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Abstract

Query processing for data streams raises chal-
lenges that cannot be directly handled by ex-
isting database management systems (DBMS).
Most related work in the literature mainly fo-
cuses on developing techniques for a dedicated
data stream management system (DSMS).
These systems typically either do not permit
joining data streams with conventional rela-
tions or simply convert relations to streams be-
fore joining. In this paper, we present tech-
niques to process queries that join data streams
with relations, without treating relations as
special streams. We focus on a typical type of
such queries, called star-streaming joins. We
process these queries based on the semantics of
(sliding) window joins over data streams and
apply a load shedding approximation when sys-
tem resources are limited. A recently proposed
window join approximation based on impor-
tance semantics for data streams is extended
in this paper to maximize the total importance
of the approximation result of a star-streaming
join. Both online and offline approximation
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algorithms are discussed. Our experimental
results demonstrate that the presented tech-
niques are quite promising in processing star-
streaming joins to achieve the maximum total
importance of their approximation results.
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1 Introduction

Data in the form of streams occur in many in-
stances including data produced by sensors, In-
ternet traffic, financial tickers, on-line auctions
and transaction logs [6, 9, 10]. Applications
utilizing data streams are becoming increas-
ingly important.

Data streams are viewed as append-only se-
quences of data tuples where all tuples of the
same stream have the same schema. These
streams are often continuous and unpredictable
as data can arrive sporadically and in bursts.
Traditional approaches to query processing
in a relational database management system
(DBMS) are inadequate for streaming data.
Data stream management systems (DSMS)
have been developed to accommodate contin-
uously arriving data stream tuples from multi-
ple outside sources and process timely results
to multiple continuous queries posed on the
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streams.

Continuous queries are long-running and
persistent [9]. These queries differ greatly from
traditional one-time queries in a DBMS. A tra-
ditional query is evaluated once at the time it
is issued and its result is based on the current
state of the database, while a continuous query
is constantly re-evaluated and its result is typ-
ically updated when new data arrives from one
or more streams in the query. In this paper, we
focus on discussing continuous queries involv-
ing equi-joins.

Because of the infinite nature of data
streams, many traditional query operators can-
not be applied. For example, the join operator
is blocking (when applied to two data streams)
and, therefore, must be replaced with a non-
blocking operator [14]. Although there are sev-
eral approaches to addressing this issue, win-
dowing is a common approach adopted in many
papers, which is also applied in this paper. A
window placed over a data stream represents a
finite subset of the stream at some time instant.
Count-based and time-based windows are com-
mon types of windows mentioned in the liter-
ature. In this paper, we consider a time-based
window of size T holding tuples that arrived
during the last T time units. Such a (sliding)
window has freely moving endpoints that move
forward a unit step at each time instant.

An important concept of a sliding window is
timestamps. Timestamps provide an ordering
on stream tuples that involve time or sequence
numbers. This ordering is used to determine
which tuples belong in a window. Time-based
sliding windows apply timestamps with expi-
ration times. The endpoints of a sliding win-
dow move forward in time causing older tuples
to expire (i.e., are no longer part of the win-
dow). This approach works well in most real-
istic applications as older tuples are no longer
relevant to queries [14]. We apply the eager
re-evaluation of expired tuples as discussed in
[9].

Situations occur when it is desirable to query
data streams along with one or more conven-
tional relations. This is the issue to be ad-
dressed in this paper. Most DSMSs do not
permit joining data streams with relations. In
some instances [5, 1], such a join is handled
by converting the relations into streams be-

fore the join is performed. The Aurora [1] and
Telegraph CQ [5, 15] systems support queries
with static relations, while the STREAM sys-
tem supports queries with dynamic relations
[11]. We consider the situation where relations
are not converted but treated as conventional
relations in a DBMS in which relation access
methods can be utilized.

The STREAM system converts data streams
to relations by placing a window on the stream.
It then performs extended SQL (CQL) queries
between the relation and data stream window
[2]. Relations in STREAM are dynamic and
allow updates that are timestamped, necessi-
tating a window placed on the relation [11].
In our approach, we apply an active-time in-
terval to each tuple in a relation. The active-
time interval is not a timestamp but is used
solely to determine the validity of a tuple. We
do not impose a window onto the relation.
The STREAM system treats relations and data
streams equally, while our approach considers
a relation to be a fact or lookup table/relation
for the data streams.

High-speed and time-varying data streams
strain the system’s memory and CPU re-
sources [7]. Storing infinite and continuous
data streams in their entirety is impossible.
There are two types of resource limitations.
In the fast CPU case, stream tuples are pro-
cessed as quickly as they arrive but memory
resources are limited, causing some stream tu-
ples in a window to be evicted/replaced before
their expiration times. When the CPU is slow,
as in the slow CPU case, the system cannot
process input stream tuples as quickly as they
arrive. Tuples are placed into a queue and then
processed in the order they arrive according to
their timestamps. If the queue fills, some tuples
may be dropped. In this paper, we adopt the
fast CPU model where memory is our primary
limitation.

When system resources (CPU or memory)
cannot keep up with the data stream demand,
approximate queries have to be considered. To
process such queries, load shedding techniques
are typically adopted to drop selected stream
tuples prematurely before they reach the win-
dow or after they have entered into the window
but before they expire. Since an exact window
query cannot be performed in such a case, the
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goal of approximation is usually to maximize
the size of the query result (i.e., minimizing
the result error).

Random load shedding techniques [8, 4,
12, 3] randomly drop tuples from a data
stream without regard to the output the tuples
may produce when joined with another data
stream. The semantic load shedding technique
[7] avoids the randomness by choosing to drop
tuples with low probabilities for matching tu-
ples in the opposite data stream in order to
maximize the query result size. A more re-
cent load shedding technique based on impor-
tance semantics [13] further extends the seman-
tic load shedding technique by considering the
importance of the output produced. In fact,
the semantic load shedding technique is a spe-
cial case of the new load shedding technique
when all input tuples are of the same impor-
tance.

