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Abstract

There is an increasing demand to process
emerging types of queries, such as progressive
queries (PQs), from numerous contemporary
database applications including telematics, e-
commerce, business intelligence, and decision
support. Unlike a conventional query, a pro-
gressive query is formulated in several steps,
i.e., consisting of a set of inter-related step-
queries (SQ). A user formulates their SQs on
the fly based on the results returned by the
previous SQs. Processing such queries pro-
vides performance improvement opportunities
for a database management system. In this
paper, we study the efficient processing of a
special type of PQ, called a monotonic linear
progressive query (MLPQ). We present a tech-
nique to process such PQs based on dynam-
ically materialized views. The key idea is to
create a superior-relationship graph for step-
queries from historical PQs, which can be used
to estimate the benefit of materializing a cur-
rent step-query. The materialized views are
then used to improve the performance of fu-
ture step-queries. Algorithms and strategies
to create and maintain a superior-relationship
graph, dynamically select materialized views
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(step-queries), and the search for a material-
ized view to process a given step-query are dis-
cussed. Experimental results demonstrate that
our proposed technique is quite promising in
efficiently processing this type of progressive
query.
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alized view

1 Introduction

In recent years, we have witnessed the emer-
gence of many contemporary database applica-
tions such as telematics, e-commerce, business
intelligence, and decision support. Such data-
intensive applications raise new challenges to
process advanced types of queries [6, 14, 15, 18].
A new type of query, called the progressive-
query (PQ), was presented in [21]. It was ob-
served that, in many applications, users rou-
tinely perform queries step by step. In each
step, the query uses the result returned by
the previous step. The query result is nar-
rowed down gradually according to the user’s
demands. Hence, unlike a conventional query,
a PQ is formulated in several steps, i.e., consist-
ing of a set of inter-related step-queries (SQs).
A user formulates his/her SQs on the fly based
on the result returned by previous SQs.

As an illustration, let us assume that a user
wants to search papers from the IEEE digi-
tal library. He or she first selects papers that
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are in the data mining area and published in
2009. We can imagine how large a set of pa-
pers could be returned. The user then adds a
condition to narrow down the results to only
those papers that are related to mining asso-
ciation rules. The result set is still very large.
Thus the user further narrows down the results
by adding another condition to search papers
authored by Zhu.

The previous example demonstrates two
main features of a progressive query. First, a
progressive query cannot be known beforehand.
Each step-query is formulated dynamically by
the user. The user needs to know the result(s)
of the previous step-query(ies) to determine the
next step query. Second, a progressive query is
frequently used to access large data sets, and
the intermediate result returned from a step-
query may not be held in memory.

These characteristics of progressive queries
raise new challenges to process them efficiently.
For example, because of the second characteris-
tic, an efficient access method such as an index-
based one is desired. However, many conven-
tional indexes (e.g., the B+-tree [5, 16]) that
are typically created on base relations may not
be directly applicable because a step-query that
is not for the first step of a progressive query
uses the intermediate result(s) from the previ-
ous step-query(ies). To tackle this challenge,
an effective collective index technique was in-
troduced in [21]. The main idea of this tech-
nique is to construct a special index structure
to allow a collection of member indexes on an
input relation of a step-query to be efficiently
transformed into indexes on the result relation,
which can be used to speed up the subsequent
step-queries. This work was the first to address
query processing issues for progressive queries.

In this paper, we present a novel materi-
alized view technique for efficiently process-
ing progressive queries. The key idea is to
dynamically construct a superior-relationship
graph for step-queries from the progressive
queries that have been executed. The underly-
ing database management system (DBMS) uses
the graph to estimate the benefit of material-
izing the current step-query for a given pro-
gressive query. If it is beneficial, the result of
the current step-query is materialized as a view.
The materialized views are used to optimize the

step-queries of future progressive queries. Al-
gorithms/strategies to create and maintain a
superior-relationship graph, dynamically select
materialized views (step-queries), and search
for a materialized view to process a given step-
query are presented. Although applying ma-
terialized views to speed-up query processing
has been well studied [4, 7, 8, 9, 20, 22, 11, 1,
17, 19], adopting a technique based on dynami-
cally materialized views for progressive queries
is our novel idea. Dynamically determining the
set of materialized views (step-queries) based
on continuously available new step-queries for
progressive queries is one of the main charac-
teristics of our technique. To our knowledge,
no similar work has been reported in the liter-
ature.

The other related work includes query pro-
cessing for adaptive (dynamic) query process-
ing and optimization [10, 12, 13]. The idea in
adaptive query optimization is to exploit in-
formation that becomes available at query run
time and adapt the query plan to changing en-
vironments during execution. While the adap-
tive query optimization problem may be seen
as progressive (performed at compile time and
run time), queries are however formulated at
once (non-progressive).

The remainder of this paper is organized as
follows. The preliminaries and properties of
progressive queries are introduced in Section
2. The main PQ processing procedure and
relevant algorithms to construct the superior-
relationship graph and dynamically materialize
views are presented in Section 3. Experimen-
tal results are reported in Section 4. Section 5
summarizes the conclusions and future work.

2 Preliminaries

In this paper, we focus on discussing how to
apply a dynamic materialized view technique
to process a specific type of progressive query,
called the monotonic linear progressive query.
In this section, an overview of different types
of progressive queries is given. Especially, the
monotonic linear progressive query is intro-
duced. A superior-relationship graph that is
used in our technique is defined. The main
properties of the monotonic linear progressive
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query that are useful in our technique are also
discussed.

