selection as a Lyapunov optimization
problem. A different way to deal with the clients interacting
with the FL system is explored in the paper [34]. The authors
propose an improved aggregation algorithm, called Center
Dropout, which selects a random assortment of the clients
participating in the FL system and increases the amount of
local learning as to allow for underrepresented clients (the
centers) not to be overwhelmed by the learning of bigger
clients during aggregation.

Achieving group fairness requires different considera-
tions compared to achieve individual fairness. The authors
of [18] explore these considerations and proposes a method
to achieve group fairness within a Federated Learning system
and resolve the challenge of fairness vs client privacy through
the combination of Secure Multiparty Computation (MPC)
and Differential Privacy (DP). A different approach to enforc-
ing group fairness is investigated in [35], wherein the authors
propose an optimization algorithm, called FedMinMax. This
algorithm introduces minimax group fairness within an FL
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FIGURE 4. A simple overview of how differential privacy functions.

context, where the participating clients have limited access
to a subset of demographic groups during training. Enforc-
ing group fairness while preserving privacy foundation is
another challenge explored in [36]. The authors introduce
an algorithm that seeks to enforce group fairness within
private federated learning. The algorithm accomplishes this
goal through extending a method of differential multipliers
to empirical risk minimization with fairness constraints.

Enforcing fairness within specific niches can introduce
additional challenges, as explored in the study [37]. In this
work, the challenge of fairness is approached in the context
of Intelligent Transportation systems, where system hetero-
geneity is often limited due to the difficulty of addressing
fairness. The authors propose an algorithm, called the system
heterogeneous fair federated learning (SHFF), to introduce an
equipment influence factor that allows the global fairness to
be controlled according to the needs of the system.

B. DIFFERENTIAL PRIVACY AND OTHER APPROACHES
FROM DIFFERENT DOMAINS
In this subsection, we summarize the characteristics of recent
approaches that aim to address the challenges of fairness
within a FL system by utilizing techniques originally from
other domains.

New approaches that seek to enforce fairness while pre-
serving the privacy in a FL system can incorporate techniques
from other domains. Differential Privacy (DP) is a concept
in data analysis that aims to ensure that the change of any
database entry does not fundamentally change the outcome
of the analysis performed [38]. Figure 4 demonstrates an
overview of a simple generic DP architecture.

The article [36] demonstrates that the use of DP in an FL
context can affect under-represented groups within a model.
The authors propose an algorithm, called FPFL, to ensure
that group fairness is enforced within a private (privacy-
preserving) federated learning system.

Differential Privacy applied at the global model level can
be utilized to better control the trajectory of model bias. The
study [39] investigates DP in the context of an Internet of
Things (IoT) network. The authors propose the idea to control
the quality of the global FL model shared with the devices,
in each round, based on client contribution and expenditure

(participation costs). This is accomplished through DP to
curtail global model divergence based on the learning con-
tribution, while the expenditure costs are controlled through
adaptive computation and transmission policies for each
device, thereby mitigating utility unfairness. The authors also
investigate the topic of utility fairness within IoT devices
that are participating in a DP-based FL system, identifying
unfairness in utility that occurs due to the global model being
applied to non-heterogeneous devices.

Investigating the impact of non-IID (independent and iden-
tically distributed) data on DP-based FL systems, the arti-
cle [40] demonstrates the negative impact of this type of data
on both model fairness and performance.

Addressing bias in the predictions of a model can help
reinforce an ethical framework. The study [41] presents an
ethical federated learning model that incorporates differential
privacy, federated learning, and fairness metrics to address
ethical concerns resulting from prediction bias.

Differential Privacy can be incorporated at a local (single
client) level or a global (system wide) level. In [42], the
authors discuss the fairness and privacy effect of local DP and
global DP when applied to federated learning by designing a
fair and privacy quantification mechanism. They demonstrate
an acceptable trade-off among accuracy, privacy, and model
fairness while quantifying the level of fairness based on the
constraints of three definitions of fairness, including demo-
graphic parity, equal odds, and equality of opportunity. This
study also shows that privacy can come at the cost of fairness,
as stricter privacy can intensify discrimination.

