
VA-Store: AVirtual Approximate Store Approach
to Supporting Repetitive Big Data in

Genome Sequence Analyses
Xianying Liu , Qiang Zhu , Senior Member, IEEE, Sakti Pramanik, C. Titus Brown, and Gang Qian

Abstract—In recent years, we have witnessed an increasing demand to process big data in numerous applications. It is observed that

there often exist substantial amounts of repetitive data in different portions of a big data repository/dataset for applications such as

genome sequence analyses. In this paper, we present a novel method, called the VA-Store, to reduce the large space requirement for

repetitive data in prevailing genome sequence analysis tasks using k-mers (i.e., subsequences of length k) with multiple k values.

The VA-Store maintains a physical store for one portion of the input dataset (i.e., k0-mers) and supports multiple virtual stores for other

portions of the dataset (i.e., k-mers with k 6¼ k0). Utilizing important relationships among repetitive data, the VA-Store transforms a

given query on a virtual store into one or more queries on the physical store for execution. Both precise and approximate

transformations are considered. Accuracy estimation models for approximate solutions are derived. Query optimization strategies are

suggested to improve query performance. Our experiments using real and synthetic datasets demonstrate that the VA-Store is quite

promising in providing effective storage and efficient query processing for solving a kernel database problem on repetitive big data for

genome sequence analysis applications.

Index Terms—Bioinformatics (genome or protein) databases, data storage representations, query processing, algorithms for data and

knowledge management

Ç

1 INTRODUCTION

THERE is an increasing demand to process big data from
numerous data-intensive applications such as bioinfor-

matics, scientific experiments/simulations, e-commerce,
social media, and cloud computing. Extensive research has
been conducted to deal with challenges faced in all the
phases (e.g., acquisition, cleaning, integration, modeling/
analysis, and interpretation/visualization) of big data proc-
essing [23]. One interesting observation is that there often
exist substantial amounts of repetitive data in different
portions of a big data repository for many applications such
as genome sequence analysis problems in bioinformatics.
Techniques are required to support effective data storage
and efficient query processing for such big data applica-
tions. In this paper, we propose a new virtual approximate
store approach, called the VA-Store, to effectively supporting
repetitive big data for genome sequence analyses. The

working principle of this technique is also applicable to other
application domains.

Biologists have been storing and analyzing massive vol-
ume of genomic data. The European Bioinformatics Institute
(EBI) in Hinxton, UK, one of the world’s largest biology-data
repositories, currently stores 20 petabytes of data and back-
ups about genes, proteins and small molecules, where geno-
mic data accounts for 2 petabytes and grows at a rate more
than double every year [36]. The rapid growth of genomic
data is attributed to the vast increase in DNA sequencing
capacity over the last decade. Due to the next-generation
sequencing technologies, researchers can now conduct
whole-genome sequencing and generate a huge volume of
genome sequencing data. Efficient computational analysis of
genome sequencing data becomes a fast-growing challenge.

Over the last decade, a wide variety of (genome) se-
quence analysis approaches have been developed that make
use of fixed-length subsequences, called k-mers (where k is
the length), obtained from reads (i.e., short fragments) gen-
erated by a sequencer (machine) such as Illumina [26] for a
target genome. Fig. 1 illustrates how a genome sequence
read is decomposed into a set of shifted k-mers with k ¼ 5.

One example sequence analysis problem that can be solved
by using k-mers is local alignment searching. The goal of the
problem is to compare a query sequence (read) q with a set S
of sequences (reads) and identify those reads in S that resem-
ble q. The popular BLAST approach [2], [5] to solving this
problemworks as follows: (1) decompose q and each read inS
into shifted k-mers for a fixed length k; (2) locate common
k-mers between q and a (hit) read r in S; (3) extend qualified

� X. Liu and Q. Zhu are with the Department of Computer and Information
Science, University of Michigan - Dearborn, Dearborn, MI 48128.
E-mail: xyliu.365@gmail.com, qzhu@umich.edu.

� S. Pramanik is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing,MI 48824.
E-mail: pramanik@cse.msu.edu.

� C.T. Brown is with the Genome Center, University of California, Davis,
CA 95616. E-mail: ctbrown@ucdavis.edu.

� G. Qian is with the Department of Computer Science, University of Central
Oklahoma, Edmond, OK 73034. E-mail: gqian@ucok.edu.

Manuscript received 27 May 2016; revised 29 Sept. 2018; accepted 23 Nov.
2018. Date of publication 11 Dec. 2018; date of current version 4 Feb. 2020.
(Corresponding author: Qiang Zhu.)
Recommended for acceptance by Y. Zhang.
Digital Object Identifier no. 10.1109/TKDE.2018.2885952

602 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

1041-4347� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5658-5875
https://orcid.org/0000-0002-5658-5875
https://orcid.org/0000-0002-5658-5875
https://orcid.org/0000-0002-5658-5875
https://orcid.org/0000-0002-5658-5875
https://orcid.org/0000-0001-7094-9236
https://orcid.org/0000-0001-7094-9236
https://orcid.org/0000-0001-7094-9236
https://orcid.org/0000-0001-7094-9236
https://orcid.org/0000-0001-7094-9236
mailto:
mailto:
mailto:
mailto:
mailto:

k-mers from (2) to determine the similarity between q and r
using a scoring matrix; (4) include r in the returned query
result if its score exceeds a specified threshold.

Another sequence analysis problem that can be solved
by using k-mers is the sequence assembly of a set S of
reads for a target genome into longer contiguous (sub-)
sequences, called contigs, in the genome. The basic idea of
the de Bruijn graph-based assembly approach [12] works as
follows: (1) decompose each read in S into shifted k-mers
for a fixed length k; (2) construct a de Bruijn graph for
the k-mers obtained from (1), which represents overlaps
among all the k-mers; (3) traverse the graph to determine
all the contigs or identify a particular contig that contains a
given k-mer.

There are many other sequence analysis problems that
can be solved by utilizing k-mers, such as terminus search-
ing [10] and sequencing error correction [21]. The goal of
terminus searching is to identify the genome sequences
(reads) that end with a given terminus (k-mer) a, which can
be realized by searching a in the set of k-mers that appear at
the tail of each interesting genome sequence (read) from a
given repository. The goal of sequencing error correction is
to detect a possibly erroneous letter/base at a suspicious
position in a read that was produced by a sequencer such as
Illumina. Since each position in a target genome sequence is
typically covered by a number (e.g., 20) of reads generated
from the sequencing, the possibly erroneous letter at posi-
tion p from read r can be verified as follows: (1) decompose
all the reads into k-mers for a fixed length k; (2) count the
frequencies of two k-mers a1 and a2, where a1 and a2 are
the same except having different letters at position p; (3) if
the frequency of a1 is much smaller than that of a2, we may
conclude that the read containing a1 has an erroneous letter
at position p and the correct letter at position p is most likely
the letter from a2 at position p. To improve the accuracy, all
the shifted k-mers overlapping with the position p could be
used in (2) and a comprehensive cross-examining voting
scheme could be applied in (3) [15], [16]. Once an erroneous
letter is found, the correction is just a matter of replacing the
erroneous letter by the correct one.

We notice that all of the above genome sequence analysis
problems/applications contain the following Kernel Data-
base Problem (KDBPk): search a query k-mer q in a given set
Vk of k-mers, where each k-mer a in Vk is associated with
some metadata (e.g., annotations) u, and return the meta-
data associated with q if it is found in Vk.

What metadata u is depends on the underlying applica-
tion. For example, u is the id(s) of the read(s) containing a
for the applications of local alignment searching and termi-
nus searching; u is the frequency of a in the reads for the
application of sequencing error correction; u is the id of the
node in the de Bruijn graph representing a and the id(s) of
the associated read(s) for the application of sequence assem-
bly. Once the metadata associated with the query k-mer(s) is
returned, the corresponding application (e.g., sequencing
error correction) needs to further process them (e.g.,

applying a voting mechanism for sequencing error correc-
tion [15]) to finish its task.

Most existing methods for genome sequence analysis
applications adopt an in-memory structure (e.g., hash table,
suffix tree, etc.) to solve the above KDBP problem, which
requires huge memory space and does not scale well. Fur-
thermore, most existing techniques were developed to sup-
port only one set Vk of k-mers for a single pre-determined
length k. On the other hand, many sequence analysis prob-
lems are very sensitive to the choice of k for Vk. For exam-
ple, for the local alignment searching problem, using k-mers
with a small k might yield some useless hit reads for the
final expensive alignment process, while using k-mers with
a large k could cause some useful reads to be missing in the
result although the processing might be more efficient. For
the sequence assembly problem, using k-mers with a small
k might make the resulting de Bruijn graph include more
spurious edges and nodes, while using k-mers with a large
kmight make the graph become sparse and possibly discon-
nected. For the terminus searching problem, terminuses
(k-mers) with different lengths may contain important infor-
mation (e.g., age information in human genomes). For the
sequencing error correction problem, using k-mers with a
large k might help more accurately detect errors in the mid-
dle of a read, while using k-mers with a small k might help
better detect errors near the boundaries of a read.

A straightforward approach to overcoming the limita-
tions of a single-k technique is to store multiple sets of
k-mers with different k values/lengths, e.g., Vm,
Vmþ1; . . .VmþM�1 (m � 1; M > 1). This approach would
allow a user to choose a proper Vk (m � k � mþM � 1) to
use for his/her application based on his/her specific
requirements (e.g., efficiency versus accuracy). It would
also allow one to develop techniques to utilize the results
obtained from using multiple Vk’s to improve quality of the
final result [30]. However, this approach would require a
large amount of space for its storage.

To overcome this difficulty, we notice that every k-mer in
Vk is actually contained in at least one k0-mer in Vk0 for
k � k0, assuming Vk and Vk0 are obtained from the same set
of reads. Hence, data inVk is largely repetitive ifVk0 already
exists. Physically storing multiple sets of k-mers clearly does
not use space effectively. On the other hand, it is hard to
determine what the maximum k0 is and the space needed to
store Vk0 typically grows as k0 increases.

In this paper, we propose a new virtual store approach to
tackling the above problem. The key idea is to use only one
physical store to physically store set Vk0 for one k0
(m � k0 � mþM � 1) and use virtual stores to logically
(virtually) store the other useful sets Vk for all k 6¼ k0 and
m � k � mþM � 1 (see Fig. 2). The parameters m and M
depend on the underlying sequence analysis application.
We can view the union of all Vi’s (m � i � mþM � 1) as
the user’s big dataset and various Vi’s as different portions
of the dataset.

A major challenge to realize the above approach is how
to solve a given KDBPk (problem) on a virtually existing
store Vk by using the physically existing store Vk0 . As we
will see later, an KDBPk can actually be transformed into
a set of KDBPk0 ’s on Vk0 that produces the same result as
if KDBPk were solved by directly using Vk when k � k0.
However, when k > k0, an KDBPk can be transformed
only into a set of KDBPk0 ’s on Vk0 that usually produces
an approximate result/solution for KDBPk. This is

Fig. 1. Shifted k-mers for a genome sequence read.