The above load shedding techniques were de-
signed to handle window joins between data
streams. In this paper, we extend the load
shedding technique based on importance se-
mantics in [13] to handle window queries
joining data streams with conventional rela-
tions. Because of space limitation, we focus
on discussing one typical type of such win-
dow queries, called the star-streaming join,
which joins one relation with one or more data
streams. We leverage the “lookup/fact” rela-
tion to pre-filter stream tuples that will never
produce output so that they are prevented from
being entered into the joining window. This
strategy allows surviving stream tuples to stay
in the limited-size window longer, resulting in
a higher possibility of matches. The goal of
our technique is to maximize the total impor-
tance of the output tuples in the query result.
Compared with the previous techniques, our
approach is more general in two aspects: (1)
The data streams are joined via the fact/lookup
relation rather than directly. Such a relation
typically represents the most relevant matches
desired by the corresponding applications. (2)
The adoption of the extended load shedding
technique based on importance semantics al-
lows the approximate query result to be more
relevant to the query objective, as opposed to
the popular semantic load shedding and ran-
dom load shedding techniques.

The remainder of this paper is organized as
follows. The definition of the star-streaming
join and its processing model are introduced in
Section 2. Several offline and online approxi-
mation algorithms to process such queries are
presented in Section 3. Experimental results
are reported in Section 4. Section 5 summa-
rizes the conclusions and future work.

2 Star-Streaming Join

In this paper, we focus on discussing a typical
type of query, called the star-streaming join,
for joining data streams with conventional re-
lations. We characterize this type of query
and present a processing model for such queries
in this section. Algorithms to evaluate these
queries will be discussed in Section 3.

2.1 Query Structure and Process-

ing Model

A star-streaming join is a query to join one
relation F with one or more data streams
R1, R2, ..., Rn (see Figure 1), denoted as
�� (F, R1, R2, ..., Rn) (n ≥ 1). It is similar to
a star-schema query in data warehouses. Rela-
tion F plays the role as the fact relation here,
while the data streams Ri’s play the role as the
(unbounded) dimension relations. Relation F
usually contains information about the related
tuples from data streams that the users are in-
terested in. For simplicity, we only consider
n = 1, 2 in this paper. The cases for n > 2 can
be handled in a similar way as n = 2.

F

R

R

R

R

R

R

…...

Figure 1: Structure of Star-Streaming Join

In all cases, we assume that one tuple arrives
in a data stream at each time instant. The no-
tation r(j) denotes a tuple that arrives in its
data stream at time j. Each tuple arriving in a
data stream has a format <ts, sch, imp> where
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ts ∈ N, the set of natural numbers, is the times-
tamp ordering; sch is the conventional schema
of the stream; imp ∈ { x | x ∈ R and 0 <
x ≤ U } is the importance of the tuple pre-
determined by stream applications where R is
the set of real numbers and U is the upper
bound for importance. The importance, as de-
scribed in [13], indicates how important this
tuple is to the query source if output is pro-
duced. Without loss of generality, we assume
sch contains only one (joining) attribute that
also appears in (fact) relation F since other at-
tributes of sch, if any, are irrelevant to our join
computation. For the same reason, we assume
that relation1 F contains only the attributes for
joining with the data streams. Hence the join
condition for �� (F, R1, R2, ..., Rn) is the con-
junction of equalities between the correspond-
ing pair of joining attributes from relation F
and data stream Ri for every 1 ≤ i ≤ n. A tu-
ple in the query result is the concatenation of
the matching tuples from the respective data
streams. The corresponding tuple in relation
F is embedded/implied in such a result tuple.
Note that a star-streaming join is a continuous
query and its result changes over time as the
data streams change.

For n = 1, star-streaming join �� (F, R) (i.e.,
F �� R) is also called a semi-streaming join
since one of the two operands is a data stream.
This semi-streaming join at time t is defined as:

RS1(t) = F �� R =

t⋃
j=0

⋃
f∈F

{f �� r(j)}, (1)

where r(j) is a tuple arriving in R at time j
and f �� r(j) denotes an output tuple o =<
ts, sch, imp > if the values for the joining at-
tributes in f and r(j) match. o.ts is the
timestamp when o was produced, o.sch is the
matching value for the joining attributes, and
o.imp = r(j).imp.

The (total) importance of the query result at
time t in (1) is:

imp(R �� F ) =
∑

o∈RS1(t)

o.imp. (2)

Since we adopt the fast CPU model, a semi-
streaming join defined in (1) can always be

1We assume that a relation contains no duplicate
tuples.

computed exactly (i.e., no load shedding is
needed) as follows. For each tuple r(t) arriving
in R at time t, we look up relation F , which is
finite, for matches and produce output tuples
if any. After this lookup, r(t) can be discarded
since it is no longer needed.

However, the same strategy cannot be ap-
plied to a star-streaming join for n = 2 (or
higher), in which multiple unbounded (infinite)
data streams are involved. A tuple r1 arriving
in one stream R1 of the join cannot be dis-
carded in the above way since it may match
(via the fact relation F ) a tuple arriving in the
other stream R2 of the join in the future. To re-
solve this problem, it is typically assumed that
each tuple in a data stream R for such a join
has a lifetime m. The join is calculated by im-
posing a sliding window Rw of size m over R.
The window Rw(j) of R at time j is defined as:

Rw(j) =

⎧⎪⎪⎨
⎪⎪⎩

{r(k) | j − m + 1 ≤ k ≤ j},
if j ≥ m − 1,

{r(k) | 0 ≤ k ≤ j},
if j < m − 1.

where r(k) is the tuple arriving in R at time
k. Note that window Rw(j) is not full when
j < m − 1. Tuple r(i) in stream R is expired
at time t if r(i).ts + m ≤ t.