Similar to how differential privacy has been used, Propor-
tional Fairness (PF) has its roots in telecommunications and
communication networks. Based on cooperative game theory,
PF aims tomodel a given problem as a cooperative bargaining
game where players can improve their utility through collab-
oration [43]. The study [44] investigates PF in the context of
a Federated Learning system. The authors propose a novel
algorithm, called PropFair, to find fair solutions for FL sys-
tems by modeling the overall system as a cooperative game,
which allows PF to be modeled as Nash bargaining solutions.

C. FRAMEWORKS AND MODELS OF FAIRNESS
CONSTRAINTS
As a result of the growing popularity of federated learn-
ing and the recognition of the challenges of fairness, there
have been many frameworks and models proposed to better
address these challenges in FL systems. In this subsection,
we summarize such frameworks and models.

As the quality of clients can greatly impact the perfor-
mance of an FL system, ensuring that quality clients are
chosen to participate is of importance. One approach explored
in [45] is to adopt a framework that seeks to address collabo-
rative fairness by considering participant (client) reputations,
which are based upon participation to the central model.

Another study [46] investigates how heterogeneous clients
can impact the final model. The authors introduce a formal
definition of fairness in Federated Learning, namely, fairness
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via agent-awareness (FAA) that takes into account the differ-
ent contributions of heterogeneous clients. The authors also
present a framework, FOCUS, that utilizes client clustering
to achieve higher fairness measured under FAA compared to
the standard FedAvg algorithm.

The client selection phase, taken as an individual pro-
gram, can be modeled as an optimization problem. In the
study [33], the authors present two key findings. First, they
introduce a model with the fairness guaranteed client selec-
tion as a Lyapunov optimization problem. Second, they intro-
duce a C2MAB-based method for estimation of the model’s
exchange time between each client and the server, which is
then used to design a fairness guaranteed algorithm, called
RBCS-F, for problem-solving.

A framework that aims to enforce both group and indi-
vidual fairness would need to reconcile the challenges of
both types of fairness and introduce improvements to both.
The study [47] proposes a framework, called GIFAIR-FL,
to accommodate both group and individual (personalized)
fairness settings. This framework is based on the addition of
a regularization term that is used to penalize the loss of client
groups, resulting in the improved diverse and fair solutions.

Enforcing group fairness requires considering sensitive
demographic attributes, with the goal of de-biasing (improv-
ing group fairness) a model’s output so that the distribution
of results across demographic groups is equitable. In [48], the
authors propose a framework that incorporates a Variational
AutoEncoder (VAE) to aid with semi-centralized adversarial
training with the goal of improving group fairness. This
encoder is paired with a decoder on the central server side,
ensuring client privacy as the encoder remains client-side,
while providing greater fairness on sensitive attributes.

When working with unknown test data, balancing fair-
ness and accuracy can be exceptionally challenging. The
paper [49] demonstrates that, in the context of unknown test
data, introducing fairness constraints to the central FL model
will not achieve model fairness. The authors, therefore, pro-
pose a fairness-aware agnostic FL framework, called Agnos-
ticFair, that uses kernel reweighing functions to achieve high
accuracy and fairness when being used on unknown test data.

In the field of dermatology, the accuracy of a model is of
paramount importance, as a misdiagnosis of a skin condition
could be life changing.Models used in dermatology have also
historically been biased against people of color as the datasets
used to train these models tend to be predominantly of fair-
skinned individuals. The authors in the study [50] examined
how the problem of dermatological disease diagnosis is being
addressed with existing deep learning and FL based solutions
but suffering from imbalanced data that affects the system’s
performance, causing significant diagnosis disparities. They
propose a fairness-aware FL framework for achieving high
fairness and accuracy in the context of dermatological disease
diagnosis.