LIU ETAL.: VA-STORE: AVIRTUAL APPROXIMATE STORE APPROACH TO SUPPORTING REPETITIVE BIG DATA IN... 603

acceptable since genome sequence analysis problems typi-
cally seek approximate solutions in practice [12], [15],
[21]. Note that an approximate solution in general may
contain both false positives and false negatives, while
an approximate solution produced by our method has no
false negatives; that is, it can only have false positives (if
any). In other words, true answers (e.g., reads matching a
given query k-mer) are guaranteed to be included in our
approximate solution.

In the subsequent sections of this paper, we will present
the transformations in various cases, derive accuracy esti-
mation models when approximate solutions are obtained,
suggest query optimization strategies for query processing
based on transformations, and present experimental eval-
uations. We utilize and extend the BoND-tree, which is a
special index structure recently introduced by Chen et al.
in [10] for processing box queries on genome sequencing
data, to support efficient disk-based accesses for the
physical store. Note that the focus of this work is on the
higher level query transformations/optimization rather
than the lower level implementation of the physical store.
The BoND-tree implementation here can be replaced by
any feasible method such as a Hadoop/MapReduce-based
implementation.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 gives an overview of
the concepts and notation needed by subsequent sections.
Section 4 presents the technical details of our method incl-
uding KDBP transformations, accuracy estimations, and
query optimization. Section 5 reports the experimental
results. Section 6 concludes the paper and highlights some
future research directions.

2 RELATED WORK

Asmentioned earlier, most existing sequence analysis techni-
ques were introduced based on k-mers of a single length k.
For example, the BLAST-family tools [2], [5], [27], [38] were
proposed for the local alignment searching application; the de
Bruijn Graph method [12], the probabilistic de Bruijn Graph
method [29], and the sparse bivector method [13] were sug-
gested for the sequence assembly application; the Quake
method [21] and several related k-mer counting tools such as

Tallymer [34], Jellyfish [17] and DSK [18] were developed for
the sequencing error correction application; and so on.

For a single-k technique, choosing an appropriate k value
is crucial. Methods to choose such a k value were suggested
[11], [21]. However, as mentioned earlier, using a single k
value can never serve all scenarios well. To tackle the chal-
lenge for choosing a single optimal k value, researchers sug-
gested several techniques to utilize multiple sets of k-mers
for several k values [3], [30]. Unfortunately, space was not
effectively used in these methods due to existence of large
repetitive data. Boucher et al. [4] suggested a data structure
to represent the de Bruijn graph GKmax for a given maximum
Kmax and presented algorithms to perform a sequence
assembly task on a de Bruijn graph Gk for any k � Kmax,
which is the most related work that we found in the litera-
ture. The main differences between their work and ours are:
(1) their technique is restricted to a specific data structure
(i.e., the de Bruijn graph) for a specific application (i.e., the
sequence assembly problem), while our work considers the
generic kernel DB problem that can be applied to a number
of sequence analysis applications; (2) their technique cannot
support a data structure (i.e., de Bruijn graph) Gk for
k > Kmax, while our method supports a virtual store Vk

that has a k length either smaller or larger than the k0 length
for the physical store Vk0 , i.e., both k < k0 and k > k0 are
supported (see Fig. 2); (3) their method supports precise sol-
utions only, while our work considers both precise and
approximate solutions. To our knowledge, our work is the
first of this type in the field.

Muchwork on indexing similar DNA sequences and string
databases has been reported in the literature including [6], [7],
[19], [20]. Most of them are memory based. Kahveci et al. [20]
proposed a wavelet-based method to map substrings of a
given database into a multidimensional integer space. They
then introduced an in-memory index structure using mini-
mum bounding rectangles for wavelet coefficients to prune a
significant portion of the database from consideration when
evaluating a given query. While this technique provides fast
filtering and avoids false negatives, the cost for refining the
final query result is still high. Furthermore, this technique
was designed for a limited number of long strings/sequences
since each string requires a separate index tree in their struc-
ture, which is not suitable for our sequence analysis applica-
tions that usually have to deal with a large number of reads
(sequences). Cao et al. [7] proposed a distance-based sequence
indexing method (DSIM) to use reference words and relative
distances to compress a data sequence by representing neigh-
bor overlapping k-mers of a fixed length in an index structure.
However, this method does not support multiple lengths of
k-mers. Cao et al. [6] presented a two-level (i.e., a hash table
and c-trees) index for indexing DNA sequences efficiently
based on k-mers to facilitate similarity searches. However,
this method does not support multiple lengths of k-mers
either. Huang et al. [19] proposed a scheme based on
Burrows-Wheeler Transform and suffix arrays to index DNA
sequences having some common segments. Although this
scheme is space effective, it is only suitable for nearby over-
lapping reads/sequences and was not designed to handle a
large number of (overlapping and non-overlapping) reads
obtained for a long target DNA sequence as in our sequence
analysis applications. Our work aims at supporting sequence
analysis applications using k-mers of multiple lengths
extracted from a large number of sequencing reads for a long
target genome sequence(s). On the other hand, our work

Fig. 2. Physical and virtual stores.

604 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

focuses on studying higher level query transformations/opti-
mization rather than a lower level indexing structure.

As mentioned earlier, researchers have been studying
numerous issues in big data processing [23]. In particular,
techniques have been developed to tackle the challenges for
big data storage [24]. Chang et al. [8] introduced a distrib-
uted storage system, called the Bigtable, for managing large
structured/semi-structured data. Akshay et al. [1] sug-
gested supporting local storage in addition to networked
storage in cloud systems so as to provide efficient support
for Hadoop and other big data environments. Steinmaurer
et al. [35] considered combining stream processing engines
and big data storages for data analysis. Chen et al. [9] pro-
posed a multilevel active storage for big data applications in
high performance computing, which supports not only
read-intensive operations but also write-intensive opera-
tions as well as complex operations with considerable com-
puting demands. However, none of the techniques consider
an approximate virtual storage that utilizes the relation-
ships among repetitive data to improve the space effective-
ness and query efficiency as we do here.

3 PRELIMINARIES

Conceptually, a genome sequence h is a series of letters
(bases) from alphabet D ¼ fA;G; T;Cg, where letters A, G,
T , C have no natural ordering among them. To obtain such
a genome sequence in practice, a biologist typically uses a
sequencer (e.g., Illumina) to generate reads (i.e., short frag-
ments) of h from a target genome sample. Such a read may
contain errors at some positions [21]. To reduce the effect of
such sequencing errors, one usually uses multiple reads to
cover each position of a genome sequence.

Reads are typically still too long to be efficiently analyzed/
processed. To achieve an efficient sequence analysis, one can
extract from each read subsequences with a fixed length k,
called k-mers (see Fig. 1). Each k-mer a is typically associated
with a piece ofmetadata u about the relevant read(s).Without
loss of generality, in this paper, we assume that u is the list of
ids for the reads containing a. Additional metadata (if any)
can be accessed indirectly via the read ids in u. As mentioned
earlier, numerous sequence analysis tasks can be performed
by using k-mers with relevant metadata.

Note that there are two types of genome sequencing in
biological sequence analyses: single-read sequencing and
paired-end sequencing. Conventional single-read sequencing
produces reads in one orientation (i.e., forward), while con-
temporary paired-end sequencing produces reads in both
forward and reverse (complement) orientations. For simplic-
ity, we assume that the input reads are given in one orienta-
tion (i.e., using reads from single-read sequencing or forward
reads only from paired-end sequencing) in this paper. To
handle both forward and reverse reads from paired-end
sequencing, one could adopt the approach of using canonical
representations of k-mers from the reads [15]. Specifically,
when the shifted k-mers obtained from the input sequencing
reads (in either orientation) are inserted into the physical
store Vk0 of the VA-store, the canonical representation of
each k-mer, which is either the k-mer itself or its reversed
complement, is calculated and inserted into Vk0 . In other
words, only one from each pair of (forward and reverse com-
plement) k-mers is stored inVk0 .

The Kernel Database Problem (KDBPk) on a set Vk of
k-mers is defined as follows: given a query k-mer q and the

set Vk of k-mers obtained from a given set S of reads for a
genome analysis application, find the following result set:

RðqÞ ¼ fx j x ¼ r:id ð9r 2 Sð9a 2 Vk

ðr w a ^ a ¼ qÞÞÞg; (1)

where r:id is the id of read r and r w a denotes that k-mer a is
contained in read r. Informally, the above KDBPk is to per-
form a query, called the k-mer query,1 to search the given
k-mer q in Vk and return the set of ids of the reads in S that
contain q if q is found in Vk. A challenge is how to process
k-mer query q on a virtual store Vk (i.e., KDBPk) by perform-
ing one or more k0-mer queries on physical Vk0 (i.e.,
KDBPk0 ’s). This is the issue to be discussed in the next section.

As pointed by Qian et al. in [31], each k-mer can be viewed
as a vector in a k-dimensional Non-ordered Discrete
Data Space (NDDS): Gk ¼ D1 �D2 � � � � �Dk, where
Di ¼ fA;G; T;Cg (1 � i � k) is the alphabet on the ith dimen-
sion. Hence, Vk is a dataset from Gk (i.e.,Vk � Gk). A discrete
box/rectangle R in Gk is defined as R ¼ S1 � S2 � � � � � Sk,
where Si � Di. The area of rectangle R is defined as
jRj ¼Qk

i¼1 jSij, where jSij (i.e., the cardinality) is called the
edge length of R along dimension i. For a set of vectors, their
minimum bounding box is the smallest box that contains
all the vectors. More concepts about an NDDS can be found
in [31], [32], [33].

For a given box b, its corresponding box query qðbÞ on a
set V of vectors in an NDDS retrieves all the vectors from V
that are within box b. As we will see, we can group multiple
(exact) k-mer queries into a box query to achieve improved
performance.

To efficiently process a box query on a large k-mer set on
disk, we utilize and extend the BoND-tree (i.e., an index
structure recently introduced by Chen et al. [10] to effi-
ciently support box queries in an NDDS) to implement the
physical store Vk0 . The structure of the BoND-tree is similar
to that of the R*-tree, except that the discrete geometric con-
cepts (e.g., discrete rectangle/box) in an NDDS are used.
Special heuristics for splitting overflown nodes that utilize
the characteristics of an NDDS to achieve improved perfor-
mance are adopted. For our application, k0-mers in Vk0 are
saved in the leaf nodes and each k0-mer is associated with a
pointer pointing to a list of read ids that are stored in one or
more linked pages.

4 THE VA-STORE METHOD

To process a k-mer query on a virtual store, we need to
transform it into one or more k0-mer queries on the physical
store. In this section, we present such transformations for
both k < k0 and k > k0, derive accuracy estimation models
for approximate transformations (i.e., k > k0), and discuss
query optimization strategies for the transformed queries.