Based on this semantic, a star-streaming join
�� (F, R, S) (i.e., R �� F �� S) at time t can be
defined as follows:

RS2(t) = R �� F �� S =

t⋃
j=0

j⋃
k=j0

⋃
f∈F

[ {r(j) �� f �� s(k)} ∪ {s(j) �� f �� r(k)} ], (3)

where j0 = max{0, j−m+1}; r(j) �� f �� s(k)
denotes an output tuple o =< ts, sch, imp >
if the values for the joining attributes satisfy
the join condition among r(j), f and s(k); o.ts
is the timestamp when o was produced; o.sch
consists of r(j).sch and s(k).sch; and o.imp =
min{r(j).imp, s(k).imp}; s(j) �� f �� r(k) is
defined similarly.

The (total) importance of the query result at
time t in (3) is:

imp(R �� F �� S) =
∑

o∈RS2(t)

o.imp. (4)

When there is enough memory to keep win-
dows Rw and Sw with the size m, Formula (3)
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calculates the exact result of the star-streaming
join at time t. However, when the size of mem-
ory is not enough to keep all stream tuples be-
fore their expiration, an approximation result
(i.e., a subset) has to be obtained via load shed-
ding. A good window query approximation al-
gorithm should maximize the total importance
of the query result. We will present several such
algorithms in Section 3.

2.2 Handling Dynamic Relations

The processing model discussed above is for
static relations. A dynamic relation allows up-
dates, insertions and deletions, although they
occur infrequently compared with the changes
in a data stream. The above model needs to
be extended to handle a dynamic relation. For
simplicity, we consider a dynamic relation with
insertions and deletions only. An update can
be simulated by a deletion followed by an in-
sertion.

To handle such a dynamic relation F , we in-
corporate an active-time interval to each tu-
ple in F to determine the state of F at a par-
ticular time instant. The active-time interval
has the format of [begin, end) where begin is
the time instant the tuple becomes active/valid
(i.e., inserted) and end is the time instant at
which the tuple becomes inactive/invalid (i.e.,
deleted). At time t, any tuple f in F with
f.begin ≤ t < f.end is an active/valid tuple.
The (active/valid) state of F at t consists of
all active tuples at t. Tuples stored in relation
F prior to the start of the data stream (i.e.,
prior to t = 0) are assumed to have begin = -1,
and any tuple inserted afterwards will have the
timestamp of the insertion as its begin. Tuples
that have not been deleted from F have end =
∞ while a deleted tuple has the timestamp of
the deletion as its end.

When performing a semi-streaming join be-
tween a data stream R and a dynamic relation
F following Formula (1), f ∈ F in the formula
should be interpreted as f is an active tuple in
F at time j. In other words,

f �� r(j) is an output tuple ⇐⇒

f.begin ≤ j < f.end and f.a = r(j).a, (5)

where a is the joining attribute between R and
F .

Similarly, when performing a star-streaming
join for a dynamic relation F and two data
streams R and S following Formula (3), f ∈ F
in the formula should be interpreted as f is an
active tuple in F at both times j and k. In
other words,

r(j) �� f �� s(k) is an output tuple ⇐⇒

f.begin ≤ j < f.end and

f.begin ≤ k < f.end and

r(j).a = f.a and f.b = s(k).b, (6)

where a is the joining attribute between R and
F , and b is the joining attribute between F
and S. The condition for output tuple s(j) ��
f �� r(k) in Formula (3) can be interpreted
similarly.

The concept of an active-time interval and
the formulas to determine the validity of a tuple
in the fact relation are very important to our
model. Essentially, they suggest that insertions
and deletions of tuples for relation F at time
t should not affect the stream tuples that have
already entered their streams at an earlier time
i before t.

Clearly, an active-interval is different from
the timestamp of a stream tuple. Timestamps
are uniquely assigned to each tuple of a data
stream and impose an ordering among the tu-
ples. The active-time interval represents the
valid duration of a relevant tuple in the fact
relation, which may not be unique, nor does it
impose an ordering or a window on the relation.

Based on the output tuple condition in (6),
we pre-filter some useless tuples from a stream
window. We determine that a stream tuple
will not produce any output if the tuple does
not match with an active tuple in relation F .
When a stream window is filled, a newly ar-
riving stream tuple will either be discarded or
replace a stream tuple in the window. By not
adding those tuples that do not match with F
in the window, we allow the current tuples in
the window to stay longer, possibly producing
more output tuples.

2.3 Utilizing Relation Access

Methods

Since the fact relation F is a conventional rela-
tion managed by the DBMS, the efficient rela-
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tion access methods in the DBMS can be uti-
lized to access F . To process semi-streaming
joins, one can use any access method such as
the sequential scan, the index scan, the hash
table access or the binary search to access F .
However, for star-streaming joins with two (or
more) data streams, only the sequential scan
and the index scan can be used by both data
streams to look up F . The hash table access
and the binary search can only be used by one
of the data streams to look up F since two
data streams may join on different attributes
of F . Since F is relatively stable, it is ben-
eficial to perform some preprocessing such as
removing irrelevant attributes, deleting dupli-
cates and creating relevant indexes before run-
ning a continuous star-streaming query.

Data streams are typically dynamical, read-
once and unbounded. Hence, indexing, sorting
or hashing is not suitable for accessing them
unless archived data streams are considered.
Data streams are usually accessed via the se-
quential scan. As a result, some traditional ef-
ficient join algorithms such as the sort-merging
join are inapplicable to star-streaming queries.
The pre-filtering strategy using the fact rela-
tion suggested in the last subsection is an ef-
fective way to optimize the access for the data
streams. In fact, the fact relation can be used
to provide other useful pre-filtering informa-
tion, for example, by providing priorities to
stream tuples for online processing.