2.1 Types of progressive queries

A progressive query (PQ) is formulated in sev-
eral steps. Each step, referred to as a step-
query (SQ), is executed over one or more rela-
tions and returns one relation as a result. Re-
sult(SQ) and Domain(SQ) represent the result
relation of the SQ and the set of relations on
which the SQ is executed, respectively. A step-
query can execute on either the result relation
returned by the previous step-query or other
external base relations. [21] defines three dif-
ferent types of progressive queries: single-input
linear PQs, multiple-input linear PQs and non-
linear PQs.
Type 1: single-input linear PQs. A single-

input linear progressive query has the follow-
ing characteristics. Each SQ in such a PQ uses
a single relation as its input. If the SQ is the
initial (first) step-query, then the input is an
external relation. Otherwise, the input is the
result relation returned by its previous SQ. The
relationship among the step-queries of such a
progressive-query demonstrates a linear struc-
ture.

Type 2: multiple-input linear PQs. A
multiple-input linear progressive query has the
following characteristics. At least one SQ takes
more than one relation as its input. If this
SQ is the initial step-query, its domain includes
multiple external relations. Otherwise, its do-
main includes at least one external relation.
Each step uses the result returned by its previ-
ous step-query. Hence, the relationship among
step-queries is also linear.

Type 3: non-linear PQs. A non-linear pro-
gressive query has the following characteristic:
at least one SQ has the results returned by
more than two other SQs as inputs. Thus the
relationship among step-queries demonstrates
a non-linear structure.

In this paper, we consider an extended type
of single-input linear PQ that allows the initial
step-query to have multiple external relations
(i.e., a special type of multiple-input linear PQ
where multiple inputs are allowed only for the
initial step-query). Since the result size of each
step-query is monotonically decreasing as the

processing of the query progresses, we call this
type of progressive query as the monotonic lin-
ear PQ.

2.2 Superior-relationship graph

In our dynamic materialized view technique, we
utilize a so-called superior-relationship graph
to determine if the result of a step-query under
consideration should be materialized as a view.
A superior-relationship graph captures the su-
perior (or inferior) relationships among the
step-queries for historical progressive queries
(i.e., the PQs that have completed their exe-
cution).

Let sq1 and sq2 be two SQs belonging to
one or two historical PQs. The superior re-
lationship from sq1 to sq2 is defined as follows.
For every t2 in Result(sq2), if there exists t1
in Result(sq1) such that t2 can be completely
derived from t1, we say there is a superior re-
lationship from sq1 to sq2 where sq1 is called a
superior of sq2 and sq2 is called an inferior of
sq1 .

Consider the following example. Let
Result(sq1)={<a1, a2, a3>, <b1, b2, b3>, <c1,
c2, c3>}, Result(sq2)={<a1, a3>, <b1, b3>},
and Result(sq3)={<a1, a4>}. Since any t2
in Result(sq2) can be derived from a tuple in
Result(sq1), sq1 is a superior of sq2 (i.e., sq2 is
an inferior of sq1). However, a4 of <a1, a4> in
Result(sq3) cannot be derived from any tuple
in Result(sq1). Hence, there is no superior or
inferior relationship between sq1 and sq3.

Intuitively, a superior relationship indicates
that, if we select the superior SQ as a materi-
alized view, its inferior SQ can be evaluated by
utilizing this materialized view. Hence each su-
perior relationship represents a benefit case for
the superior SQ to be materialized. However,
there is an exception. When two SQs with a
superior relationship belong to the same PQ,
the inferior SQ usually does not directly use
the result of its superior SQ unless the latter
is its immediate previous step. We define a
special graph, called the superior-relationship
graph (SRG), to capture those useful superior
relationships among SQs for the historical PQs.

An SRG is defined as a digraph with three
components G = (V,E,B), where V is a set
of nodes representing the set of SQs in the
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given historical PQs; E is a set of directed
edges <sq′, sq′′> representing the superior re-
lationships from step-query sq′ to step-query
sq′′ with the constraint that either sq′ and sq′′

do not belong to the same PQ or sq′ is the im-
mediate previous step of sq′′; B is a set of pairs
< n, id > indicating the identifier id of the PQ
that the SQ represented by node n belongs to.
Note that the benefit of materializing the re-
sult of an SQ represented by a node in an SRG
can be measured by the number w of out-going
edges that n has. We call w the weight of n,
which can be calculated for a given SRG.

Example 1. Given the following four relations:

PAPER(Pid, Pname, FirstAuthor, PublishYear),
AUTHOR(Aid, Afname, Alname, Area),
EDITOR(Eid, Efname, Elname, Area),
REVIEW(Eid, Pid, Date).

Let us consider the following three PQs.

Progressive Query 1:
sq1: select Pname, PublishYear, Alname

from PAPER, AUTHOR
where FirstAuthor = Aid;

sq2: select Pname, Alname
from Result(sq1)
where PublishYear = 2009;

sq3: select Pname
from Result(sq2)
where Alname = ’Smith’.

Progressive Query 2:
sq4: select Elname, Pname, PublishYear

from PAPER, EDITOR, REVIEW
where PAPER.Pid = REVIEW.Pid

and EDITPR.Eid = REVIEW.Eid;
sq5: select Elname, Pname, PublishYear

from Result(sq4)
where PublishYear > 2008;

sq6: select Pname
from Result(sq5)
where PublishYear = 2009.