4.1 Query Transformations Between Virtual and
Physical Stores

Assume that we want to perform a k-mer query qðkÞ ¼
a1a2 . . . ak on virtual store Vk (k 6¼ k0). Since Vk does not
physically exist, we have to obtain the result of query qðkÞ by

1. In the rest of the paper, we refer a k-mer query to the query search-
ing for a k-mer and refer a query k-mer to the k-mer representing a
query. When it is not confusing, we will not distinguish a k-mer query
and its corresponding k-mer.

LIU ETAL.: VA-STORE: AVIRTUAL APPROXIMATE STORE APPROACH TO SUPPORTING REPETITIVE BIG DATA IN... 605

running one or more transformed k0-mer queries on physi-
cal store Vk0 .

4.1.1 Transformation for Case k � k0
Let us consider k < k0 first. Let u ¼ k0 � k. We notice that, if
we use a k0-mer qðk0Þ that contains qðkÞ as a k0-mer query run
on Vk0 , the result set Rðqðk0ÞÞ of query qðk0Þ on Vk0 is con-
tained in the result set RðqðkÞÞ of query qðkÞ on Vk. This is

because, if the id of a read r is in Rðqðk0ÞÞ, it must also be in

RðqðkÞÞ, which is based on the fact that, if r w qðk0Þ is true,

r w qðkÞ must also be true since qðk0Þ w qðkÞ.
Let

Qk0 ¼ f x1x2 . . .xsa1a2 . . . akxsþ1 . . .xu j u ¼ k0 � k

^ 0 � s � u ^ xi 2 fA;G; T;Cg ^ 1 � i � u g: (2)

This is the set of all the k0-mers that contain query k-mer
qðkÞ ¼ a1a2 . . . ak. Note that a k0-mer in Qk0 becomes
a1a2 . . . akx1 . . .xu (or x1x2 . . .xua1a2 . . . ak) when s ¼ 0 (or u).

From the previous analysis, we have

RðqðkÞÞ 	 qðk0Þ2Qk0

[
Rðqðk0ÞÞ: (3)

On the other hand, if the id of a read r is in RðqðkÞÞ, we have
r w qðkÞ. Since the length of r must be at least k0, there exists
qðk0Þ 2 Qk0 such that r w qðk0Þ. Hence, the id of r is also con-
tained in Rðqðk0ÞÞ. Thus, we have

RðqðkÞÞ ¼qðk0Þ2Qk0

[
Rðqðk0ÞÞ: (4)

Eq. (4) indicates that the result of k-mer query qðkÞ on virtual
store Vk can be obtained by taking a union of the results of
k0-mer queries using each qðk0Þ 2 Qk0 on physical store Vk0 .
In other words, the original KDBPk on Vk can be trans-
formed into jQk0 j ¼ ðu þ 1Þ4u number of KDBPk0 ’s on Vk0 if
k < k0. Therefore, Eq. (4) is the transformation from the vir-
tual store to the physical store when k < k0.

To improve efficiency, each group of 4u related (exact)
k0-mer queries of the form: x1x2 . . .xsa1a2 . . . akxsþ1 . . .xu,
where xi 2 fA;G; T; Cg, 1 � i � u and 0 � s � u, can be

combined into one box query bqðk0Þs with the following box:

X �X � � � � �X|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s sets

�fa1g � fa2g � � � � � fakg �X � � � � �X|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðu�sÞ sets

;

where X ¼ fA;G; T;Cg and 0 � s � u. Hence, we only need
to execute ðu þ 1Þ box queries on Vk0 instead of ðu þ 1Þ4u
exact queries. In other words, we apply the following for-
mula to implement the transformation given by Eq. (4) for
k < k0

RðqðkÞÞ ¼ 0�s�u
[

Rðbqðk0Þs Þ; (5)

which can significantly reduce total query processing
latency and increase shared disk accesses. The processing of
box queries could be further improved by utilizing an effi-
cient access method for box queries such as the BoND-tree.

For example, if we want to get the result of a 3-mer
query qð3Þ ¼ AGT on virtual store V3 (i.e., k ¼ 3), we per-
form three box queries with the following three boxes:
fAg � fGg � fTg �X �X, X � fAg � fGg � fTg �X, and
X �X � fAg � fGg � fTg, respectively, on physical store
V5 (i.e., k0 ¼ 5) and return the union of the results of these
box queries as the result of qð3Þ. If we use Eq. (4) to get the
same result, we would have to perform 48 (exact) 3-mer
queries.

4.1.2 Transformation for Case k > k0
Now let us consider k > k0. Let d ¼ k� k0. In this case, we
decompose the given k-mer query qðkÞ ¼ a1a2 . . . ak on virtual

store Vk into dþ 1 shifted k0-mer queries: q
ðk0Þ
1 ¼ a1a2 . . . ak0 ,

q
ðk0Þ
2 ¼ a2a3 . . . ak0þ1; ; q

ðk0Þ
dþ1 ¼ adþ1adþ2 . . . ak on physical

store Vk0 . If the id of read r is in the result RðqðkÞÞ of k-mer

query qðkÞ, it must be in the result Rðqðk0Þi Þ of each k0-mer

query q
ðk0Þ
i (1 � i � dþ 1). This is because, if r w qðkÞ is true,

r w q
ðk0Þ
i must also be true for every 1 � i � dþ 1 since

qðkÞ w q
ðk0Þ
i (see q

ðk0Þ
i ’s as shown below read r in Fig. 3). Thus,

we have

RðqðkÞÞ � 1�i�dþ1
\

Rðqðk0Þi Þ: (6)

On the other hand, if the id of read r is in the resultRðqðk0Þi Þ of
q
ðk0Þ
i for every 1 � i � dþ 1, the id of r is not necessarily also

in the result RðqðkÞÞ of qðkÞ. The id of r is in RðqðkÞÞ only for

the case when q
ðk0Þ
i ’s are aligned in the shifted fashion as

shown below read r in Fig. 3. There are many other cases
(e.g., q

ðk0Þ
i ’s as shown above read r in Fig. 3) in which the id

of r is not in RðqðkÞÞ. In other words, the two sides of Eq. (6)
are not equal to each other. However, since the desired result
(i.e., the left hand side) is contained in the right hand side,
we use the right hand side as an approximate solution/
result for given query qðkÞ. Hence, our transformation for
k > k0 is given by the following equation:

RðqðkÞÞ ¼: 1�i�dþ1
\

Rðqðk0Þi Þ: (7)

Since the approximate result/solution from (7) contains no
false negatives, it is more useful than general approximate
solutions sought by typical genome sequence analysis appli-
cations. In fact, the right hand side of Eq. (7) represents an
optimal approximate solution for qðkÞ when using k0-mer
queries on Vk0 . This is because missing any q

k0
i might cause

the approximate solution to include more unqualified read
ids, resulting in a larger size and a lower accuracy.

Let us consider an example of applying Eq. (7), which
also illustrates the two cases of Fig. 3. Assume that we want
to get the result of a 6-mer query qð6Þ ¼ GATACT on virtual
store V6 (i.e., k ¼ 6). We perform the following two 5-mer

queries: q
ð5Þ
1 ¼ GATAC and q

ð5Þ
2 ¼ ATACT on physical store

V5 (i.e., k0 ¼ 5) and return the intersection of the results of
these two 5-mer queries as the approximate result of the
original 6-mer query qð6Þ. Let us first consider read
r1 ¼ ATGTGATACTGGTA. r1 will be included in the

result of query qð6Þ because it contains both the 5-mers of q
ð5Þ
1

Fig. 3. Alignment scenarios for k > k0.

606 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

and q
ð5Þ
2 (see the bold-faced and underlined subsequence in

r1). r1 represents a true positive since it indeed contains the
6-mer of qð6Þ (an example of the lower shifted overlapping
case in Fig. 3). Now let us consider another read
r2 ¼ GAGATACAATACTT . r2 will also be included in
the result of query qð6Þ because it contains both the 5-mers of
q
ð5Þ
1 and q

ð5Þ
2 (see the bold-faced and underlined subsequence

in r2). However, r2 represents a false positive since it does
not contain the 6-mer of qð6Þ (an example of the upper non-
overlapping case in Fig. 3).

4.2 Query Accuracy Estimation
As mentioned in Section 4.1, when k > k0 (� 1), an approxi-
mate solution to problem KDBPk on virtual store Vk is usu-
ally obtained when physical store Vk0 is used to solve the
problem. In this case, it is desired to estimate the accuracy
of such an approximate solution. In this section, we discuss
how to estimate the accuracy. For simplicity, we assume
that the reads in a given input genomic dataset are of the
same length in the following discussion.

4.2.1 Accuracy Estimation Model for Case k ¼ k0 þ 1

Let us first consider the case when k ¼ k0 þ 1. Let qðkÞ be the
target query k-mer on virtual storeVk, and q

ðk�1Þ
1 , q

ðk�1Þ
2 be the

two shifted ðk� 1Þ-mers (i.e., k0-mers) of qðkÞ. Let rðiÞ be a

read for which there is a way to align q
ðk�1Þ
1 and q

ðk�1Þ
2 with rðiÞ

and the distance between q
ðk�1Þ
1 and q

ðk�1Þ
2 in rðiÞ is i ¼ p2 � p1,

where p1 and p2 are the positions for the first letters of q
ðk�1Þ
1

and q
ðk�1Þ
2 in rðiÞ, respectively. We call rðiÞ an instantiated read

with distance i for q
ðk�1Þ
1 and q

ðk�1Þ
2 . LetDðiÞ be the number of

distinct positions in read rðiÞ that are covered by q
ðk�1Þ
1 and/or

q
ðk�1Þ
2 when q

ðk�1Þ
1 and q

ðk�1Þ
2 are aligned/instantiated with

rðiÞ. Let T ðiÞ be the number of such possible reads rðiÞ. Let R
(� k) be the length of each read in an input genomic dataset.
Fig. 4 illustrates these parameters.

In general, for jij � R� ðk� 1Þ, we have

DðiÞ ¼ k� 1þ jij if jij � ðk� 2Þ;
2ðk� 1Þ if jij � ðk� 1Þ:

�
(8)

Since the result of query qðkÞ on virtual store Vk consists
of all the instantiated reads with distance 1 (i.e., rð1Þ; see the

case as shown below read r in Fig. 3 for d ¼ 1) and T ð1Þ is
the number of such reads, the (average) accuracy rate
�ðk; k0Þ of the approximate solution to KDBPk using physical
store Vk0 for k ¼ k0 þ 1 can be estimated as

�ðk; k0Þ ¼ T ð1Þ=Tall; (9)

where

Tall ¼
XR�ðk�1Þ

i¼�ðR�ðk�1ÞÞ
T ðiÞ ¼ Tseparate þ Toverlap; (10)

Tseparate ¼
X�ðk�1Þ

i¼�ðR�ðk�1ÞÞ
T ðiÞ þ

XR�ðk�1Þ

i¼ðk�1Þ
T ðiÞ; (11)

Toverlap ¼
X�1

i¼�ðk�2Þ
T ðiÞ þ T ð0Þ þ

X1
i¼ðk�2Þ

T ðiÞ: (12)

Here Tseparate and Toverlap are the numbers of instantiated
reads with q

ðk�1Þ
1 and q

ðk�1Þ
2 being non-overlapped

(jij � k� 1) and overlapped (jij � k� 2), respectively. Our
goal is to derive the estimation formulas for Tseparate and
Toverlap so that the accuracy (rate) can be estimated using
Eq. (9).