If the number of tuples in relation F becomes
too large, it is desirable to use a subset or re-
duced result of vital tuples from F so that the
tuples arriving in the joining data streams can
be processed in time. Reducing the effective
size of the relation could be performed in sev-
eral ways such as using statistics or other ap-
proaches. This is a topic for our future work.

3 Approximation

Algorithms

As mentioned earlier, when the size of memory
is not enough, we have to approximate a star-
streaming join via load shedding. We present
two types of approximation algorithms: one for
offline and the other for online. The offline
algorithm is useful for archived data streams,

while the online ones are for real-time dynamic
data streams. The goal for all approximation
algorithms is to maximize the total importance
of a query result. We focus on discussing star-
streaming joins for one fact relation F and two
data streams R and S. The discussion can be
generalized to handle star-streaming joins in-
volving n > 2 data streams.

3.1 An Offline Optimal Approxi-

mation Algorithm

An effective offline optimal approximation al-
gorithm for window joins was introduced in
prior work [13]. However, this algorithm can-
not be applied to the star-streaming joins de-
fined in Section 2, since it does not allow a
conventional relation in the query. In this sec-
tion, we develop an offline approximation al-
gorithm to process star-streaming joins by ex-
tending the algorithm in [13].

3.1.1 Join Memory State Graph

To obtain a query result with maximum total
importance for a given memory size M (i.e., the
window size for each data stream is 
M/2�),
the algorithm applies the dynamic program-
ming approach. It constructs an intermediate
data structure, called the join memory state
graph, and uses it to identify the optimal solu-
tion.

The algorithm needs to determine the (win-
dow) memory states that produce the largest
approximation importance at each time in-
stant. To determine which stream tuples
should be contained in a window at each time
instant, we construct a directed graph, the join
memory state graph, for each data stream. We
have three memory state graphs: R graph, S
graph, and SA graph. Figure 2 shows an ex-
ample of R graph, which illustrates the possible
memory states for a given data stream R. Each
memory state represents one possible combina-
tion of stream tuples in the relevant window at
a particular time instant. Figure 3 shows an
example of S graph, which illustrates the pos-
sible memory states for a given data stream S.
If two input stream tuples arriving at the same
time instant match with each other (via a tu-
ple in fact relation F ), they are inserted into
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t = 5 endt = 5 begin 
t = 4 end 

X

Figure 2: Example of R Graph

a memory state2 in SA graph (see Figure 3).
The vertices of R graph and S graph represent
different possible window memory states at dif-
ferent time instants. The vertices of SA graph
represent the cases when two input stream tu-
ples arriving at the same time instant match
with each other. Edges are created between two
memory states of consecutive time instants and
represent decisions to move from one memory
state to the next. The weight for an (incom-
ing) edge in R (S) graph is calculated as the
total importance for all output tuples that can
be produced by the tuples in the corresponding
memory state (excluding the tuple arriving in
this stream at the current time instant) that
match the tuple arriving in the other stream
at the current time instant. For presentation
clarity, only non-zero edge weights along the
optimal path and the semantic load shedding
path (shown for comparison) are shown in the
figures. The weight for an (incoming) edge in
SA graph is the importance of the output tuple
produced by the pair of the matching stream
tuples (via F ) in the corresponding memory
state.

Different window memory states are possible

2In fact, no memory/window is involved for SA

graph. Using name “memory state” is just for
consistency.

at each time instant based on previous window
states and the following possible decisions when
a new stream tuple r(t) enters the system: (1)
the window (memory) is not full and r(t) is
admitted; (2) the window is full and r(t) re-
places a non-expired tuple; (3) join memory is
full or not full and r(t) is not admitted. Next
states are constructed from previous states and
these decisions. Recall that we apply the ea-
ger re-evaluation approach for expired tuples.
Hence, expired tuples are always removed from
the window at the beginning of each time in-
stant before a new tuple is admitted.

In the following discussion, let M denote
the (total) join memory size, m denote the
tuple lifetime, and N denote the length of a
(archived) data stream. In our example, we
have stream length N = 6, total memory M =
4, and tuple lifetime m = 4. Since we have two
data streams, each stream has a window (mem-
ory) size of M/2 = 2. Recall that the format of
a tuple in a data stream is <ts, sch, imp> and
the format of a tuple in the fact relation is <R
sch, S sch, active-time interval>, assuming no
irrelevant attributes in the fact relation or any
data stream.

Assume stream R contains the following tu-
ple sequence: <0, 1, 5>, <1, 0, 1>, <2, 1, 4>,
<3, 0, 8>, <4, 2, 3>, <5, 5, 2>; stream S con-
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(r(2), s(5)) => <5, 1, 5, 3> 
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t = 2 begin 
t = 1 end 
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t = 2 end 
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∅ X

t = 0 begin 

1 2 6

Figure 3: Example of S Graph and SA Graph

tains <0, 1, 1>, <1, 3, 5>, <2, 3, 2>, <3, 8,
6>, <4, 3, 4>, <5, 5, 3>; and relation F con-
tains tuples <0, 3, [-1, ∞)>, <1, 5, [-1, ∞)>,
<0, 8, [-1, ∞)>, <4, 5, [-1, ∞)>, <1, 3, [-1,
5)>, <5, 8, [3, ∞)>. Initially, relation F con-
tains five tuples with active-time interval [-1,
∞), i.e., the tuples are active before the query
starts and remain active until they are deleted.
At time t = 5, tuple <1, 3, [-1, ∞)> is deleted,
producing <1, 3, [-1, 5)>. At time t = 3, tuple
<5, 8, [3, ∞)> is inserted.