Critical energy infrastructure (CEI) systems are vital to
the health of every nation’s economy and society. The chal-
lenges that these systems face are of utmost importance to

the ongoing development of a country while also making
them prime targets for cyber-attacks and data leakage. In the
study [51], the authors design an asynchronous FL frame-
work that incorporates fairness-awareness and time-sensitive
task allocation mechanisms for the use in CEI systems, with
the goal of enforcing privacy protections and fairness while
addressing the challenge of client node schedulingwithin CEI
systems.

In the Internet of Things, devices are often constrained
on both computation and connectivity. The paper [52] pro-
poses an analytical fairness-aware FL model that aims to
improve performance on resource-constrained IoT FL sys-
tems. The fairness-aware model aims to accomplish this goal,
along with addressing the challenges that FL systems face
with client scheduling and parameter transmission failure,
by introducing a reliable statistically re-weighted aggre-
gation (RSRA) scheme to guarantee the fairness of local
clients.

Blockchain technology has the potential to be very impact-
ful on data storage and privacy, as a blockchain allows for
greater transparency and accountability. At the same time,
blockchains have inherent challenges with privacy due to
their core nature, that being two-fold; the blockchain is
immutable and data cannot be deleted, and all users with
access to the blockchain can view the entire blockchain.
By combining blockchains with federated learning systems,
the benefits of both technologies can be used to complement
each other and offset the downsides [27].

In [29], the authors propose an FL framework with the
aim of attempting to simultaneously address the challenges of
achieving fairness, integrity, and privacy preservation for all
clients by utilizing blockchain technology, local differential
privacy, and zero-knowledge proofs. A similar study [30]
proposes an architecture based on a trustworthy blockchain
implementation for FL with the aim to enhance the account-
ability and fairness of FL systems. This is accomplished
through two contributions: a smart contract-based data-model
provenance registry to enable accountability and a weighted
fair data sampler algorithm to enhance fairness in training
data.

Approaches that are complex and robust may potentially
adversely categorize and discard rare client updates, causing
unfairness. A simple approach with robustness in mind would
address these constraints, which is the approach investigated
in the study [53]. The authors propose a general framework
for personalized federated learning, called Ditto, that has the
goal of inherently providing fairness and robustness, with an
addition of a scalable solver.

In [54], the authors propose a theoretical framework with
the goal of demonstrating that FL can boost model fairness
in comparison to non-federated/distributed algorithms. This
framework, called FedFB, provides a private fair learning
algorithm designed to be trained on decentralized data, out-
performing the FedAVG algorithm. The authors demonstrate
that federated learning-based systems are able to outperform
those based on non-distributed learning algorithms.
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TABLE 1. Examples of spatial-temporal data.

D. EVALUATION AND METRICS FOR EVALUATING
FAIRNESS FOR FL SYSTEMS
Building on the general challenges with fairness comes the
simple question of how to evaluate exactly how fairness
is accounted for within a FL system. In this subsection,
we summarize some recent efforts in introducing metrics for
evaluating fairness, and investigations into fairness evaluation
in existing FL systems.

In [55], the authors propose a metric (i.e., the Feder-
ated Shapley value) and a method (i.e., the Sharp Federated
algorithm) to use Shapley values to determine feature impor-
tance for both client and host model features, and balance
the model interpretability and data privacy in vertical FL
systems. This Shapley value metric can also be used as a
method to better understand the value (quality) of client data
while also reinforcing the measures of general model per-
formance. Building upon this work, the study [56] evaluates
the Federated Shapley value and proposes a new measure,
called the Completed Federated Shapley value, to overcome
some potential unfairness associated with the original Shap-
ley value.

Personalized FL systems (that is, an FL system wherein
each client has a personalized model to address the issue of
data distribution) have their own inherent challenges with
evaluating fairness. The authors of [57] study the challenges
in evaluating personalized FL systems and propose a set
of performance and fairness metrics to aid in assessing the
effectiveness of a personalized FL system.

Spatial-temporal datasets that focus on urban environments
have inherent fairness challenges due to the socio-economic
factors inbuilt in those environments, as explored in [58].
Table 1 details common data types used in urban spatial-
temporal datasets. Spatial data is categorized as that which
does not vary significantly over time, such as the road system,
while Temporal data by contrast varies regularly, such as
weather. On the other hand, spatial-temporal data vary in both
time and space.