To estimate Tseparate for jij � k� 1 (see Fig. 4) , we have

T ðiÞ ¼: ðR� ðk� 1þ jijÞ þ 1Þ4R�DðiÞ

¼ ðR� k� jij þ 2Þ4R�DðiÞ;
(13)

since there are ðR�DðiÞÞ free positions, each of which can
take any of four letters in D ¼ fA;G; T;Cg, for a possible
read rðiÞ that can be instantiated by q

ðk�1Þ
1 and q

ðk�1Þ
2 with dis-

tance i, and there are ðR� ðk� 1þ jijÞ þ 1Þ ways to place
q
ðk�1Þ
1 and q

ðk�1Þ
2 with distance i in rðiÞ.

From (8), (11) and (13), we have

Tseparate ¼: 2
XR�ðk�1Þ

ðk�1Þ
ðR� k� iþ 2Þ4R�2ðk�1Þ

¼ ðR� 2k� 1ÞðR� 2kþ 4Þ4R�2ðk�1Þ:

(14)

To estimate Toverlap for jij � k� 2 (see Fig. 4), we notice
that T ðiÞ may be 0 for many i’s within the range. This is

because q
ðk�1Þ
1 and q

ðk�1Þ
2 are taken from the same given

query k-mer qðkÞ. Assume qðkÞ ¼ a1a2a3 . . . ak�1ak, then

q
ðk�1Þ
1 ¼ a1a2a3 . . . ak�1 and q

ðk�1Þ
2 ¼ a2a3 . . . ak�1ak. The natu-

ral distance between q
ðk�1Þ
1 and q

ðk�1Þ
2 is i = 1. Unless qðkÞ con-

tains a special periodic pattern, it is usually impossible to

align/instantiate q
ðk�1Þ
1 and q

ðk�1Þ
2 with a read rðiÞ for distance

i 6¼ 1 (jij � k� 2).
For example, to have a feasible instantiation for i ¼ 2,

we must have a2 ¼ a3 ¼ a4 ¼ � � � ¼ ak�1 ¼ b1, i.e., q
ðkÞ ¼

a1b1b1 . . . b1ak. In this case, we say that qðkÞ has a period length
1. To have a feasible instantiation for i ¼ 3, we must have
a2 ¼ a4 ¼ b1, a3 ¼ a5 ¼ b2, a4 ¼ a6 ¼ b1, a5 ¼ a7 ¼ b2; . . . ;
ak�1 ¼ b1 (or b2), i.e., qðkÞ ¼ a1b1b2b1b2 . . . ðb1jb2Þak, where
ðb1jb2Þ indicates either b1 or b2. In this case, we say that qðkÞ

has a period length 2. In general, to have a feasible in-
stantiation for i ¼ cþ 1, we must have a2 ¼ acþ2 ¼ b1,
a3 ¼ acþ3 ¼ b2; . . . ; acþ1 ¼ a2cþ1 ¼ bc; acþ2 ¼ a2cþ2 ¼ b1: . . . ;
ak�1 ¼ ðb1jb2j � � � jbcÞ, i.e., qðkÞ ¼ a1ðb1b2 . . . bcÞmb1b2 . . . btak,
where ðb1b2 . . . bcÞm indicates that period b1b1 . . . bc is repeated

Fig. 4. Accuracy estimation parameters.

LIU ETAL.: VA-STORE: AVIRTUAL APPROXIMATE STORE APPROACH TO SUPPORTING REPETITIVE BIG DATA IN... 607

m (� 2) times,m ¼ bðk� 2Þ=cc, and t ¼ ðk� 2Þ mod c. In this
case, we say that qðkÞ has a period length c. Note that b1b2 . . . bt
is empty if t ¼ 0.

We have three observations. First, periodic patterns
can be found in real genomic datasets. Hence, estimation
formulas need to be developed to handle the situations in
which a periodic pattern is contained in a query k-mer.
Second, qðkÞ may contain nested periods of multiple
lengths. For example, a period “AG” of length 2 is nested
in a period “AGAG” of length 4. To avoid double count-
ing, we consider the minimum period only for a given

query k-mer if nested periods exist. Third, q
ðk�1Þ
1 and q

ðk�1Þ
2

of a periodic qðkÞ may be aligned with each other multiple
times by shifting q

ðk�1Þ
2 one or more periods to the left or

to the right with respect to q
ðk�1Þ
1 . It is noted that a right

shifting is always feasible. However, it may not be true
for the left shifting. Different shiftabilities have different
effects on the accuracy estimation formulas. We consider
various scenarios as follows.

Scenario 1. Right shiftable only and having a stop letter at
the right end, i.e., qðkÞ ¼ a1ðb1b2 . . . bcÞmb1b2 . . . btak, where
c � 1, c > t,m � 2, and stop letter ak 6¼ btþ1.

Since there is a stop letter ak at the right end of qðkÞ, qðk�1Þ
2

is generally not alignable with q
ðk�1Þ
1 when it is shifted to the

left for any distance i 2 ½�ðk� 2Þ; 0
 from its natural posi-

tion with distance i = 1 (see Fig. 5). Hence, we have T ðiÞ ¼ 0

for i 2 ½�ðk� 2Þ; 0
. On the other hand, if q
ðk�1Þ
2 is shifted to

the right for a distance that is not a multiple of period length

c, i.e., i > 1 and i 6¼ 1þ j � c (1 � j � m), it is usually not

alignable with q
ðk�1Þ
1 . Thus, we also have T ðiÞ ¼ 0 for such

i’s. T ðiÞ 6¼ 0 only if q
ðk�1Þ
2 is shifted to the right for a distance

j � c from its natural position with i ¼ 1. Since stop letter ak

is at the right end of q
ðk�1Þ
2 , instantiated reads rð1þj1�cÞ and

rð1þj2�cÞ are different if j1 6¼ j2. Therefore, we have

Toverlap ¼: T ð1Þ þ
Xm
j¼1

T ð1þ j � cÞ ¼
Xm
j¼0

T ð1þ j � cÞ: (15)

Note that estimation formula (13) can still be used for
i ¼ 1þ j � c (0 � j � m). From (8), (9), (10), (13), (14) and
(15), the query accuracy can be estimated as follows:

�ðk; k0Þ ¼: ðR� kþ 1Þ4R�k="
ðR� 2k� 1ÞðR� 2kþ 4Þ4R�2ðk�1Þ

þ
Xm
j¼0

ðR� k� j � cþ 1Þ4R�ðkþj�cÞ
#

¼: ðR� kþ 1Þð1� 4�cÞ=
½ðR� 2k� 1ÞðR� 2kþ 4Þ4�kþ2ð1� 4�cÞ
þ ðR� kþ 1Þð1� 4�kþ2�cÞ�
c � 4�cð1� 4�kþ2Þ=ð1� 4�cÞ
þ ðk� 2Þ � c � 4�kþ2�c
:

(16)

Scenario 2. Right shiftable only and having a stop letter at
the left end, i.e., qðkÞ ¼ a1ðb1b2 . . . bcÞmb1b2 . . . btak, where
c � 1, c > t,m � 2, ak ¼ btþ1 and stop letter a1 6¼ bc.

Since there is a stop letter a1 at the left end of qðkÞ, qðk�1Þ
2 is

generally not alignable with q
ðk�1Þ
1 when it is shifted to the

left for any distance i 2 ½�ðk� 2Þ; 0
 from its natural posi-
tion with distance i = 1. Hence, we have T ðiÞ ¼ 0 for

i 2 ½�ðk� 2Þ; 0
. On the other hand, if q
ðk�1Þ
2 is shifted to the

right for a distance that is not a multiple of period length c,
i.e., i > 1 and i 6¼ 1þ j � c (1 � j � m), it is usually not

alignable with q
ðk�1Þ
1 . Thus, we also have T ðiÞ ¼ 0 for such

i’s. The difference between this and Scenario 1 is that the let-

ter at the right end of q
ðk�1Þ
2 follows the periodic pattern. In

other words, there is no stop at the right end. Although it is

also true that T ðiÞ 6¼ 0 if q
ðk�1Þ
2 is shifted to the right for a dis-

tance j � c from its natural position with i ¼ 1, any instanti-
ated read rð1þj�cÞ (1 � j � m) is a special case of rð1Þ. Thus,
T ð1Þ has already included T ð1þ j � cÞ for 1 � j � m. There-
fore, we have Toverlap ¼: T ð1Þ. From (8), (9), (10), (13) and
(14), the query accuracy can be estimated as follows:

�ðk; k0Þ ¼: ðR� kþ 1Þ4R�k=

½ðR� 2k� 1ÞðR� 2kþ 4Þ4R�2ðk�1Þ

þ ðR� kþ 1Þ4R�k

¼ ðR� kþ 1Þ=
½ðR� 2k� 1ÞðR� 2kþ 4Þ4�kþ2

þ ðR� kþ 1Þ
:

(17)

Scenario 3. Left shiftable2 with c > 1, i.e., qðkÞ ¼ a1ðb1b2 . . .
bcÞmb1b2 . . . btak, where c > t,m � 2, ak ¼ btþ1 and a1 ¼ bc.

In this case, q
ðk�1Þ
2 is shiftable to both the left and the right

for any distance that is a multiple of period length c from its
natural position with i ¼ 1 (see Fig. 6). The analysis for the
right shifting situation is the same as the one we had above
for Scenario 2. In other words, T ðiÞ ¼ 0 for i > 1 and
i 6¼ 1þ j � c (1 � j � m); and T ðiÞ is contained in T ð1Þ
for i ¼ 1þ j � c. For the left shifting, we notice that
qðkÞ ¼ bcðb1b2 . . . bcÞmb1b2 . . . btbtþ1 ¼ ðbcb1b2 . . . bc�1Þmbcb1 . . . btbtþ1.
From a similar reason for the right shifting situation, we
have T ðiÞ ¼ 0 for i < 1 and i 6¼ 1þ j � c (�m � j � �1).
When i ¼ 1þ j � c (�m � j � �1), from a similar analysis
for the right shifting, we find that T ð1þ j � cÞ is contained
in T ð1� cÞ for �m � j � �2. Therefore, we have
Toverlap ¼: T ð1� cÞ þ T ð1Þ. From (8), (9), (10), (13), and (14),
the query accuracy can be estimated as follows:

�ðk; k0Þ ¼: ðR� kþ 1Þ4R�k=

½ðR� 2k� 1ÞðR� 2kþ 4Þ4R�2ðk�1Þ

þ ðR� k� cþ 3Þ4R�ðkþc�2Þ þ ðR� kþ 1Þ4R�k

¼ ðR� kþ 1Þ=

½ðR� 2k� 1ÞðR� 2kþ 4Þ4�kþ2

þ ðR� k� cþ 3Þ4�cþ2 þ ðR� kþ 1Þ
:
(18)

Fig. 5. Alignable positions for q
ðk�1Þ
1 and q

ðk�1Þ
2 in Scenario 1.