The start vertex represents the empty mem-
ory state for the window before input stream
tuples arrive. The stop vertex represents the
state indicating all input stream tuples have
been considered. The pre-filtering effect of fact
relation F on the data streams is reflected in
each of these join memory state graphs. The
number of memory states at each time instant
varies, and the number of stream tuples in each
memory state also varies.

Input tuples from both data streams arrive
at discrete time instants, beginning at t = 0.
Each stream tuple u is assigned a timestamp
ts as it arrives in the steam. We assign the
timestamp as the discrete time instant at which
the tuple u arrives in the stream and calculate
the expiration time as u.ts + m.

The processing of a star-streaming join in-

crementally constructs the join memory state
graphs at each time instant t when stream tu-
ples r(t) and s(t) arrives in their data streams.
Only active tuples in fact relation F at time t
are considered in the join.

For our example, at time t = 0, r(0) matches
with a tuple in F , but s(0) does not. In R
graph, a memory state from Start is created,
and r(0) is added to the memory state at t = 0
(end) based on Decision (1). A memory state
in S graph is also created although s(0) is not
added into it because of Decision (3).

At time t = 3 (end), memory states in S
graph are created from the memory state at t
= 2 (end). Since s(3) matches with a tuple in
F , the window (memory) at state t = 2 (end)
is full, and none of the tuples have yet been ex-
pired, the new memory states for t = 3 (end)
are created based on Decision (2) or (3) (repre-
senting all feasible decisions in this case). Also,
since r(3) and s(3) match with each other via
a tuple in F , a new memory state containing
r(3) and s(3) is created in SA graph at t = 3
(end).

Note that no duplicate memory states should
be created at any time instant. If a required
memory state has already been created at a
time instant, only necessary new edges are
added.
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An edge weight in R (S) graph can be calcu-
lated by summing the importance values of the
new output tuples created by all tuples (exclud-
ing the tuple arriving in this stream at that par-
ticular time instant) in the memory state that
match (via F ) the tuple arriving in the other
stream at that particular time instant. For ex-
ample, since r(1) in memory state {r(1), r(3)}
at time t = 3 (end) matches with s(3) via a tu-
ple in F , an output tuple (r(1), s(3)) = <3, 0, 8,
1> with importance 1 will be produced. Hence
the value 1 is added to the weight for each
edge directed to memory state {r(1), r(3)} in R
graph. Note that, although r(3) also matches
with s(3) via a tuple in F , the importance of
the output tuple produced is assigned to the
weight of the corresponding edge in SA graph.

An approximation result to the star-
streaming join consists of the output tuples
generated along a path from Start to Stop in
each R graph and S graph and the output
tuples represented by the path in SA graph.
The total importance of the approximation re-
sult is the sum of the total edge weights of
the paths selected for the approximation in the
three graphs. The optimal approximation re-
sult of the star-streaming join is obtained by
choosing the path with the largest total weight
in each graph. The memory states along the
chosen path record how the query result is cal-
culated.

For our example in Figures 2 and 3, the ex-
act result for the star-streaming join contains
15 output tuples with a total importance of 43.
The optimal approximation result obtained by
our algorithm contains 11 output tuples with
a total importance of 38. The optimal approx-
imation result obtained by the semantic load
shedding approximation technique in [7] con-
tains 12 output tuples but has a total impor-
tance of 34. Clearly, our algorithm produces
a better approximation result to the query in
terms of the achieved total importance.

3.1.2 Algorithm Description

In our following optimal star-streaming join ap-
proximation algorithm, the join memory state
graphs are generated and the optimal approxi-
mation path is found in each graph.

In fact, the algorithm consists of three

smaller algorithms: ComputeMaxImportance,
ComputeSAImportance, and DisplayMemo-
ryStates. Algorithm ComputeMaxImportance
constructs R (S) graph and computes the total
importance/weight for the optimal (with the
largest total weight) path in the graph. It needs
to be invoked twice: once for constructing R
graph and another for constructing S graph.
During its execution, it invokes three functions:
FindQualifiedFactTuples, GetWeight, and In-
sertState. Function FindQualifiedFactTuples
essentially finds the set of tuples in fact rela-
tion F that match with a given stream tuple.
Function GetWeight calculates the edge weight
for a given memory state. Function InsertState
inserts a new state into the join memory state
graph for a data stream. Algorithm Compute-
SAImportance constructs SA graph and com-
putes the total importance/weight on the path
in the graph. If the memory states of the opti-
mal paths in graphs are to be displayed, Algo-
rithm DisplayMemoryStates is invoked for each
graph after the graphs have been constructed.

In the discussion of the above algorithms,
the following notation is used. Variable MS[t ]
holds the memory states available at time in-
stant t. Variable field MI of a memory state is
the total importance/weight of the current op-
timal path from the start vertex to this state.
Variable field prev of a memory state points to
the previous memory state in the current opti-
mal path. StopVertex and StartVertex are spe-
cial memory states that do not contain stream
tuples but signify the start and end of the
graph. For simplicity, we assume that streams
R and S are of the same length. We also as-
sume that relation F is small enough so that
the fast CPU model can be applied with a se-
quential scan.

The details of the algorithms and functions
are given below.