Progressive Query 3:
sq7: select Pname, PublishYear

from PAPER
where PublishYear > 2008;

sq8: select Pname
from Result(sq7)
where PublishYear = 2009.
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Figure 1: Superior-relationship graph of Example 1

Each PQ consists of two or three SQs. To con-
struct the superior-relationship graph for the
SQs in these PQs, we need to identify V , E
and B. V={sq1, sq2, sq3, sq4, sq5, sq6, sq7,
sq8}. For any pair of nodes in V , if they have
a superior relationship and they either do not
belong to the same PQ or are consecutive steps
of the same PQ, there is an edge between them
in the graph. For instance, < sq1, sq2 > and
< sq1, sq8 > are two edges in the graph. Note
that there is no edge from sq1 to sq3 although
they have a superior relationship. This is be-
cause sq1 and sq3 belong to the same PQ, but
they are not two consecutive steps. For each
node (or SQ), we also associate the identifier of
the corresponding PQ with it. Figure 1 shows
the superior-relationship graph for these three
PQs. From the figure, we can see that three
SQs would benefit from materializing the re-
sult of sq1. The number of out-going edges for
a node v is the weight of v, which is not shown
in the figure. Clearly, the weights of the nodes
in an SRG can be calculated once the graph is
given.

2.3 Main properties of monotonic

linear PQs

As we will see, the following two properties
of the monotonic linear progressive queries
are useful in developing an efficient processing
technique.

Property 1: Result(sqi) w Result(sqj) if i<j
and sqi, sqj are two SQs ∈ the same PQ, where
w indicates that the right operand can be com-
pletely derived from the left one.
According to the definition, the current SQ
only uses the result relation returned by the
previous SQ. So if sqj is one of the subsequent
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SQs of sqi, any tuple in Result(sqj) must be
derivable from Result(sqi).

Property 2: Weight(sqi) ≥ Weight(sqj) if
i<j and sqi, sqj are two SQs ∈ the same PQ.
As defined earlier, the weight of an SQ is the
number of out-going edges in the SRG, which
represents the benefit of materializing the re-
sult of the SQ. Based on Property 1, sqi must
be a superior of sqj . As mentioned before,
we do not consider the superior relationships
between two non-consecutive SQs within the
same PQ when we construct the SRG. All the
other superior relationships (out-going edges)
for sqj must also be valid for sqi.

3 Dynamic materialized-

view-based PQ process-

ing

To efficiently process progressive queries, we
introduce a dynamic materialized-view based
processing procedure for PQs in Section 3.1.
Different strategies to create and update a
superior-relationship graph are discussed in
Section 3.2. Algorithms to dynamically ma-
terialize views (step-queries) and maintain or
replace existing views are discussed in Section
3.3.

3.1 PQ processing procedure

The view materialization techniques have be-
come very popular in recent years. The deci-
sion for view materialization is typically based
on statistic information such as access fre-
quency. Such techniques are often used in the
data warehouse domain [9, 20].

However, unlike a conventional query, a
PQ is formulated as several inter-related step-
queries. Each step-query cannot be known
beforehand. No one can predict what the
next step-query could be. Hence, there is
no pre-knowledge about future user (step)
queries when deciding view materialization.
This situation raises challenges to apply a
materialized-view-based technique to efficiently
process PQs.

To tackle the challenge, we propose a dy-
namic materialized-view-based approach to

processing PQs. Figure 2 depicts the process-
ing procedure. There are several components
involved in the procedure. The user submits
one step-query at each step for the current
progressive query (CPQ). The current step-
query (CSQ) is the one that is currently be-
ing processed in the system. The underlying
database management system (DBMS) coordi-
nates the PQ processing based on the dynamic
materialized-view approach. This DBMS has
all the typical modules such as the parser, cat-
alog, query optimizer and concurrency control
that a conventional DBMS has. However, these
modules are enhanced to handle a PQ based on
dynamically materialized views as follows. A
superior-relationship graph (SRG) is dynami-
cally constructed by the system. Initially, the
SRG is empty. When more and more com-
pleted PQs are dynamically added to it, it
grows larger and larger. This graph is used
to determine if materializing the result of the
CSQ is beneficial. If so, the CSQ is material-
ized as a view to be used for future step-queries.
If an SQ of the CPQ is chosen to be material-
ized, the CPQ is put into a set of used PQs
(SUPQ) rather than added into the SRG when
it is completed. The reason for this is that, if
one of the SQs of a PQ has been materialized,
the SQs of this PQ should not be used in the
SRG to estimate the benefits of materializing
another SQ. Otherwise, the benefits of a ma-
terialized SQ may be double counted. A PQ
in the SUPQ can be added to the SRG later
on when its materialized SQ is removed from
the set of the materialized views because of the
space limitation. The result of the previous SQ
(RPSQ) is always saved for the possible use of
evaluating the CSQ. The CSQ is evaluated ei-
ther on a materialized view (if beneficial) or
on the base relation(s) in the database (for the
first SQ) or on the RPSQ (for the SQ that is
not the first in a PQ). The set of the materi-
alized views (SMV) is maintained. Each ma-
terialized view mv is associated with its corre-
sponding step-query mv.sq as well as its access
frequency mv.freq (assuming mv itself repre-
sents the materialized view, or in other words,
the data).