2. Note that the right shiftable is always true.

608 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

Scenario 4. Left shiftablewith c ¼ 1, i.e., qðkÞ ¼ a1b1b1 . . . b1ak,

wherem � 2 and ak ¼ a1 ¼ b1.

In this case, q
ðk�1Þ
2 is also shiftable to both the left and the

right. But the shifting can be done for any distance
jij � k� 2. However, we notice that each T ðiÞ is included in
T ð0Þ for jij � k� 2. Thus, Toverlap ¼ T ð0Þ in this case. There-
fore, from (8), (9), (10), (13) and (14), the query accuracy can
be estimated as follows:

�ðk; k0Þ ¼: ðR� kþ 1Þ4R�k=

½ðR� 2k� 1ÞðR� 2kþ 4Þ4R�2ðk�1Þ

þ ðR� kþ 2Þ4R�kþ1

¼ ðR� kþ 1Þ=½ðR� 2k� 1ÞðR� 2kþ 4Þ4�kþ2

þ 4ðR� kþ 2Þ
:

(19)

Scenario 5. Other situations that do not belong to the above
Scenarios 1, 2, 3, and 4.

In this case, q
ðk�1Þ
2 generally cannot be shifted to the left or

the right for any distance other than i ¼ 1. In other words,
T ðiÞ ¼ 0 for i 6¼ 1 and jij � k� 2. Thus, Toverlap ¼ T ð1Þ in this
case. From (8), (9), (10), (13) and (14), the query accuracy
can be estimated as follows:

�ðk; k0Þ ¼: ðR� kþ 1Þ4R�k=

½ðR� 2k� 1ÞðR� 2kþ 4Þ4R�2ðk�1Þ

þ ðR� kþ 1Þ4R�k

¼ ðR� kþ 1Þ=½ðR� 2k� 1ÞðR� 2kþ 4Þ4�kþ2

þ ðR� kþ 1Þ
:

(20)

Note that the above estimation derivations are based on an
assumption that the letters for each position in reads are
uniformly distributed and different positions in a read are
independent. Our results can be summarized as follows.

Theorem 4.1. Assume that the letters for each position in reads
from a given dataset are uniformly distributed and the positions
of a read are independent. The shifted k0-mers for the input
reads are stored in physical store Vk0 . If k ¼ k0 þ 1, the (aver-
age) accuracy rate �ðk; k0Þ of a k-mer query on a virtual store
Vk (i.e., solving KDBPk) when using Vk0 can be estimated by
Eqs. (16), (17), (18), (19) and (20) for Scenarios 1, 2, 3, 4 and
5, respectively.

4.2.2 Extension to General Case

Using the above analytical approach to deriving an accu-
racy estimation model for the general case when
k ¼ k0 þ d with d � 1 is difficult. Following Eq. (7), a given
k-mer query qðkÞ on virtual store Vk is transformed into
(dþ 1) k0-mer queries on physical store Vk0 . When d > 1,
there are too many cases to consider on how these (dþ 1)
k0-mer queries are overlapped and aligned/instantiated
with a given read r. Hence, we use a regression approach
to deriving an accuracy estimation model based on

sampling, rather than applying an analytical approach,
for the general case.

There are two forces that affect the accuracy of the approx-
imate solution for qðkÞ from Eq. (7). One force is the similarity
between qðkÞ and its transformed k0-mer queries. When d
increases, the degree of such similarity decreases. Using
such transformed queries to represent the original query has
a negative impact on the accuracy of the result. The other
force is the uniqueness of instantiating the transformed
query k0-mers with a given read r. When d increases, the
chance for all (dþ 1) transformed k0-mers to be instantiated
with r in other ways besides the desired qðkÞ (i.e., the natural
shifted instantiation shown as the case below r in Fig. 3)
becomes smaller, which has a positive impact on the accu-
racy of the result. Fig. 13 shows a typical pattern for the accu-
racy of an approximate solution observed from experiments.
Initially, the first force is dominant, which makes the accu-
racy decrease. Later on, the second force becomes gradually
dominant, which makes the accuracy increase. As a result, a
“V” shape pattern is observed in the initial segment of an
accuracy curve. Since an approximate solution usually has a
high accuracy when d is large, whose estimation is unimpor-
tant, the challenge is how to derive a regression estimation
model to capture the accuracy for the initial “V” shape pat-
tern. Clearly, the normal linear or polynomial regression
models do not workwell here.

Fortunately, the analytical approach discussed in
Section 4.2.1 provides a way to find a good formulation for
regression in our situation. Let us consider the two extreme
cases (i.e., the lower and upper ones) shown in Fig. 3 for the
(dþ 1) k0-mers being instantiated/aligned with read r. The
lower instantiation yields the correct result for k-mer query
qðkÞ, while the upper instantiation represents an incorrect
result. Let R be the length of read r, and assume
R � ðdþ 1Þ � k0 (i.e., all the (dþ 1) k0-mers can be instanti-
ated with r in a non-overlapping way). Note that any posi-
tion in r that is not covered by the instantiation can take any
of the four letters in D ¼ fA;G; T;Cg.

Let Tlow and Tup be the numbers of reads instantiated as
the lower and upper cases shown in Fig. 3, respectively. If
there were only the lower and upper instantiations, similar
to Eq. (9), the accuracy can be estimated as

�ðk; k0Þ ¼: Tlow=½Tlow þ Tup

¼ ðR� kþ 1Þ � 4R�k

,"
ðR� kþ 1Þ � 4R�k

þ R� ðdþ 1Þ � k0 þ ðdþ 1Þ
dþ 1

� �
� ðdþ 1Þ! � 4R�ðdþ1Þk0

#

¼ 1=½1þHk0ðdÞ � 4�ðk0�1Þd
;
(21)

where Hk0ðdÞ ¼ ½Qdþ1
i¼1ðR� ðdþ 1Þ � k0 þ iÞ
=ðR� ðk0 þ dÞþ

1Þ. Note that Hk0ðdÞ in the above equation increases as d

increases, while term 4�ðk0�1Þd decreases as d increases. The

former is dominant initially, while the latter is dominant

later on. As a result, a “V” shape pattern can be observed.

However, there are many other cases besides the upper

instantiation case shown in Fig. 3 that can lead to incorrect
results. For example, some of the (dþ 1) k0-mers may be

partially overlapped. Hence, more terms that are similar to

the second term of the denominator in Eq. (21) may be

Fig. 6. Alignable positions for q
ðk�1Þ
1 and q

ðk�1Þ
2 in Scenario 3.

LIU ETAL.: VA-STORE: AVIRTUAL APPROXIMATE STORE APPROACH TO SUPPORTING REPETITIVE BIG DATA IN... 609

included in the denominator. To capture such effects, we
adopt the following regression model:

fk0ðdÞ ¼ 1=½1þ a �Hk0ðdÞ � 4�b�ðk0�1Þ�d
: (22)

We view d as the explanatory variable, k0 as a parameter,
and a and b are the regression coefficients.

We employ the least squares method to determine the
optimal a and b coefficients as follows. We first perform a
transformation on Eq. (22) to get

gk0ðdÞ ¼ lnð1=fk0ðdÞ � 1Þ ¼ lnða �Hk0ðdÞ � 4�b�ðk0�1Þ�dÞ
¼ lnðaÞ þ lnðHk0ðdÞÞ � b � ðk0 � 1Þ � d � lnð4Þ: (23)

Let S ¼Pn
i¼0½gk0ðdiÞ � gi
2, where < di; gi > (i ¼ 1; 2; . . . ;

n) are n sample observation pairs. Solving equations

@S

@a
¼
Xn
i¼1

2 � ½lnðaÞ þ lnðHk0ðdiÞÞ

� b � ðk0 � 1Þ � di � lnð4Þ � gi
 � 1
a
¼ 0;

@S

@b
¼
Xn
i¼1

�2 � ½lnðaÞ þ lnðHk0ðdiÞÞ

� b � ðk0 � 1Þ � di � lnð4Þ � gi
 � ðk0 � 1Þ � di � lnð4Þ ¼ 0;

we get

lnðaÞ ¼
"Xn

i¼1

gi �
Xn
i¼1

d2i �
Xn
i¼1

lnðHk0ðdiÞÞ �
Xn
i¼1

d2i

�
Xn
i¼1

di �
Xn
i¼1

gidi þ
Xn
i¼1

di �
Xn
i¼1

di � lnðHk0ðdiÞÞ
#

,
n �
Xn
i¼1

d2i �
Xn
i¼1

di

 !2
2
4

3
5;

(24)

b ¼
"Xn

i¼1

gi
Xn
i¼1

di �
Xn
i¼1

lnðHk0ðdiÞÞ
Xn
i¼1

di

þ n �
Xn
i¼1

di � lnðHk0ðdiÞÞ þ n �
Xn
i¼1

gidi

#
,

ðk0 � 1Þ � lnð4Þ � n �
Xn
i¼1

d2i �
Xn
i¼1

di

 !2
2
4

3
5

2
4

3
5:

(25)

Theorem 4.2. Assume that the k0-mers for the input reads are
stored in physical store Vk0 . Let k ¼ k0 þ d (d � 1). The (aver-
age) accuracy �ðk; k0Þ of a k-mer query qðkÞ on a virtual store Vk

(i.e., solving KDBPk) when using Vk0 can be estimated by
Eq. (22) with �ðk; k0Þ ¼ fk0ðk� k0Þ, where coefficients a and b
can be determined by Eqs. (24) and (25).

4.3 Accuracy-Guided Adaptive Query Processing
As discussed in Section 4.1, when k < k0, we can improve
query processing efficiency by running fewer box queries as
specified in Eq. (5) instead of running many exact queries
from the direct transformation given in Eq. (4). However,
when k > k0, query optimization for the transformation
given in Eq. (7) is more complicated. In this section, we
present an accuracy-guided adaptive query processing

algorithm to improve efficiency for computing an approxi-
mate solution for a given k-mer query qðkÞ when k > k0.

Following the transformation given in Eq. (7), to compute
an approximate solution to qðkÞ on virtual store Vk, we need
to execute dþ 1 (d ¼ k� k0) shifted k0-mer queries q

ðk0Þ
1 ,

q
ðk0Þ
2 ; . . . ; q

ðk0Þ
dþ1 (see the lower case as shown below read r in

Fig. 3) on physical store Vk0 and use the intersection of their
results as an approximate solution to qðkÞ. Since these (dþ 1)
k0-mer queries are largely overlapped, it is possible that
using only a subset of these queries is sufficient to produce
an approximate solution with a similar accuracy. In such a
case, the computing efficiency is improved since only a sub-
set of the queries are actually executed.