Algorithm 3.1 : ComputeMaxImportance
Input: Data stream R, data stream S, and relation F .
Output: StopV ertex for R graph and the total impor-
tance of the optimal path.
Method:
//when invoked for stream S, swap R with S
1. t = 0, MS[t] = �;
2. insert Start into MS[t] as StartVertex ;
3. while t < length of stream R
4. MS[t+1] = �;
5. QTuples = FindQualifiedTuples(s(t), F , t);
6. if t= 0 then
7. create empty memory state y from StartVertex
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8. y.MI = GetWeight(y, QTuples);
9. if r(t) has a valid match in relation F then

10. insert r(t) into y;
11. end if
12. y.prev = StartVertex ;
13. insert y into MS[t+1];
14. else
15. ∀ memory state x ∈ MS[t ]
16. let yy be a copy of x;
17. remove expired stream tuple in yy if any;
18. create copy of yy as new memory state y;
19. y.MI = x.MI +

GetWeight(y, QTuples);
20. if window for yy is not full and r(t)

has a valid match in relation F then
21. insert r(t) into y;
22. end if
23. y.prev = x;
24. InsertState(y, MS[t + 1])
25. if window for yy is full and r(t) has

a valid match in relation F then
//generate memory states by replacing each
//tuple in yy with r(t)

26. ∀ stream tuple z in yy
27. create copy of yy as new memory state y;
28. remove z from y;
29. y.MI = x.MI +

GetWeight(y, QTuples);
30. insert r(t) into y;
31. y.prev = x;
32. InsertState(y, MS[t + 1])
33. end if
34. end if
35. t = t + 1;
36. end while
37. MS[t] = {Stop} as {StopVertex};
38. ∀ memory state x ∈ MS[t - 1]
39. if x.MI ≥ StopVertex.MI then
40. StopVertex.MI = x.MI;
41. StopVertex.prev = x;
42. end if
43. return StopVertex, StopVertex.MI.

In Algorithm 3.1, lines 1 - 2 initialize relevant
variables and create the start vertex. Lines 3
- 36 construct the memory states between the
start and stop vertexes. Line 5 finds the tu-
ples in fact relation F that match with the cur-
rent stream tuple s(t). Lines 6 - 13 construct
a memory state directly from the start vertex.
Lines 14 - 34 construct memory states at time
t+1 from each memory state at time t. Line 17
removes expired stream tuple(s). Lines 20 - 22
admit stream tuple r(t) into the window based
on Decision (1). The new memory state con-
taining r(t) is created in lines 23 - 24. However,
if r(t) has no match in relation F or the win-
dow is full, a new memory state is created by
copying non-expired tuples from previous mem-
ory state x in lines 18 - 24 based on Decision
(3). Lines 25 - 33 construct new memory states
based on Decision (2). The stop vertex is con-
structed in lines 37 - 42.

Function 3.1 : InsertState
Input: New memory state ms and available memory

states MS[t + 1] at the time instant t + 1.
Output: Revised memory states at time t + 1.
Method:

//determine the path of largest importance
1. if ∃ memory state z ∈ MS[t + 1] where set

of tuples in z = set of tuples in ms then
2. if ms.MI > z.MI then
3. z.MI = ms.MI;
4. z.prev = ms.prev;
5. end if
6. else
7. insert ms into MS[t + 1];
8. end if

Function 3.1 determines if the new memory
state is a duplicate. If the new state is a dupli-
cate and has a larger MI than the current state,
the edge directed to this state is updated to re-
flect a better path. If the new state is not a
duplicate, the state is inserted into the graph
in line 7.

Function 3.2 : GetWeight

Input: Memory state ms (excluding the tuple arriving
in the corresponding stream at the current time instant)
and a set QTuples of matched tuples (with augmenta-
tion) in F .
Output: Edge weight for an edge directed to ms.
Method:
1. EdgeWeight = 0;
2. ∀ stream tuple x in ms
3. ∀ tuple y in QTuples
4. if x matches with y and y.begin ≤ x.ts

and x.ts < y.end then
5. if x.imp > y.imp then
6. EdgeWeight = EdgeWeight + y.imp;
7. else
8. EdgeWeight = EdgeWeight + x.imp;
9. end if

10. end if
11. return EdgeWeight.

Function 3.2 calculates the total importance
of output tuples generated by stream tuples in
ms. If ms is empty, it returns 0. Line 4 checks
if the current stream tuple matches with the
current active/valid relation tuple. Lines 5 - 9
determine the importance of the output tuple
generated by the current stream tuple and a
matching stream tuple from the other stream
via the current relation tuple and then add the
importance to the edge weight.

Function 3.3 : FindQualifiedFactTuples
Input: A stream tuple st, relation F , and time t.
Output: Active tuples (augmented with st.imp) in F
that matches with st.
Method:
1. QTuples = �
2. ∀ tuple x in relation F
3. if x.begin ≤ t and x.end > t then
4. if x matches with st then
5. insert <x, st.imp> into QTuples;
6. end if
7. end if
8. return QTuples.

Function 3.3 finds all tuples in F that match
with st and augments them with st.imp. Only
active/valid tuples in F are considered.

10



Algorithm 3.2 : ComputeSAImportance
Input: Data stream R, data stream S, and relation F .
Output: StopV ertex for SA graph and the total im-
portance of its path.
Method:
1. t = 0;
2. set x as StartVertex and x.MI = 0;
3. set y.prev = x and y.MI =0;
4. while t < stream length
5. if r(t) matches with s(t) via F then
6. create memory state y from x for r(t) and s(t);
7. if r(t).imp > s(t).imp then

8. y.MI = x.MI + s(t).imp;
9. else

10. y.MI = x.MI + r(t).imp;
11. end if
12. y.prev = x;
13. x = y;
14. end if
15. t = t + 1;
16. end while
17. StopVertex.prev = y;
18. StopVertex.MI = y.MI;
19. return StopVertex, StopVertex.MI.

Algorithm 3.2 checks if r(t) and s(t) match
with each other via an active tuple in relation
F for every time instant t. If so, a memory
state in the SA graph is created.