The details of the PQ processing procedure
are given in the following algorithm.
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Figure 2: PQ processing procedure based on dynamic materialized views

Algorithm 3.1 : Dynamic materialized-view
based PQ processing procedure (DMVPQ)
Input: (1) current step-query (csq); (2) current pro-
gressive query (cpq); (3) set of materialized views
(smv); (4) result of previous step-query (rpsq); (5)
set of used progressive queries (supq); (6) superior-
relationship graph (srg).
Output: (1) the result of csq; (2) a revised srg; (3) a
revised cpq; (4) a revised smv; (5) a revised supq.
Method:
1. if the relation(s) in the FROM clause of csq

is (are) a base relation(s) then
/* csq is the 1st SQ, i.e., user starts a new PQ */

2. for each step-query sqi of cpq from the
2nd to the last (i.e., i ≥ 2) do

/* cpq is a completed previous PQ */
3. merge sqi and sqi−1, and

replace sqi by the merged query;
4. end for;
5. found=false;
6. for each sqi in cpq from the 1st to the

last (i.e., 1 ≤ i ≤ n) do
7. if sqi is found as mv.sq

for some view mv in smv then
8. found = true;
9. break;
10. end if;
11. end for;
12. if found = true then add cpq to supq;
13. else AddtoSRG(cpq, srg); end if
14. reset cpq as a new PQ with csq as the 1st SQ;
15. for each materialized view mv in smv do
16. if mv.sq is a superior of csq and

size of mv < size of Domain(csq) then
17. evaluate csq on mv;
18. mv.freq++;
19. break;
20. end if;
21. end for
22. if csq has not been evaluated on a view then
23. evaluate csq on base relation(s) in the database;

24. end if;
25. let mcsq = csq;
26. else /* csq is not the 1st SQ */
27. add csq to cpq;
28. merge csq with all its previous SQs in cpq

and save the merged query in mcsq;
29. for each materialized view mv in smv do
30. if mv.sq is a superior of mcsq and

size of mv.sq < size of rpsq then
31. evaluate mcsq on mv;
32. mv.freq++;
33. break;
34. end if;
35. end for;
36. if mcsq has not been evaluated on a view then
37. evaluate csq on rpsq;
38. end if;
39. end if;
40. if (Checkweight(srg,mcsq)) then
41. create a materialized view entry mv (including
the

result, query and access frequency) for mcsq;
42. AddtoSMV (mv, smv, srg, supq);
43. end if.

There are two phases in Algorithm 3.1. The
first phase (lines 1 - 39) evaluates the current
step-query and updates the SRG. The second
phase (lines 40 - 43) decides whether the result
of the current step-query should be material-
ized for the future use and updates the set of
materialized views.

In the first phase, the algorithm first checks
whether the given step-query (csq) is the first
(initial) step-query (line 1) of a PQ. If so, the
user is actually starting a new PQ and the pre-
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vious PQ (i.e., the one saved in cpq) is com-
pleted. In this case, the previous PQ in cpq
needs to be added into either the superior-
relationship graph srg or the set supq of used
progressive queries (lines 2 - 13). Lines 2 - 4
convert each step-query in cpq into one that is
operated directly on the base relation(s) in the
database, which can be then compared with
the (step-)queries for the materialized views.
If one of SQs in cpq is found to have been ma-
terialized, cpq is put into supq (lines 6 - 12).
Otherwise, cpq is added into srg by algorithm
AddtoSRG() (line 13). After having processed
the previous PQ in cpq, cpq is reset to a new
PQ with csq as the first (initial) SQ (line 14).
If there exists a materialized view whose asso-
ciated SQ is a superior of csq and whose size
is smaller than the size of the relation(s)1 in
Domain(csq), we evaluate csq on the materi-
alized view instead of its (base) operand rela-
tion(s) (lines 15 - 21). Otherwise, we evalu-
ate csq on its base operand relation(s) in the
database directly. If csq is not the first SQ,
cpq holds the previous SQs of the current PQ.
In this case, csq is added to cpq (line 27). To
check if csq can be evaluated on a materialized
view, it has to be converted into a step-query,
mcsq, on the base relation(s) in the database
(line 28). If there exists a materialized view
whose associated SQ is a superior of mcsq and
whose size is smaller than the size of the result
of the SQ directly preceding mcsq, we evaluate
mcsq on the materialized view (lines 29 - 35).
Otherwise, we evaluate csq on the result of its
previous step-query (rpsq) (line 37).

Note thatmcsq and csq have the same result.
However, the former is specified on the base
relation(s), while the latter is specified on the
(temporary) result of the previous step-query
(if not the first SQ). For example, given

sq1: σyear=2009(Song),
sq2: σcountry=USA(Result(sq1)),

the merged second step-query

msq2: σcountry=USA and year=2009(Song)

is on the base relation Song and obtained by
merging sq2 and sq1.

In the second phrase, the algorithm checks

1The Cartesian product is considered if there is more
than one relation.

to see whether materializing the current step-
query mcsq is beneficial by invoking an algo-
rithm Checkweight() (line 40). If so, it cre-
ates an entry for the relevant information on
the materialized view for mcsq and invokes an
algorithm AddtoSMV () to add the entry into
smv (lines 41-42).

The invoked algorithms: AddtoSRG(),
Checkweight() and AddtoSMV () are to be dis-
cussed in the following subsections.

3.2 Superior-relationship graph
construction

The superior-relationship graph is a key com-
ponent for our dynamic materialized view PQ
processing technique. It allows us to dynam-
ically accumulate information about executed
PQs and effectively use it to select material-
ized views for efficient execution of future PQs.
To efficiently construct such a graph, we uti-
lize a number of heuristic rules derived from
the properties of the monotonic linear PQs that
were discussed in Section 2.3.