Two questions need to be answered to develop such an
optimization technique. First, which subset of queries is to
be executed and in what order? Second, what is the stop
condition to terminate the query processing?

To answer the first question, we realize that it is desirable
to choose as diverse queries as possible because we should
use a small number of queries to capture as many scenarios as
possible. We notice that the distance between the indexes of
two queries represents their similarity. For example, queries

q
ðk0Þ
3 and q

ðk0Þ
5 aremore similar than queries q

ðk0Þ
1 and q

ðk0Þ
6 since

the distance between the first pair (5 � 3 = 2) is smaller than
the distance between the second pair (6 � 1 = 5). Therefore,
we adopt a so-called “maximumdistance principle” to choose
the next query for execution, namely, choosing the next query
whoseminimumdistance to all the previously chosen queries

is the largest. For example, given 10 k0-mer queries q
ðk0Þ
1 ,

q
ðk0Þ
2 ; . . . ; q

ðk0Þ
10 , if we first choose q

ðk0Þ
1 , the next chosen query

should be q
ðk0Þ
10 since it has the largest (minimum) distance to

q
ðk0Þ
1 among the unchosen queries. We then choose q

ðk0Þ
6 (or

q
ðk0Þ
5) since itsminimumdistance to q

ðk0Þ
1 and q

ðk0Þ
10 is 4, which is

the largest among the unchosen queries. The next query can

be q
ðk0Þ
4 (or q

ðk0Þ
3 or q

ðk0Þ
8). This process continues like the binary

search (see Fig. 7).
As for the second question, it is noticed that the accuracy of

the approximate solution is monotonically increasing as more
queries are executed. This is because the result (solution) of
the target k-mer query is contained in the intersection of the
results of all the (dþ 1) shifted k0-mer queries (see Eq. (6)).
One possible stop condition is to end the query processing if
the difference between the accuracies of two consecutive
approximate solutions is small. However, checking the accu-
racy of an approximate solution usually involves high over-
head (e.g., performing expensive sequence alignments).
Hence, we adopt the following easy-checking stop condition,
namely, the query processing ends if the percentage of the
size reduction for the approximate solution is small, i.e.,
ðs0 � s00Þ=s0 � � where s00 and s0 are the sizes of two consecu-
tive approximate solutions, respectively, and � is a given toler-
ance. Every time when a new k0-mer query is executed, its
result is used to intersects with the preceding approximate
result, which usually removes more unqualified reads from
the approximate solution, resulting in a reduced size approxi-
mate solution with an improved accuracy. Therefore, this

Fig. 7. Maximum distance principle.

610 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

stop condition is similar to the first stop condition except that
it ismore efficient to carry out.

Algorithm 1.Accuracy-Guided Adaptive Query Processing

Input: (1) physical store Vk0 ; (2) dþ 1 shifted k0-mer queries

q
ðk0Þ
1 , q

ðk0Þ
2 ; . . . ; q

ðk0Þ
dþ1 (d � 1) for a given k-mer query qðkÞ;

(3) stop tolerance �.

Output: An approximate solution RðqðkÞÞ to given qðkÞ and the
set QS of executed k0-mer queries.

1 initialize QS ¼ ;, queue = ;;
2 execute q

ðk0Þ
1 and q

ðk0Þ
dþ1 on Vk0 to get results Rðqðk0Þ1 Þ and

Rðqðk0Þdþ1 Þ;
3 let RðqðkÞÞ ¼ Rðqðk0Þ1 Þ;
4 let s0 = size of RðqðkÞÞ;
5 let RðqðkÞÞ ¼ RðqðkÞÞ \ ðRðqðk0Þdþ1 Þ;
6 let s00 = size of RðqðkÞÞ;
7 let QS ¼ fqðk0Þ1 ; q

ðk0Þ
dþ1g;

8 if d == 1 or ðs0 � s00Þ=s0 � � then
9 return RðqðkÞÞ and QS;

10 else
11 let [node.min, node.max] = [2, d];
12 queue.append(node);
13 while queue is not empty and ðs0 � s00Þ=s0 > � do
14 node = queue.pop();
15 letm = d (node.min + node.max)= 2 e;
16 execute qðk0Þm on Vk0 to get its result Rðqðk0Þm Þ;
17 let RðqðkÞÞ ¼ RðqðkÞÞ \ ðRðqðk0Þm Þ;
18 let s0 = s00;
19 let s00 = size of RðqðkÞÞ;
20 let QS ¼ QS [fqðk0Þm g;
21 if node.min < m then
22 let [node0.min, node0.max]=[node.min,m� 1];
23 queue.append(node0);
24 end if
25 ifm < node.max then
26 let [node0.min, node0.max]=[m+1, node.max];
27 queue.append(node0);
28 end if
29 end while
30 return RðqðkÞÞ and QS;
31 end if

The above ideas are incorporated into Algorithm 1, which
utilizes a binary tree with a breadth-first traversal to realize
the maximum distance principle for choosing the next
k0-mer query for execution. From the description, we can see
that the algorithm executes at least two k0-mer queries, i.e.,

q
ðk0Þ
1 and q

ðk0Þ
dþ1 (steps 1-9). If the stop condition is not met and

there are more un-executed k0-mer queries, the algorithm
repeatedly selects a new k0-mer query for execution based
on the maximum distance principle until the stop condition
is met or there is no more un-executed k0-mer query left
(steps 10-31). Each node of the binary search tree that realizes
the maximum distance principle contains a range of indexes
for un-executed k0-mer queries (steps 11, 22 and 26). A queue
is used to implement the breadth-first traversal of the binary
search tree (steps 12, 14, 23, and 27). When the leading node
is popped from the queue, the query having the middle
index from the range associated with the node is chosen for
execution (step 16). The remaining left and right un-executed
subranges (if any) are associated with the left and right child

nodes, respectively, which are then appended to the end of
the queue (steps 21-28). The process may end in the middle
without generating the whole tree when the stop condition
is satisfied. It is also noted that the algorithm returns
RðqðkÞÞ ¼ ; if s0 or s00 is found to be 0 at steps 4, 6 and 19. Such
an error checking code is not included in the algorithm
description for conciseness.

Fig. 8 shows an example of the binary search tree for a list

of 10 k0-mer queries q
ðk0Þ
1 , q

ðk0Þ
2 ; . . . ; q

ðk0Þ
10 . Indexes 1 and 10 are

not included in the index range associated with the root

node since q
ðk0Þ
1 and q

ðk0Þ
10 are executed at the beginning of

Algorithm 1 and the tree is used to select k0-mer queries
with indexes ranging from 2 to 9. The number inside each
node is the middle index from the associated index range,
which is the index of the k0-mer query selected for execution
when the node is popped from the queue. The nodes (repre-
senting their relevant k0-mer queries) are visited in a
breadth-first fashion, which follows the maximum distance
principle. The traversal may end in the middle if the stop
condition is met before all the queries are considered.

Let n be the number of given shifted k0-mer queries. In
the worst case, Algorithm 1 still needs to execute all n
k0-mer queries and store ðn� 1Þ=2 nodes in the queue. In
other words, the worst-case complexity of Algorithm 1 is
OðnÞ for both time and space. However, in practice, the
algorithm typically only needs to execute a subset (e.g., as
low as 20 percent) of given k0-mer queries to achieve a high
accuracy, as shown in our experiments in Section 5.

5 EXPERIMENTS

To evaluate the performance of our VA-Store approach, we
conducted extensive experiments. The experiment pro-
grams were implemented in C++ and Python. The physical
store in the VA-Store was implemented using the BoND-
tree outlined in Section 3. All the experiments were con-
ducted on a Dell PC with a 3.2 GHz Intel Core i7-4790 CPU,
12 GB RAM, 5 TB Hard Drive, and Linux 3.16.0 OS.
One synthetic random read dataset RAND with 308,846
reads and two real genome read datasets SR and BJ with
635,036 reads and 479,105 reads, respectively, were used in
the experiments. SR and BJ were extracted from Streptomy-
ces rapamycinicus genome NRRL 5491 CP006567.13 and
Bradyrhizobium japonicum genome NZ_CP007569,4 respec-
tively. The length of each read was 100 bases (letters).
Unless stated otherwise, the reads in the experiments were
obtained by cutting up the assembled genome sequences.
Various parameter values (e.g., k and d) were considered in
the experiments.

Fig. 8. Query index access order determination.

3. http://www.ncbi.nlm.nih.gov/nuccore/CP006567.1/.
4. http://www.ncbi.nlm.nih.gov/nuccore/627779227/.

LIU ETAL.: VA-STORE: AVIRTUAL APPROXIMATE STORE APPROACH TO SUPPORTING REPETITIVE BIG DATA IN... 611

http://www.ncbi.nlm.nih.gov/nuccore/CP006567.1/
http://www.ncbi.nlm.nih.gov/nuccore/627779227/

The VA-Store is mainly designed to save storage space for
repetitive genome sequence data. If a user wants to use
k-mers with M different values/lengths for k, we employ
one physical store Vk0 to keep k0-mers of one length k ¼ k0
(e.g., the middle length) and support k-mers of other lengths
logically/virtually, which would require roughly only 1=M
of the space that would be needed to physically store all
k-mers with M lengths. In fact, the space requirements to
physically store the sets (stores) of k-mers with different val-
ues of kmay not be the same. A larger k value leads to longer
k-mers and also usually produces more distinct k-mers from
a given set of reads, which would demand more space. On
the other hand, for a smaller k value, although the set of dis-
tinct k-mers produced from the given set of reads is usually
smaller, each k-mer may require more space to keep the rele-
vant metadata (e.g., the ids of reads containing a given
k-mer) since a smaller k-mer has a higher chance to appear in
more reads. However, since the space required for metadata
is relatively small, the demand for space increase caused by
a larger k value usually dominates the overall space require-
ment for each store. The actual space requirements depend
on the underlying dataset and the implementation of the
stores. Fig. 9 shows the space requirements for store Vk

(4 � k � 10; k0 = 7) for dataset SR if each Vk is physically
stored. When the VA-Store is adopted to keep k-mers
(4 � k � 10) for dataset SR (i.e., only Vk0 is physically
stored), we would save about 86.4 percent of the space that
would be needed to physically store all k-mers (4 � k � 10).