Algorithm 3.3 : DisplayMemoryStates
Input: StopV ertex of a graph.
Output: The memory states on the optimal path
traced from StopV ertex are displayed.
Method:
1. set x = StopVertex.prev
2. while x 	= StartVertex
3. display x
4. x = x.prev
5. end while.

Algorithm 3.3 backtracks through the graph
following the prev field of each vertex, display-
ing the optimal path in the graph.

3.2 Online Approximation Algo-
rithms

An offline approximation algorithm can obtain
the optimal approximation result. However,
it requires prior knowledge about the input
data streams. Hence, it is suitable for joining
archived data streams. In many applications,
online data stream processing is needed. In
such a case, heuristics are typically employed
to decide which stream tuples to retain or drop
during query processing. We extend the heuris-
tics suggested in [13] to handle star-streaming
joins (n = 2) and study the effectiveness of the
algorithms applying these heuristics.

An online approximation algorithm greed-
ily retains tuples with higher priorities and
evicts tuples (including the new stream tu-
ple) with lower priorities when load shedding
is required. For star-streaming join process-
ing, a new stream tuple that does not match

with an active tuple in fact relation F is al-
ways dropped whether the window is full or
not. We assume that such a tuple has a pri-
ority value −1, indicating an immediate drop
(pre-filtering). For a stream tuple r(t) that
has a valid match in F at time t, a priority
P (r(t)) is assigned to it based on its impor-
tance (r(t).imp), its matching probability with
the opposite stream (mprob(r(t))), and its ex-
piration time (i.e., expr(r(t)) = r(t).ts + m).
Hence,

P (r(t)) =

f(r(t).imp, mprob(r(t)), expr(r(t))), (7)

where f() is some function and mprob() is es-
timated.

When such a tuple arrives in the stream and
the window is full, a heuristic-based algorithm
will examine the priorities of tuples in the win-
dow and the new tuple. It drops the tuple with
the lowest priority.

For our star-streaming joins, we also ap-
ply the following rule to perform dynamic pre-
filtering. For an existing stream tuple t(i) in
the window, its priority is reset to −1 at time
t if the following condition holds:

P (r(i)) = −1 if max{f.end | f ∈ F

∧ f is a valid match for r(i)} ≤ t . (8)

Under the fast CPU model, the match (via F )
of r(i) with tuples in the window for the op-
posite data stream has already been examined.
Condition (8) indicates that all valid matches
in F for r(i) have been deleted at or before
time t, implying that r(i) will never be able to
match any stream tuple arriving in the oppo-
site stream via F from now on. Therefore, r(i)
is useless and should be dropped immediately
(i.e., having −1 priority).

Different heuristics calculate P (r(t)) in (7)
differently, i.e., applying different f()’s. We
consider the following four heuristics. Note
that the filtering rule in (8) is always applied
together with each of these heuristics.

Static Importance Heuristic

In the Static Importance heuristic (SIMP), the
priority is given by the stream tuple’s impor-
tance:

P (r(t)) = r(t).imp.
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This heuristic chooses a stream tuple with a
higher importance to retain in hope that if the
tuple produces an output tuple with a tuple
from the opposite stream via fact relation F ,
the resulting output tuple will have a higher
importance. Ties among the tuples with the
same lowest priority are broken by dropping
the oldest tuple with the lowest priority.

Static Importance Probability Heuristic

The Static Importance Probability heuristic
(SIMPPROB) assigns the priority to a new
stream tuple as the product of the tuple impor-
tance and the number mn() of matches (via F )
in the opposite window:

P (r(t)) = r(t).imp ∗ mn(r(t)).

In other words, mprob(r(t)) in (7) is estimated
by mn().

Ties among tuples with the lowest priority
are broken by dropping the tuple with the low-
est importance. Ties among those tuples with
the lowest priority and lowest importance are
broken by dropping the tuple with the fewest
matches. Ties between tuples with the lowest
priority, lowest importance and fewest matches
are broken by dropping the oldest tuple.

Dynamic Importance Probability
Heuristic

The Dynamic Importance Probability heuris-
tic (DIMPPROB) assigns the priority to a
new stream tuple as calculated in heuristic
SIMPPROB. However, this priority is then
re-calculated at each time instant to reflect
the changing number of matches in the op-
posite window, i.e., mn() is dynamically re-
calculated. Priority ties are broken in the same
way as SIMPPROB.

Dynamic Gain Loss Heuristic

The Dynamic Gain Loss heuristic (DGL) as-
signs the priority to a new stream tuple in
the same way as heuristic SIMPPROB. How-
ever, the priority is cumulatively re-calculated
at each time instant to reflect the changing
number of matches in the opposite window and
the lifetime of the tuple. If the tuple produces
an output tuple at a time instant t, the priority

is increased by the product of the tuple impor-
tance, the number of matches in the opposite
window and the lifetime of the tuple as:

P (r(i)) = P ′(r(i)) + [ r(i).imp ∗ mn(r(i))

∗ (expr(r(i)) − t) / α) ],

where α is a constant and P ′(r(i)) is the pri-
ority from the previous time instant. If the
tuple does not produce any output at a time
instant t, the priority is decreased by a con-
stant amount β, that is not dependent on the
tuple’s age:

P (r(i)) = P ′(r(i)) − β.

Note that P (r(i)) is set to 0 if a negative value
is obtained on the right hand side. Priority
ties are broken in the same way as heuristic
SIMPPROB.

4 Experiments

Experiments were conducted to evaluate the
performance of our offline and online algo-
rithms. The typical experimental results are
reported in this section.

4.1 Experiment Setup

We use the same notations as in Section 3.1.1
where the memory size is M , the window
(memory) size for each stream is M/2, each
stream tuple has a lifetime m, the stream
length is N , and the fact relation size is |F |.