We present two constructing algorithms:
generating-based and pruning-based. The for-
mer automatically generates as many other su-
perior (inferior) relationships as possible once
one is found, while the latter prunes as many
other impossible cases as possible once a supe-
rior (inferior) relationship is not found between
two nodes. Both can significantly reduce the
cost for testing the existence of superior (infe-
rior) relationships among nodes.

An SRG starts from an empty one and is
constructed in an incremental way as more and
more PQs are added into the graph gradually.
An isolated new PQ npq can be represented by
a set of nodes (one for each SQ in npq), a set of
edges (connecting interrelated SQs in npq) and
a set of identifiers (one for each SQ in npq).
To add npq into the SRG, the above nodes,
edges and identifiers are inserted first. The sys-
tem then finds the set of edges representing the
superior or inferior relationships between the
(new) SQs in npq and the (old) SQs in the cur-
rent SRG. This can be done in two stages: the
superior stage and the inferior stage. In the su-
perior stage, all the superior relationships from
the new SQs to the old SQs are identified. In
the inferior stage, all the inferior relationships
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from the new SQs to the old SQs are identified.
The edges representing these relationships are
added into the SRG. The aforementioned two
algorithms utilize heuristic rules in the above
two stages to improve the constructing perfor-
mance.
The generating-based algorithm applies the

follow two heuristic rules:
Heuristic Rule 1 : If there exists an edge

from sqi to sqj (sqi, sqj are two SQs /∈ the
same PQ) in the SRG, then there exist edges
from sqi to all sqk’s if sqk satisfies the following
conditions: (1) k > j; (2)sqk, sqj ∈ the same
PQ.
Heuristic Rule 2 : If there exists an edge

from sqi to sqj (sqi, sqj are two SQs /∈ the
same PQ), then there exist edges from all sqk’s
to sqj if sqk satisfies the following conditions:
(1) k < i; (2) sqk, sqi ∈ the same PQ.
The details of the algorithm are specified as

follows.

Algorithm 3.2 : Generating-Based ASRG:
AddtoSRG1(npg, srg):
Input: (1) new progressive-query (npg); (2) superior-
relationship graph (srg).
Output: revised superior-relationship graph.
Method:
1. if srg is empty then startempty = true;
2. else startempty = false end if;

/* Adding an isolated PQ npq into srg */
3. for each step-query nsq of npq do
4. add a node n for nsq into node set V of srg;
5. add < n,npg′s id > into identifier set B of srg;
6. if npq has a next SQ nnsq then
7. add an edge from nsq to nnsq into edge set E

of srg;
8. end if
9. end for;
10. if not startempty then
/* Stage 1: finding external superior relationships */

11. for each progressive query opq in srg do
12. for each SQ nsq of npq from the last to

the first do
13. for each SQ osq of opq from the first

to the last do
14. if there exists an edge from nsq to osq then
15. break;
16. else if there exists a superior relationship

from nsq to osq then
17. add an edge from nsq to osq into

edge set E of srg;
18. for each subsequent SQ osq′ in opq do
19. if edge from nsq to osq′ does not exist

then;
20. add an edge from nsq to osq′ into edge

set E of srg;
21. end if;
22. end for;
23. for each previous SQ nsq′ in npq do
24. if edge from nsq′ to osq does not exist

then;
25. add an edge from nsq′ to osq into edge

set E of srg;
26. for each subsequent SQ osq′ in opq do
27. if edge from nsq′ to osq′

does not exist then;

28. add an edge from nsq′ to osq′ into
edge set E of srg;

29. end if;
30. end for;
31. end if;
32. end for;
33. break;
34. end if;
35. end for;
36. end for;
37. end for;

/* Stage 2: finding external inferior relationships */
38. for each progressive query opq in srg do
39. for each SQ osq of opq from the last to

the first do
40. for each SQ nsq of npq from the first

to the last do
41. if there exists an edge from osq to nsq then
42. break;
43. else if there exists an inferior relationship

from nsq to osq ) then
44. add an edge from osq to nsq into

edge set E of srg;
45. for each subsequent SQ nsq′ in npq do
46. if edge from osq to nsq′ does not exist

then;
47. add an edge from osq to nsq′ into edge

set E of srg;
48. end if;
49. end for;
50. for each previous SQ osq′ in opq do
51. if edge from osq′ to nsq does not exist

then;
52. add an edge from osq′ to nsq into edge

set E of srg;
53. for each subsequent SQ nsq′ in npq do
54. if edge from osq′ to nsq′

does not exist then;
55. add an edge from osq′ to nsq′ into

edge set E of srg;
56. end if;
57. end for;
58. end if;
59. end for;
60. break;
61. end if;
62. end for;
63. end for;
64. end for;
65. end if.

In this algorithm, lines 1 and 2 set a flag to
indicate whether the given SRG is empty or
not. If it is empty, neither stage 1 nor stage
2 needs to be considered. Lines 3 - 9 add the
nodes, identifiers and internal edges for the SQs
from the given PQ into the SRG. The edges
between the nodes for the PQ and the external
nodes that have already existed in the given
SRG are added in two stages. Stage 1 adds the
edges for the superior relationships (lines 11 -
37), while stage 2 adds the edges for the inferior
relationships (lines 38 - 64).