One set of experiments was performed to examine how
well the analytical accuracy estimation model for k ¼ k0 þ 1
from Section 4.2.1 can predict the k-mer query accuracy when
using physical storeVk0 . Figs. 10, 11, and 12 show the compar-
isons between the estimated accuracies (EST) by the model
and the observed average accuracies for k-mer queries in Sce-
narios 1 and 5 using Vk0 for three experimental datasets
RAND, SR and BJ. From the figures, we can see that the
derived estimation model captures the query accuracy

behaviors quite well in general. However, the estimation
became worse when k became large for Scenario 1 on real
datasets SR and BJ. This was because the approximate solu-
tion/result size for a k-mer query with a special pattern
defined in Scenario 1 was small when k was large — there
were not many reads containing such a special k-mer pattern
when k was large in SR and BJ. As a result, any false positive
read contained in the result would have a big impact on the
accuracy. For example, a query result consisting of 1 correct
read and 1 incorrect read would have an accuracy of 50 per-
cent, while the accuracy becomes 100 percent if the incorrect
read is not included. It is difficult to capture such a vulnerabil-
ity in accuracy using a statistical model in such a case. On the
other hand, the model captures the accuracy behavior for the
random dataset RAND relatively well since such a dataset
contains more reads with the searching patterns even when k
is large. Similar observations were obtained for Scenarios 2, 3,
and 4, which are not shown here due to the space limit. Note
that the majority of k-mers fall into Scenario 5 and require no
special patterns. The accuracy behavior in this scenario is cap-
turedwell by ourmodel for all k values.

Another set of experiments was conducted to show the
accuracies of approximate solutions for k-mer queries using
physical store Vk0 for the general case k ¼ k0 þ d (d � 1) and
examine how well the regression accuracy estimation model
can capture the “V” shape accuracy behavior as discussed
in Section 4.2.2. Fig. 13 shows the accuracy changing pat-
terns as d increases (with k0 ¼ 7) for the three experimental
datasets. From the figure, we can see that, as d increases, the
accuracy decreases first, then increases, and finally stays at
a high accurate level. The reason behind this phenomenon
has been explained in Section 4.2.2. To capture the “V”
shape behavior, we suggested a regression accuracy estima-
tion model in Section 4.2.2. Since a synthetic dataset is read-
ily available in practice, in the experiment, we used the
observed values for k-mer queries on synthetic dataset
RAND to train the coefficients in the regression model. The

Fig. 9. Space requirements for stores of k-mers of various lengths for
dataset SR.

Fig. 10. Estimated and observed accuracies for Scenario 1 with period
length c = 1.

Fig. 11. Estimated and observed accuracies for Scenario 1 with period
length c = 2.

Fig. 12. Estimated and observed accuracies for Scenario 5.

612 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

derived regression model was then used to estimate the
accuracies (i.e., capturing the “V” shape pattern) for k-mer
queries on real datasets SR and BJ. Fig. 14 shows the com-
parison of the estimated and observed query accuracies
during the “V” shape phase. From the figure, we can see
that the obtained regression model can indeed capture the
“V” shape pattern and give reasonable accuracy estimates
for k-mer queries on SR and BJ.

It is observed from Fig. 13 that, when k (= k0 þ d) becomes
large (e.g., � 20), the VA-Store method can provide a highly
accurate solution for a k-mer query (with an accuracy
approaching 100 percent), which is consistent with the discus-
sion in Section 4.2.2. The low accuracy solutions occur around
the “V” shape when k is relatively small (e.g., 8 � k � 16).
Furthermore, the degree of inaccuracy around the “V” shape
decreases when k0 becomes larger, as shown in Fig. 15. This is
because the upper scenario in Fig. 3 that causes false positives
has a less chance to occur when longer transformed k0-mers
(i.e., larger k0) for a k-mer query are instantiated with a read.
On the other hand, the degree of inaccuracy around the “V”
shape increases when the length of a read becomes larger, as
shown in Fig. 16 (k0 ¼ 7), since there is a higher chance for the
upper scenario in Fig. 3 to occur for a larger read.

Note that, although our VA-Store method can support
k-mer queries of any length in principle, it should aim to
efficiently support k-mer queries of desired lengths for a

given application in practice. When the length k for an input
k-mer query is too far from the length k0 chosen for the
physical store Vk0 of the underlying VA-store, the efficiency
will suffer since many k0-mer queries have to be executed to
answer the k-mer query. In biological sequence analysis,
there are applications that use k-mers with small lengths
(e.g., 6 � 16) [2], [14], [22], [25], [28], [37], especially those
like BLAST that apply a pre-filtering step with a low sensi-
tivity to allow more candidates to be considered for subse-
quent processing. The performance study of our VA-Store
method for k-mers with small lengths is particularly useful
for such applications.

The next set of experimentswas conducted to evaluate the
performance of our query optimization strategies for proc-
essing transformed queries. The performance was measured
based on the average of processing 1,000 random k-mer
queries on k-mer datasets generated from dataset SR. Fig. 17
shows the savings on query processing time when applying
the box query optimization strategy specified by Eq. (5) with
k0 = 10. From the figure, we can see that using box queries
from the optimized transformation (Eq. (5)) can significantly
reduce the processing time, comparing to using exact queries
from the original transformation (Eq. (4)). For example,
the query processing time for using exact queries is about
47.0 times of that for using box queries for k ¼ 6, and the for-
mer is about 2.7 times of that for using box queries for k ¼ 9.
Note that a smaller k requires more transformed exact
queries to process a k-mer query, in which case using box
queries is more advantageous. To evaluate the performance
of our Accuracy-Guided Adaptive Query Processing algo-
rithm (AGAQ), we compared it with three direct methods
for executing a k-mer query qðkÞ on Vk0 (k > k0) based on
Eq. (7): (1) the full method (FullM) that executes all (dþ 1)
shifted k0-mer queries for qðkÞ; (2) the random method
(RandM) that randomly selects a subset of shifted k0-mer
queries for qðkÞ to execute; (3) the sequential method (SeqM)
that sequentially selects a subset of shifted k0-mer queries for
qðkÞ to execute. RandM and SeqM apply the same stop condi-
tion used by AGAQ to stop selecting the next k0-mer query

Fig. 13. Accuracy changing pattern in the general case.

Fig. 14. Estimated accuracies using regression model.

Fig. 15. Effect of physical store length k0 on accuracy.

Fig. 16. Effect of read length L on accuracy.

Fig. 17. Query optimization via box queries.

LIU ETAL.: VA-STORE: AVIRTUAL APPROXIMATE STORE APPROACH TO SUPPORTING REPETITIVE BIG DATA IN... 613

to execute. Fig. 18 shows the number (percentage) of k0-mer
queries executed by each of the compared methods when
processing qðkÞ. From the figure, we can see that AGAQ exe-
cuted the least number of k0-mer queries during the query
processing. As a result, it usually has the minimum query
processing time (see Fig. 19). Fig. 20 shows the query accu-
racy achieved by each of the compared methods. From the
figure, we can see that AGAQ can generally achieve a better
accuracy, comparing to SeqM and RandM except a few cases
in which SeqM is better. For these exceptions, we noticed
that SeqM executed almost all the k0-mer queries just like
FullM, which incurred higher query processing cost. AGAQ
is increasingly better when d increases. To examine the scal-
ability of AGAQ with respect to the dataset size, we also
tested it for k-mer datasets generated from a larger dataset
RN for Rattus norvegicus genome with 6,886,157 reads (i.e.,
about 10.8 times larger than dataset SR) and observed similar
results. For example, the executed percentage of k0-mer
queries, the query processing time ratio, and the accuracy of
AGAQ for d ¼ 9 on RN are 46.6 percent (versus 48.3 percent
for SR in Fig. 18), 51.8 percent (versus 51.3 percent for SR in
Fig. 19), and 93.2 percent (versus 91.7 percent for SR in
Fig. 20), respectively. In summary, AGAQ uses a minimum
processing time to achieve a very high accuracy.

Lastly, Fig. 21 demonstrates that the performance differ-
ence in accuracy between using raw reads for the genomic
data and using reads obtained from the assembled genome
sequence in our experiments is very small for the evaluation
of the VA-Store method. Hence, comparable performance is
expected when the VA-Store method is used by applications
with raw reads.

6 CONCLUSIONS

There often exist substantial amounts of repetitive data in
different portions of a big data repository for applications in
domains such as bioinformatics. Directly storing repetitive
data on disk would waste much space and limit the scalabil-
ity of the techniques using the data. We notice that there are
some useful relationships among the repetitive data in
important applications such as genome sequence analysis

problems. Although such relationships (e.g., containment,
implications) may not be a simple duplication with a clear
boundary, we can utilize them to transform queries on one
portion of the dataset into queries on another related (repet-
itive) portion of the dataset. The transformations may be
precise or approximate. Based on this observation, in this
paper, we present a virtual approximate store approach,
called the VA-Store, to supporting genome sequence analy-
sis applications on repetitive big sequencing data. The main
contributions of our work are summarized as follows:

� A kernel database problem (KDBPk) on a set of
k-mers for many sequence analysis applications such
as local alignment searching, sequence assembly, ter-
minus searching, and error correction is identified.

� A method using one physical store Vk0 and multiple
virtual stores Vk (k 6¼ k0) to support sequence analy-
sis applications with repetitive big data is suggested.
In particular, for k < k0, a precise transformation
rule to convert a k-mer query (i.e., problem KDBPk)
on Vk into an equivalent set of k0-mer queries (i.e.,
problems KDBPk0 ’s) on Vk0 is given. For k > k0, an
approximate transformation rule to convert a k-mer
query on Vk into an optimal set of k0-mer queries on
Vk0 is provided.� Accuracy estimationmodels for approximate solutions
obtained from the approximate transformation rule
when k > k0 are derived. In particular, an analytical
accuracy estimation model dealing with various query
patterns for k ¼ k0 þ 1 is derived. A general regression
accuracy estimationmodel for k � k0 is developed.

� An optimization strategy to combine multiple trans-
formed (exact) k0-mer queries into one box k0-mer
query for k < k0 is suggested. For k > k0, an efficient
and effective accuracy-guided adaptive query proc-
essing algorithm is developed so as to execute as few
queries as possible while keeping a high accuracy. In
particular, a maximum distance principle is adopted
to choose as diverse queries as possible for execution
to cover a broad range of scenarios with a small num-
ber of executed queries. A binary search tree strategy

Fig. 19. Comparison of query processing time.

Fig. 20. Comparison of accuracy achieved.

Fig. 21. Effect of using assembled and raw reads.

Fig. 18. Comparison of number of k0-mer queries executed.

614 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

is used to efficiently realize the maximum distance
principle. In addition, an easy-checking effective stop
condition is suggested.

� Extensive experiments were conducted, which dem-
onstrate that the proposed VA-Store approach is
quite promising in efficiently and effectively solving
a kernel database problem on repetitive big data in
bioinformatics.

The VA-Store showcases a feasible way to utilize impor-
tant relationships among repetitive data to develop effective
storage methods and efficient processing algorithms for use-
ful analytics on repetitive big data. It provides a new query-
based approach to facilitating genome sequence analyses for
large datasets on disk. It represents a novel contribution to
the areas of bioinformatics, database query processing and
optimization, and big data processing.