An FL system that works upon these datasets therefore
must consider and actively adjust client participation for
this pollution of the data so that the system does not rein-
force these biases. The paper [15] explores fairness within
this context, investigating existing metrics and approaches
for the measurement and evaluation of fairness within
spatial-temporal data based FL systems. The authors also

discuss how these metrics may be changed to better address
existing challenges within FL.

A study in [59] delves into how the performance of an
FL system is related to how similar the local data is dis-
tributed amongst clients (that is, the greater the difference
in distribution, the lower the accuracy of the model). The
authors demonstrate that fairness and accuracy will be neg-
atively impacted, as models that show highly different local
data distributions exhibit both higher bias and a significant
decrease in fairness compared to the impact to accuracy.

As addressing the impact of fairness for FL systems
becomes more widespread, the potential trade-offs between
preserving privacy and fairness become more of a concern.
The authors of [19] explore these trade-offs by auditing a
privacy preserving FL system to evaluate the fairness of its
output, using entropy to determine the similarity of the input
data and to compare against the output to detect bias.

V. FURTHER DISCUSSION
In the previous sections, we have provided an overview
of background techniques, challenges of the various types
of fairness in FL, and existing techniques/methods dealing
with various aspects of FL fairness. In this section, we will
present the selection method of publications in this survey,
observations on existing FL fairness studies, as well as open
challenges and future work.

A. OBSERVATIONS ON EXISTING FL FAIRNESS STUDIES
As the topic of fairness in Federated Learning is an emerg-
ing domain, the number of papers covering the challenges
associated with fairness in FL is not very large. The papers
included in this study were mainly selected from two sources:
the Google Scholar search engine and the DBLP computer
science bibliography. Google Scholar has limitations as a
search engine (limited results per query, incomplete coverage
of scholarly articles, limited coverage of articles in non-
English languages, etc). However, recent studies into the
platform [60] conclude that it remains the most comprehen-
sive scholarly search engine. To supplement this, the DBLP
computer science bibliography that indexes over 6.6 million
publications as of 2023 (dblp.org) was also used to source
papers. Note that only studies that either were published
in major computing journals or were pre-prints of works
awaiting publication were included in this survey. In addition,
studies cited in a selected paper were also included if they are
relevant.

As the Federated Learning field continues to mature, one
of the trends that will continue to be seen is the adoption and
application of techniques that originate from other fields. This
was explored in section IV-B, which examined applications of
two concepts, Differential Privacy and Proportional Fairness.
Both of these concepts originated from different domains in
computer science.

Figure 5 shows the numbers of publications for the gen-
eral FL, the Differential Privacy concept, and the overlap
between the two by year. The data in this figure is from the
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FIGURE 5. A comparison of publications for general FL, DP, and the overlap between the two.

TABLE 2. Literature coverage of fairness.

DBLP computer science bibliography. Looking first at the
FL publications, it is quite clear that, after the initial Google
publications in 2016 [9], [10], there has been an exponential
increase in interest in FL over the years. Similarly, there is
a clear trend visible in the DP graph, where there is a year-
to-year growth in inclusion of the DP concept in publications.
This trend can be explained by the concept’s usage inmachine
learning, where it is a popular inclusion for introducing and
addressing privacy constraints. Additionally, this trend can
also be seen to a lesser extent in the graph for publications
with the overlap between DP and FL, which demonstrates the
adoption of DP in FL although the domain of data (the num-
ber of years) is small. When techniques and concepts from
other domains gain popularity, if they show an applicability
in FL, then the crossing interest will show a similar growth.

Table 2 summarizes the related studies included in this
survey and their coverage of the different types of fairness
(along with the topic of evaluation of fairness). Several trends
can be observed by this categorization:

• With the related studies that fall under both group
fairness and system fairness, the overarching theme
is mitigating bias of under-represented groups through
improved algorithmic approaches to the FL training
process that lead to greater fairness performance in the
global model.