In stage 1, the algorithm considers one old
(existing) PQ in the SRG at a time (line 11).
It then scans the SQs of the new PQ backwards
and the SQs of the old PQ under consideration
forwards and examines each pair of SQs from
the two PQs (lines 13 - 15). If there exists a
superior relationship between the pair, an edge
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connecting the corresponding nodes are added
into the SRG (lines 16 - 17). The algorithm
then automatically generates more superior re-
lationships based on Heuristic Rule 2 (lines 23
- 25) and Heuristic Rule 2 (lines 18 - 22 and
26 - 30). The relevant edges representing these
superior relationships are added into the SRG.
Because of the above automatic generation, it
is possible that the relevant edge has already
been added when a pair of SQs from the two
PQs under consideration is examined. Such sit-
uations are considered by the algorithm (lines
14, 19, 24 and 27).
In stage 2, the new PQ and the old PQ under

consideration play the opposite roles, compar-
ing to stage 1, because an inferior relationship
is opposite to its superior counterpart. With
this observation in mind, the algorithm behaves
in a similar way.
In contrast to algorithm 3.2, the pruning-

based SRG construction algorithm applies the
following two heuristic rules to eliminate the
pairs of SQs that cannot have superior or in-
ferior relationships, i.e., considering impossible
cases rather than possible cases.
Heuristic Rule 3 : If there exists no edge

from sqi to sqj (sqi, sqj are two SQs /∈ the same
PQ), then there exists no edge from sqi to any
sqk if SQk satisfies the following conditions: (1)
k < j; (2) sqk, sqj ∈ the same PQ.
Heuristic Rule 4 : If there exists no edge

from sqi to sqj(sqi, sqj are two SQs /∈ the same
PQ), then there exists no edge from any sqk to
sqj if sqk satisfies the following conditions: (1)
k > i ; (2)sqk,sqi ∈ the same PQ.
The details of the algorithm are given below.

Algorithm 3.3 : Pruning-Based ASRG:
AddtoSRG2(npg, srg):
Input: (1) new progressive-query (npg); (2) superior-
relationship graph (srg).
Output: revised superior-relationship graph.
Method:
1. if srg is empty then startempty = true;
2. else startempty = false end if;

/* Adding an isolated PQ npq into srg */
3. for each step-query nsq of npq do
4. add a node n for nsq into node set V of srg;
5. add < n,npg′s id > into identifier set B of srg;
6. if npq has a next SQ nnsq then
7. add an edge from nsq to nnsq into edge set E

of srg;
8. end if
9. end for;
10. if not startempty then
/* Stage 1: finding external superior relationships */

11. for each progressive query opq in srg do
12. let m = 1;
13. for each SQ nsq of npq from the first to

the last do
14. for each SQ osq of opq from the last

to the m-th one do
15. if there exists a superior relationship

from nsq to osq then
16. add an edge from nsq to osq into edge set E

of srg;
17. else
18. let m = index number of osq in opq + 1;
19. break;
20. end if;
21. end for;
22. end for;
23. end for;

/* Stage 2: finding external inferior relationships */
24. for each progressive query opq in srg do
25. let m = 1;
26. for each SQ osq of opq from the first to

the last do
27. for each SQ nsq of npq from the last

to the m-th one do
28. if there exists an inferior relationship

from nsq to osq then
29. add an edge from osq to nsq into edge set E

of srg;
30. else
31. let m = index number of nsq in npq + 1;
32. break;
33. end if;
34. end for;
35. end for;
36. end for;
37. end if.

Lines 1 - 9 are the same as those in algorithm
3.2. There are also two stages in this algorithm.
In stage 1, the algorithm considers one old (ex-
isting) PQ in the SRG at a time (line 11). It
then scans the SQs of the new PQ forwards
and the SQs of the old PQ under consideration
backwards and examines each pair of SQs from
the two PQs (lines 13 - 15). If there exists a
superior relationship between the pair, an edge
connecting the corresponding nodes are added
into the SRG (line 16). Otherwise, the algo-
rithm prunes the remaining SQs of opq (Heuris-
tic Rule 3) and resets the scan boundary of the
SQs in the old PQ under consideration (Heuris-
tic Rule 4). In stage 2, the algorithm behaves
similarly except that the new PQ and the old
PQ under consideration play the opposite roles.

As a simple illustration, let us consider the
example in Figure 1. Assume that we already
have pq1 (containing sq1, sq2 and sq3) and pq2
(containing sq4, sq5 and sq6) in the SRG. Our
goal is to add pq3 (containing sq7 and sq8) into
the graph. Both algorithms first add the nodes,
identifiers and internal edges for pq3 into the
graph. In the superior stage, the algorithms
find all the out-going edges (representing su-
perior relationships) from sq7 or sq8 to other
nodes. In the inferior stage, the algorithms find
all the incoming edges (representing inferior re-
lationships) from other nodes to sq7 or sq8.
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For algorithm 3.2, in the first iteration, we
pick up pq1 from the graph and consider its
step-queries in the ascending order (from sq1
to sq3) while we consider step-queries from pq3
in the descending order. For the first pair [sq8,
sq1], we find that there is no superior relation-
ship from sq8 to sq1. We then move to con-
sider pair [sq8, sq2]. There exists no such a
superior relationship either. So we consider
pair [sq8, sq3]. Fortunately, we find a superior-
relationship here. We add an edge from sq8
to sq3. According to Heuristic Rule 1, another
edge from sq7 to sq3 is automatically added.
In this way, we continue to process remaining
nodes pairs: [sq7, sq1], [sq7, sq2], [sq7, sq3], but
find no edges. In the second iteration, we pick
up pq2 and find an edge from sq7 to sq6. In
the inferior stage, we add the incoming edges
for sq7 or sq8 into the SRG. The details are
omitted here because of the space limitation.