Our work is just the beginning of further research that
needs to be done in order to completely solve the problems
associated with supporting virtual approximate stores. Our
future work includes further improving the accuracy esti-
mation model (e.g., incorporating other combinatorial terms
and more parameters in the regression model), studying
other adaptive query processing algorithms (e.g., utilizing
the patterns contained in the given k-mer query to decide
the next best k0-mer query to execution), determining the
optimal k0 for the physical store based on the underlying
applications, supporting multiple physical stores to avoid
the worst accuracy occurring at the bottom of the “V” shape,
and developing an implementation framework for the phys-
ical store using the Hadoop/MapReduce environment.

ACKNOWLEDGMENTS

Researchwas supported by the USNational Science Founda-
tion (NSF) (under Grants #IIS-1320078 and #IIS-1319909), the
University ofMichigan, and theMichigan State University.

REFERENCES

[1] M. S. Akshay, S. Mohan, et al., “Efficient support of big data stor-
age systems on the cloud,” in Proc. Int. Workshop Cloud Comput.
Appl., 2013, pp. 1–5.

[2] S. F. Altschul, W. Gish, et al., “Basic local alignment search tool,”
J. Mol. Biol., vol. 215, no. 3, pp. 403–410, 1990.

[3] A. Bankevich, S. Nurk, et al., “SPAdes: A new genome assembly
algorithm and its applications to single-cell sequencing,” J. Com-
put. Biol., vol. 19, no. 5, pp. 455–77, 2012.

[4] C. Boucher, A. Bowe, et al., “Variable-order de Bruijn graphs,”
CoRR, 2014. [Online]. Available: http://arxiv.org/abs/1411.2718

[5] C. Camacho, G. Coulouris, et al., “BLAST+: Architecture and
applications,” BMC Bioinf., vol. 10, 2009, Art. no. 421.

[6] X. Cao, B. C. Ooi, et al., “DSIM: A distance-based indexing
method for genomic sequences,” in Proc. 5th IEEE Symp. Bioinf.
Bioeng., 2005, pp. 97–104.

[7] X. Cao, S. C. Li, and A. K. H. Tung, “Indexing DNA sequences
using q-grams,” in Proc. Int. Conf. Database Syst. Adv. Appl., 2015,
pp. 4–16.

[8] J. Chang, J. Dean, et al., “Bigtable: A distributed storage system
for structured data,” ACM Trans. Comput. Syst., vol. 26, no. 2,
pp. 4:1–4:26, 2008.

[9] C. Chen, M. Lang, and Y. Chen, “Multilevel active storage for big
data applications in high performance computing,” in Proc. IEEE
Int. Conf. Big Data, 2013, pp. 169–174.

[10] C. Chen, A. Watve, S. Pramanik, and Q. Zhu, “The BoND-tree: An
efficient indexing method for box queries in non-ordered discrete
data spaces,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 11,
pp. 2629–2643, Nov. 2013.

[11] R. Chikhi and P. Medvedev, “Informed and automated k-mer size
selection for genome assembly,” Bioinf., vol. 30, no. 1, pp. 31–37,
2014.

[12] P. Compeau, P. Pevzner, and G. Tesler, “How to apply de Bruijn
graphs to Genome assembly,” Nat. Biotechnol., vol. 29, no. 11,
pp. 987–991, 2011.

[13] T. C. Conway and A. J. Bromage, “Succinct data structures for
assembling large Genomes,” Bioinf., vol. 27, no. 4, pp. 479–486, 2011.

[14] H. Cui and X. Zhang, “Alignment-free supervised classification of
metagenomes by recursive SVM,” BMC Genomics, vol. 14, 2013,
Art. no. 641.

[15] Y. Gu,Q. Zhu, X. Liu, Y.Dong,C. T. Brown, and S. Pramanik, “Using
disk based index and box queries for Genome sequencing error
correction,” in Proc. Int. Conf. Bioinf. Comput. Biol., 2016, pp. 69–76.

[16] Y. Gu, X. Liu, Q. Zhu, Y. Dong, C. T. Brown, and S. Pramanik, “A
newmethod for DNA sequencing error verification and correction
via an on-disk index tree,” in Proc. ACM Conf. Bioinf. Comput. Biol.
Health Informat., 2015, pp. 503–504.

[17] M. Guillaume and C. Kingsford, “A fast, lock-free approach for
efficient parallel counting of occurrences of k-mers,” Bioinf.,
vol. 27, no. 6, pp. 764–770, 2011.

[18] R. Guillaume, D. Lavenier, and R. Chikhi, “DSK: k-mer countingwith
very lowmemory usage,” Bioinf., vol. 29, no. 5, pp. 652–653, 2013.

[19] S. Huang, T. W. Lam, et al., “Indexing similar DNA sequences,”
in Proc. Int. Conf. Algorithmic Appl. Manage., 2010, pp. 180–190.

[20] T. Kahveci and A. Singh, “Efficient index structures for string data-
bases,” in Proc. Int. Conf. Very Large Data Bases, 2001, pp. 351–360.

[21] D. R. Kelley, M. C. Schatz, and S. L. Salzberg, “Quake: Quality-
aware detection and correction of sequencing errors,” Genome
Biol., vol. 11, no. 11, 2010, Art. no. R116.

[22] W. J. Kent, “BLAT - the BLAST-like alignment tool,” Genome Res.,
vol. 12, no. 4, pp. 656–664, 2002.

[23] A. Labrinidis and H. V. Jagadish, “Challenges and opportunities
with big data,” Proc. VLDB Endowment, vol. 5, no. 12, pp. 2032–2033,
2012.

[24] J. Li, Z. Xu, Y. Jiang, and R. Zhang, “The overview of big data stor-
age and management,” in Proc. IEEE 13th Int. Conf. Cogn. Inform.
Cogn. Comput., 2014, pp. 510–513.

[25] W. Liao, J. Ren, et al., “Alignment-free transcriptomic and meta-
transcriptomic comparison using sequencing signatures with vari-
able length Markov chains,” Sci. Rep., vol. 6, 2016, Art. no. 37243.

[26] M. Metzker, “Sequencing technologies - the next generation,”
Nature Rev. Genetics, vol. 11, pp. 31–46, 2010.

[27] C. S. Oehmen and D. J. Baxter, “ScalaBLAST 2.0: Rapid and robust
BLAST calculations on multiprocessor systems,” Bioinf., vol. 29,
no. 6, pp. 797–798, 2013.

[28] Y. Orenstein, D. Pellow, et al., “Designing small universal
k-mer hitting sets for improved analysis of high-throughput
sequencing,” Comput. Biol., vol. 13, no. 10, 2017, Art. no. e1005777.

[29] J. Pell, A. Hintze, et al., “Scaling metagenome sequence assembly
with probabilistic de Bruijn graphs,” Proc. Nat. Academy Sci. United
States America, vol. 109, no. 33, pp. 13272–13277, 2012.

[30] Y. Peng, H. Leung, S.-M. Yiu, and F. Y. Chin, “IDBA—A practical
iterative de Bruijn graph de novo assembler,” in Proc. Annu. Int.
Conf. Res. Comput. Mol. Biol., 2010, pp. 426–440.

[31] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “The ND-tree: A
dynamic indexing technique for multidimensional non-ordered
discrete data spaces,” in Proc. Int. Conf. Very Large Data Bases,
2003, pp. 620–631.

[32] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “Dynamic indexing for
multidimensional non-ordered discrete data spaces using a data-
partitioning approach,” ACM Trans. Database Syst., vol. 31, no. 2,
pp. 439–484, 2006.

[33] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “A space-partitioning-
based indexingmethod formultidimensional non-ordered discrete
data spaces,”ACMTrans. Inf. Syst., vol. 23, no. 1, pp. 79–110, 2006.

[34] K. Stefan, A. Narechania, and J. C. Stein, “A new method to com-
pute k-mer frequencies and its application to annotate large repet-
itive plant genomes,” BMC Genomics, vol. 9, 2008, Art. no. 517.

[35] T. Steinmaurer, P. Traxler, et al., “Combining stream processing
engines and big data storages for data analysis,” in Proc. Int.
Symp. Methodologies Intell. Syst., 2014, pp. 476–485.

[36] M. Vivien, “Biology: The big challenges of big data,” Nature,
vol. 498, pp. 255–260, 2013.

[37] D. M. Winget and K. E. Wommack, “Randomly amplified polymor-
phic DNA PCR as a tool for assessment of marine viral richness,”
Appl. Environ.Micorbiol., vol. 74, no. 9, pp. 2612–2618, 2008.

[38] K. Zhao and X. Chu, “G-BLASTN: Accelerating nucleotide align-
ment by graphics processors,” Bioinf., vol. 30, no. 10, pp. 1384–1391,
2014.

LIU ETAL.: VA-STORE: AVIRTUAL APPROXIMATE STORE APPROACH TO SUPPORTING REPETITIVE BIG DATA IN... 615

http://arxiv.org/abs/1411.2718

Xianying Liu received the BS degree in com-
puter science from the Xi’an Jiaotong University,
China, in 2012, and the MS degree in computer
and information science from the University of
Michigan - Dearborn, in 2015. He is currently a
software engineer with Facebook. Before that, he
worked at IBM Watson Health, IBM Almaden
Research Center. His research interests include:
Query processing and optimization for database
systems, big data processing for bioinformatics,
genome sequence analysis, and data analytics
for life sciences.

Qiang Zhu received the PhD degree in computer
science from the University of Waterloo, Canada,
in 1995. He is currently the William E. Stirton
professor and the chair of the Department of
Computer and Information Science, University of
Michigan - Dearborn. He received numerous dis-
tinguished research awards. His research inter-
ests include query processing and optimization
for database systems, big data processing, high-
dimensional indexing, streaming data processing,
self-managing databases, and web information

systems. He is also an ACM distinguished scientist, an IBM CAS faculty
fellow, and a senior member of the IEEE.

Sakti Pramanik received the BE degree in elec-
trical engineering from the Calcutta University,
the MS degree in electrical engineering from the
University of Alberta, Edmonton, Canada, and
the PhD degree in computer science from the
Yale University. He was awarded the University’s
gold medal for securing the highest grade among
all branches of engineering from Calcutta Univer-
sity. He is currently a professor with the Depart-
ment of Computer Science and Engineering,
Michigan State University. His research interests

include high-dimensional indexing, genome sequence analysis, and mul-
timedia databases.

C. Titus Brown received the BA degree in math-
ematics from Reed College, in 1997, and the
PhD degree in developmental biology from the
California Institute of Technology, in 2007. He
is currently an associate professor with the
Genome Center and the School of Veterinary
Medicine, University of California, Davis. He was
also a faculty member with the Department of
Computer Science and Engineering, Michigan
State University. His research interests include
bioinformatics, genomics, developmental biology,
and next-generation sequencing data.

Gang Qian received the BS and MS degrees both
in computer science from Shanghai Jiao Tong Uni-
versity, China, respectively, and the PhD degree in
computer science from Michigan State University,
in 2004. He is currently a professor and the chair of
the Department of Computer Science, University of
Central Oklahoma. His research interests include
high-dimensional indexing, bioinformatics, multi-
media databases, information retrieval for text and
document databases, andmachine learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

616 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