We use OSSJ to denote our offline star-
streaming join optimal approximation algo-
rithm. Since no existing load shedding tech-
niques can be directly applied to star-streaming
joins, for the comparison, we extended two pop-
ular approximation techniques, i.e., the seman-
tic load shedding and the random load shed-
ding, to handle the star-streaming joins. We
use SJA-S and RAND-S to denote these two ex-
tended techniques, respectively, in the follow-
ing discussion. As a reference base, the exact
computation (denoted by EXACT), assuming
the memory is large enough (i.e., M = 2 ∗ m)
to compute the exact result of a star-streaming
join, is also included in the experiments. For
the online algorithms using the relevant prior-
ity heuristics together with special pre-filtering
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rules for star-streaming joins, we use the pri-
ority heuristic names followed by ‘-S’ to de-
note the corresponding algorithms. For exam-
ple, the online algorithm using priority heuris-
tic SIMP is denoted by SIMP-S.

The data streams for the experiments were
generated as follows. Data stream R was gen-
erated using the 1.0 zipf distribution, and data
stream S was generated using the uniform dis-
tribution. Uncorrelated importance values for
the data streams were generated in such a way
that smaller importance values were assigned
to tuples occurring frequently while larger im-
portance values were assigned to tuples occur-
ring infrequently. Tuples in fact relation F were
generated by the uniform distribution.

The experimental programs were imple-
mented in C++. The platform used in our
experiments was a 1.80 GHz Intel R© Celeron
Toshiba Satellite machine with 512 MB RAM
running Windows R© XP.

4.2 Evaluation of Offline Algo-
rithm

One set of experiments were conducted to eval-
uate the efficacy of our offline algorithm. Fig-
ure 4 shows the comparison of the total impor-
tance of typical query results obtained by our
algorithm OSSJ, SJA-S and RAND-S. The ex-
act results are also included as a reference base.
In the experiments, M varies while m = 10, N
= 5000, and |F | = 250.
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Figure 4: Efficacy Comparison for Offline Approxi-
mation

From the figure, we can see that the approxi-
mation error decreases as the join memory size
increase for all techniques. We observed from

our experiments that, although SJA-S pro-
duces larger query results than OSSJ, the latter
produces query results with a greater impor-
tance than the former for all memory sizes. For
example, for M = 4, the query result obtained
by OSSJ has the importance of 4107, while the
query result obtained by SJA-S has the impor-
tance of 3797. The query result size for OSSJ
is 2184, and the query result size for SJA-S is
2221. This demonstrates that the objective to
maximize the query result size in SJA-S may
not lead to an optimal query result of the high-
est importance. As memory size increases SJA-
S converges upon OSSJ, and both techniques
converge upon EXACT quickly. Both OSSJ
and SJA-S outperform RAND-S for all mem-
ory sizes since RAND-S does not approximate
the query result based on its size or its impor-
tance.

Pre-filtering data streams utilizing the fact
relation is a key strategy adopted in our al-
gorithm OSSJ to improve its efficiency. To ob-
serve the pre-filtering effect on the performance
of OSSJ, we conducted another set of experi-
ments comparing the running times of the al-
gorithm with and without pre-filtering. Fig-
ure 5 shows the comparison result. In the ex-
periments, N = 5000, M = 10, m = 10, and
|F | varies. Each running time is the average of
three executions.
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Figure 5: Performance Effect of Pre-filtering

From the figure, we can see that the algo-
rithm with pre-filtering outperforms the one
without pre-filtering. Its performance improve-
ment increases as the fact relation size de-
creases since the pre-filtering power increases.
Fortunately, this is typically the case in reality.
The fact relation typically keeps information on
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a small number of value combinations from two
joining data streams.

4.3 Evaluation of Online Algo-
rithms

We also conducted a set of experiments to eval-
uate the efficacy of the four online heuristic-
based algorithms. We compare the importance
of query results obtained from them with those
obtained from RAND and EXACT. In the ex-
periments, N = 5000, m = 50, |F | = 250, and
M varies.

Figure 6 shows the comparison result. From
the figure, we can see that DGL-S has the best
performance since it takes the tuple impor-
tance, the number of matches in the opposite
stream window and the tuple lifetime into con-
sideration. DIMPPROB-S and SIMPPROB-
S have a very similar performance. They
generally outperform SIMP-S since both tech-
niques take the tuple importance and the num-
ber of matches in the opposite stream window
into consideration while SIMP-S does not con-
sider the number of matches from the oppo-
site stream window. All the above algorithms
significantly outperform RAND-S (especially
when memory size is small) as the latter does
not take the tuple importance, the number of
matches of the opposite stream or the tuple life-
time into account. As memory size increases all
algorithms converge upon EXACT.
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Figure 6: Efficacy Comparison for Online Approxi-
mation

5 Conclusions

This paper examines the issues for processing
star-streaming joins, which join multiple data

streams with one fact relation. These queries
are processed based on the semantics of sliding
window joins over data streams. When system
resources are limited, a load shedding approx-
imation is applied. The objective function of
the approximation is to maximize the total im-
portance of a query result. One offline opti-
mal approximation algorithm and four online
heuristic-based approximation algorithms that
aim to achieve this objective are presented. A
pre-filtering strategy is incorporated into the
algorithms to improve efficiency. Mechanisms
to handle dynamic fact relations are intro-
duced. Experimental results demonstrate that
the algorithms discussed in this paper outper-
form some popular techniques with extensions
for star-streaming joins.

Future work in this area includes investigat-
ing techniques to reduce the size of a large fact
relation without losing key information, devel-
oping special access methods for a fact relation
supporting star-streaming joins, studying other
types of queries joining multiple data streams
with conventional relations, and examining sys-
tem issues in existing DBMSs to support data
stream processing.
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