For algorithm 3.3, in the first iteration, we
pick up pq1 from the graph and consider its SQs
in the descending order (from sq3 to sq1) while
we consider SQs from pq3 in the ascending or-
der (from sq7 to sq8). The first pair we check
is [sq7, sq3]. Because there is a superior rela-
tionship between them, we add an edge from
sq7 to sq3 and move to pair [sq7, sq2]. There
is no superior relationship here. According to
Heuristic Rule 3, we remove [sq7, sq1] from con-
sideration and directly move to consider pair
[sq8, sq3]. We add an edge from sq8 to sq3. In
the same way, we find an edge from sq7 to sq6
and terminate. In the inferior stage, we add
the incoming edges for sq7 or sq8 into the SRG
in a similar way. The details are omitted here
because of the space limitation.

To compare the two algorithms, let us con-
sider two different situations, i.e., the given
SRG is a dense graph or a sparse graph. In the
dense graph case, algorithm 3.2 could automat-
ically generate many edges by applying Heuris-
tic Rules 1 and 2. In this case, this algorithm is
more efficient. In the sparse graph case, algo-
rithm 3.3 efficiently prunes useless pairs with-
out checking them individually. In this case,
algorithm 3.3 is better. As a result, two algo-
rithms can be used in different situations.

3.3 View materialization and re-
placement strategies

As mentioned before, the candidates for ma-
terialized views in our technique are those exe-
cuted SQs from user PQs. After the current SQ
for a given PQ is executed, we need to decide
if its result should be saved as a materialized
view. The following strategy is adopted in our
technique for this decision. The SRG provides
the necessary information.

For a given SQ x, a node y in the SRG that
satisfies the following conditions is searched:

(1) The query represented by node y is an in-
ferior of x.

(2) Node y has a sufficient weight (i.e., greater
than a given threshold).

If such a node exists, x (its result) is selected
as a materialized view.

As we know, the weight of a node in the SRG
represents the benefit of materializing this node
(i.e., how many SQs from historical PQs can be
evaluated by using the result of the node). The
above condition (1) ensures that any query that
is benefits from node y can also benefit from x.
Condition (2) guarantees a sufficient benefit.

The algorithm to search for node y can also
utilize Heuristic Rule 3 to improve the search
performance. It runs as follows:

Algorithm 3.4 : Checkweight(srg, csq)
Input: (1) superior-relationship graph srg; (2) current
step-query csq.
Output: true or false.
Method:
1. if srg is empty then
2. return false;
3. else
4. for each progressive query pq in srg do
5. for each step-query sq of pq from the last

to the first do
6. if sq is an inferior of csq then
7. weight = number of out-going edges of sq
8. if weight exceeds a given threshold then
9. return true;
10. else break; end if;
11. end for;
12. end for;
13. return false;
14. end if.

In the algorithm, if it is found that no infor-
mation is available in the SRG yet, the given
SQ is not selected for materialization (lines 1 -
2). Otherwise, it checks each SQ in every PQ
in the given SRG to see if any of them satisfies
Conditions (1) and (2) discussed above (lines 4
- 13). If so, return true (line 9). Otherwise, re-
turn false (line 13). Heuristic Rule 1 is applied
to prune impossible cases (line 10).
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As mentioned earlier, the materialized views
and their relevant information (e.g., associated
SQs and access frequencies) are stored in a
set of materialized views (SMV). However, the
space allocated for the SMV is not unlimited.
In addition, when an SMV becomes large, the
cost for searching a materialized view also in-
creases. We assume that (1) there is a space
limit (SL) for the SMV and (2) the SL is large
enough to save the largest materialized view.
When the SMV overflows (i.e., its size exceeds
the SL), we need to remove some materialized
views from it to create enough free space for
a new materialized view. When a materialized
view v is removed from the SMV, the corre-
sponding PQ for the SQ associated with v (i.e.,
v.sq) should be removed from the set of used
PQs (SUPQ) and added into the SRG.

To decide which materialized views in the
SMV should be replaced, we take their access
frequencies into consideration. The material-
ized views in the SMV are stored in the as-
cending order of their access frequencies. The
replacement procedure simply removes one ma-
terialized view at a time until enough free space
is created for the new materialized view. This
replacement strategy is incorporated in the fol-
lowing algorithm to add a materialized view
into the SMV.

Algorithm 3.5 : AddtoSMV(mv, smv, srg, supq)
Input: (1) materialized view entry mv for an SQ; (2)
set of materialized views smv; (3) superior-relationship
graph srg; (4) set of used PQs supq.
Output: (1) revised smv with mv added; (2) revised
srg; (3) revised supq.
Method:
1. while smv does not have enough space to

accommodate mv do
2. remove the next omv from smv;

/* materialized views in smv are kept in the
ascending order of their access frequencies */

3. remove the PQ x containing omv.sq in supq;
4. AddtoSRG(x, srg);
5. end while;
6. add mv into smv.

Note that the replacement strategy could be
extended to take more factors such as the sizes
and ages of materialized views in smv into con-
sideration, which is beyond the scope of this
paper.