• The majority of the studies that touch upon both individ-
ual fairness and system fairness are those that investigate
fairness of client selection and propose methods to
improve it. As touched upon in section III-A, the client
selection stage is a key point for potential improvements
to the FL training process, as it occurs before the central
model updates, which provides an opportunity to better
enforce the similarity notions of individual fairness.

• Studies that only touched upon system fairness were
largely focused on improving the FL system itself, with
the goal of improving fairness being accompanied by
other goals generally around improving overall FL per-
formance.

B. OPEN CHALLENGES AND DIRECTION OF FUTURE
WORKS
One major open challenge in this field would be the cur-
rent limitations with defining and measuring fairness within
a Federated Learning system. Not all recently proposed
approaches include how a given FL system performs in
regard to fairness, and typically, the measures that are pro-
vided are not uniform or comparable across implementations.
As fairness within the broader Machine Learning field has
progressed as the field matured, so too must fairness within
FL, and perhaps inspiration on how standardized measures
were implemented can be taken from this closely related field.
Generalized benchmarks and datasets dedicated to evaluating
fairness in the distributed manner of FL should be one direc-
tion of future efforts.

Another major open challenge is maintaining a good bal-
ance among competing constraints of fairness, integrity, accu-
racy, privacy, scalability, and robustness without losing one
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or the other. As addressing fairness within an FL system is
a balance of trade-offs, achieving fairness can be thought of
as a multi-objective task, which weighs the various objec-
tives and contexts around the fairness that is set as a goal.
Equally as important is ensuring that maintaining these fair-
ness constraints does not impose a negative effect on the
system, falling victim to over-correcting biases. Building and
utilizing datasets representative of that are both equitable to
under-represented populations and realistic is a great chal-
lenge but would allow for more transparency and ease in
the evaluation of these systems. Only limited work has been
reported in this area. Further research efforts are required in
this direction.

Another area of interesting future work is the improvement
and optimization of fairness evaluation methods so they can
be integrated into real-world use cases. With current methods
(such as the Completed Federated Shapley framework [56]),
one of the main factors limiting their adoption is the time
and cost of computing contribution valuations. This restricts
these methods to unrealistic use cases where aspects of the
FL system (namely the client pool or models) need to be
restricted to where it is not representative of how FL systems
are used in real world conditions. Future work in this area
can hopefully introduce improvements with these methods
so they can better be integrated and used to enforce fairness
guarantees in FL systems.

The other related problems that continue to be chal-
lenging and require further studies for fairness in FL sys-
tems include interpretability of fairness enforcement, fair-
ness mechanisms resistant to different types of privacy
attacks, domain/application-specific fairness schemes, theo-
retical analysis of fairness properties, improved algorithms
for fairness optimization, and fairness quantification in com-
plex settings.

Another general trend of improvement in this field is the
availability of open code to reproduce results. A significant
number of studies covered in this survey did not readily
provide code. As a result, this survey is unable to comment
on the reproducibility of results for the studies covered.

VI. CONCLUSION
As distributed systems become more embedded in the frame-
works of society that we interact with every day, it is imper-
ative that the decisions that they make are as fair and ethical
as possible. A Federated Learning system can provide great
privacy benefits to the participants of the system, but these
benefits need to be ensured alongside high fairness con-
straints to ensure the goals of the system are accomplished.
Although the FL fairness has attracted much attention from
researchers recently, the research advance is still in its infancy
stage. The reported studies have covered various types of
fairness including individual and group fairness of data as
well as fairness of the system. Some of them handle mul-
tiple types simultaneously, while most of them deal with
the system fairness in some way, which is unique for a FL
system. A number of algorithmic approaches to addressing

fairness in FL have been proposed. Some concepts such as
differential privacy from other fields have been leveraged to
benefit the relevant study in the FL context. Developing a
uniform or comparable fairness measure/evaluation for FL
systems as well as balancing FL fairness and other constraints
(e.g., accuracy, integrity, privacy, scalability, etc.) continue to
be major challenges in research on the fairness of Federated
Learning.
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