4 Experiments

To evaluate the performance of our dy-
namic materialized-view-based PQ processing
(DMVPQ) technique, we conducted simulat-
ing experiments. Experiment programs were
implemented in Matlab 2007 with Intel R© dual
core (1.5 GHz) CPU and 1 GB memory run-
ning on the Windows R© Vista operating sys-
tem. Specifically, 100 random progressive
queries were used in our experiments. Each
progressive query was composed of more than
one step query, where the step numbers were
randomly chosen between 2 and 5. The re-
sult sizes for all step queries ranged from 0
to 1000 disk blocks. The superior-relationship
graph (SRG) and the set of materialized views
(SMV) were initially set to empty. In experi-
ments, we compared the performance between
the (conventional) consecutive sequential scan
based PQ processing technique (CSSPQ) and
our DMVPQ technique.

Progressive queries were processed one by
one. When the execution of a PQ is completed,
if no step-query in the PQ was selected as a
materialized view, the PQ was added into the
SRG. We maintained two parameters IPR and
WPR for each node in the SRG. IPR denotes
the probability with which a node has an infe-
rior relationship with a step-query under con-
sideration. WPR denotes the probability with
which a node satisfies a weight threshold for
the result of an SQ to be selected as a mate-
rialized view. Both parameters were consid-
ered together to decide whether to materialize
a step-query or not. If an SQ under consider-
ation is estimated to be beneficial, it is mate-
rialized and added into the set of materialized
views. Two parameters SPR and SIZE are
maintained for each materialized view in the
set. SPR denotes the probability with which
the view has a superior relationship with a step-
query under consideration. SIZE denotes the
size of the materialized view. IPR, WPR and
SPR were randomly chosen between 0 and an
upper bound, without violating the definition
and properties of a monotonic linear progres-
sive query. SIZE was directly acquired from
the corresponding PQ. In the experiments, the
pruning-based SRG construction algorithmwas
adopted. Since the objective of our experi-
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ments was to evaluate the performance of the
DMVPQ technique, the space limitation issue
was not considered.
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Figure 3: Performance comparisons between DMVPQ
and CSSPQ

In the first experiment, the upper bounds
for IPR, WPR and SPR were set to 0.1, 0.5
and 0.1, respectively. Figure 3 shows the per-
formance comparison between the CSSPQ and
DMVPQ techniques. The x-axis represents the
total number of step-queries in the tests, and
the y-axis represents the I/O cost (i.e., the
number of disk block accesses). From the fig-
ure, we can see that the two performance curves
are very close to each other for small numbers
of SQs. The performance of DMVPQ is in-
creasingly better than that of CSSPQ when the
number of SQs increases. The reason for this
is as follows. At the beginning, both SRG and
SMV are empty — no view could be utilized
to improve the query performance. As more
and more progressive queries are executed, the
SRG and MVC grow larger and larger. In other
words, more and more materialized views be-
come available for improving the query per-
formance. As a result, the performance of
DMVPQ is significantly improved.

In the second experiment, we increased the
upper bound for parameter IPR to 0.3 and
kept the other parameters unchanged. The ex-
perimental results are shown in Figure 4. From
the figure, we can see that the performance of
DMVPQ is dramatically improved. The rea-
son for this is that IPR plays an important
role in deciding whether to materialize the re-
sult of a step-query. A larger upper bound for
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Figure 4: Performance comparisons between DMVPQ
and CSSPQ with IPR being changed to 0.3

IPR implies that each step-query has a higher
chance to be materialized. Hence, the SMV
grows faster, and the subsequent queries have
more views to utilize to improve their perfor-
mance.
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Figure 5: Performance comparisons between DMVPQ
and CSSPQ with SPR being changed to 0.3

Another crucial factor to affect the query
performance is parameter SPR. In the third
experiment, we changed the upper bound for
SPR to 0.3 and kept the other parameters un-
changed. Experimental results are shown in
Figure 5. A dramatic performance increase for
DMVPQ is also observed. The reason for this
improvement is that SPR is the factor to deter-
mine whether a materialized view would match
a step-query under consideration. A larger up-
per bound for SPR implies a materialized view
has a better chance to match a given step-
query. In other words, a step-query has more
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available views to utilize to improve its perfor-
mance.
Our experimental results demonstrate that

our DMVPQ technique is quite promising
in improving the performance for processing
monotonic linear PQs.

5 Conclusion

There is an increasing demand to process pro-
gressive queries from various application do-
mains. In this paper, we introduce a novel
dynamic materialized-view-based technique to
process a special type of progressive query,
called the monotonic progressive query. The
main contributions of the paper are summa-
rized as follows:
We have presented a progressive query pro-

cessing procedure to dynamically select exe-
cuted step-queries as materialized views and
apply the materialized views to efficiently pro-
cess other step-queries.
We have introduced a superior-relationship

graph (SRG), which is constructed for a set of
historical progressive queries. The SRG is used
to estimate the benefit of materializing a step-
query. Four heuristic rules are proposed and in-
corporated into two efficient algorithms to con-
struct an SRG. One is generating-based, while
the other is pruning-based. The former auto-
matically generates more edges once one edge
is determined. The latter effectively prunes the
impossible cases.
We have also presented heuristic-based algo-

rithms to efficiently determine whether a given
step-query should be materialized based on the
SRG and to replace old materialized views with
a newly selected view when the space has ex-
ceeded its limit.
We have conducted simulation experiments

to evaluate the performance of our proposed
technique. The experimental results demon-
strate that the proposed technique is quite
promising in processing the monotonic linear
progressive queries. It outperforms a conven-
tional query processing approach. Especially,
its performance improvement is increasingly
larger as more queries are processed.
Our future work includes extending the

dynamic materialized-view-based technique to
process other types of PQs such as multiple-

input linear PQs and non-linear PQs and
studying the issues to incorporate such tech-
niques into existing database management sys-
tems.
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