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Abstract

Progressive queries (PQ) are a new type of
query emerging from numerous contemporary
database applications, including e-commerce,
social network, business intelligence, and deci-
sion support. Such a PQ is formulated in sev-
eral steps via a set of inter-related step-queries
(SQ). How to optimize such PQs represents a
new challenge in the development of a database
management system. In our previous work, we
introduced a materialized-view based technique
to process a special type of PQ, called mono-
tonic linear PQs. In this paper, we present a
new materialized-view based technique to ef-
ficiently process generic PQs. This technique
allows an SQ in a given PQ to utilize the re-
sults of previous SQs not only from the same
PQ but also from other in-process and com-
pleted PQs. Due to the storage constraint,
it is impossible to retain the results of all the
SQs of a completed PQ. Hence, a crucial issue
is how to select popular SQs from completed
PQs to keep their results as materialized views
for optimizing future PQs. To tackle this is-
sue, we introduce a multiple query dependency
graph (MQDG) to capture the data source de-
pendency relationships among SQs from mul-
tiple PQs. We then present a model to es-
timate the benefit of an SQ in the MQDG
and discuss a procedure to choose critical SQs
in the MQDG for materializing their results.
The strategies for constructing the MQDG and
maintaining the set of materialized views are

also suggested. Experimental results demon-
strate that our technique is quite promising in
efficiently processing PQs.

Keywords: Database, progressive query, ma-
terialized view, query processing, query opti-
mization

1 Introduction

As the rapid growth of numerous interactive
web applications (e.g., Amazon, Google) and
data-intensive applications (e.g., astronomy,
biology), there is an increasing demand to ef-
ficiently process a new type of query, called
progressive queries. A progressive query (PQ),
which was introduced in [15], consists of a set
of inter-related and incrementally formulated
step-queries (SQs). An SQ is issued by a user
based on the results obtained from the previous
SQs of the same PQ.

A product searching at the Amazon web site
is a simple example of the PQ. Assume that
a user wants to buy a suitable laptop. First,
he/she issues a search (step-query) to list all
the laptop sales at the web site (database). Af-
ter the result is returned, the user may real-
ize that the result set is too large, and he/she
does not want to scan all the returned sales by
following several screens. Thus, the user adds
a further condition on the brand name to re-
strict the laptop sales, say from Dell. However,
the result set may still be too large. There-
fore, the user further narrows down the result
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set by adding another condition for the price
limit. But, if the user finds that there is no
sale found with the given price limit condition,
he/she may go back a step to change the de-
sired brand name of a laptop to HP or Lenovo
and then continue his/her search. This exam-
ple represents a very restricted PQ since a new
SQ was selected from a set of pre-defined quali-
fication conditions (hyperlinks) and could only
use the result of its immediate previous SQ. For
a general PQ, a new SQ can use as input the
result(s) of any previously executed SQ(s) (not
necessarily the immediate previous one) and
adopt any qualification condition that the user
likes (not being restricted to a pre-determined
set of conditions).

The above example demonstrates a key char-
acteristic of PQs; namely, a PQ cannot be for-
mulated in advance because the user cannot
predict what the next SQ is before the execu-
tions of its previous SQs are completed. A user
typically needs to analyze the results returned
by the previous SQs and makes a decision for
the next SQ accordingly.

Such an unpredictability raises new chal-
lenges to efficiently process PQs. Some pop-
ular optimization techniques, such as index
methods and materialized view techniques,
which are frequently applied to the conven-
tional queries may not be easily used in pro-
cessing PQs. For example, there exists no in-
dexes on the result table of a PQ, and selecting
useful materialized views for optimizing future
PQs is difficult. To tackle the challenges, [15]
introduces an effective index technique, called
the collective index method. The main idea is
to construct a special index structure so that
a collection of member indexes on an input ta-
ble of an SQ can be efficiently transformed into
indexes on the result table. This result index
can be used to speed up the subsequent SQs. In
[14], we introduced a materialized-view based
approach to efficiently process a special type
of PQ, called the monotonic linear PQs. The
main idea is to construct a so-called superior-
relationship graph based on the special contain-
ment properties of monotonic linear PQs and
use it to dynamically select materialized views
to speed up future PQs. But neither technique
in [15] or [14] could deal with generic PQs, for
instance, the ones with an SQ that is executed

on more than one result table from other SQs.
Hence, a new technique is required to efficiently
process generic PQs.

In this paper, we present such a new
materialized-view based technique to efficiently
process generic PQs. In this technique, we al-
low users to specify their new SQs using not
only the results of SQs from the same PQ
but also the results of SQs from the other in-
process PQs since they are all available in the
system without additional cost. Furthermore,
this technique also selects some popular (crit-
ical) SQs from completed PQs to retain their
result tables as materialized views for process-
ing future PQs. The data source dependency
relationships among external tables, SQs of in-
process PQs and critical SQs of completed PQs
are captured in a directed graph, called the
multiple query dependency graph (MQDG). A
model to estimate the potential benefit of an
SQ of a completed PQ based on the MQDG
is developed for the technique. SQs with sig-
nificant benefits are selected as critical ones.
Since a user has more options in specifying
his/her SQs, with the assistance (e.g., cost es-
timation) from the system, it is expected that
an improved performance of his/her PQ can be
achieved. Our experiments demonstrate that
this approach is quite promising.

Many materialized view (MV) techniques
have been reported in the literature [2, 5, 6,
7, 12, 13, 8, 1, 9, 11]. They are widely used in
many different database areas, including dis-
tributed databases, data warehouses, and Web
databases. A key issue addressed by many such
techniques is how to select proper views to op-
timize future queries. [3] and [10] suggested to
use genetic algorithms to generate views based
on database tuning and restrict the solution
space by taking the similarity of MV configura-
tions into consideration. [4] proposed to cluster
possible candidate views first and then adjust
the view set according to specific requirements.
However, most existing work focuses on how to
process conventional queries, which are formu-
lated in one time. Our previous work in [14]
was the only one studying how to apply ma-
terialized views to optimize PQs. However, as
mentioned earlier, that work was restricted to
handle a special type of PQs. Applying mate-
rialized views to efficiently process generic PQs
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is the new issue addressed in this paper.
The remainder of this paper is organized as

follows. Background knowledge is introduced
and the multiple query dependency graph is
defined in Section 2. The main processing pro-
cedure of our approach is illustrated and the
related algorithms and their functions are pre-
sented in Section 3. Experimental results are
reported and analyzed in Section 4. Section 5
summarizes the conclusions and future work.

2 Preliminaries

In this section, some background knowledge of
this work is provided. An overview of three
types of PQs is given and the dependency graph
is defined in Section 2.1. A view storage (VS)
for the materialized views is introduced in Sec-
tion 2.2.

2.1 Progressive Query Types and

Multiple Query Dependency

Graph

PQs are classified into three types in [15]. The
first type is called the single-linear PQ. In such
a PQ, each SQ (except the initial one) could
only use the result returned by its immediate
previous SQ as its input. The initial SQ uses
an external relation from the database as its
input. The second type is called the multiple-
input linear PQ. In a PQ of this type, each
SQ could not only make use of the result re-
turned by its immediate previous SQ but also
take advantage of some other external tables.
For instance, a user may issue an SQ to join
the result table of its immediate previous SQ
with an external table. The third type is called
the non-linear PQ, which is the most general
one. In such a PQ, an SQ is allowed to make
use the result tables of more than one previous
SQ. For example, a user may issue an SQ sq3
to join the result tables of two SQs sq1 and sq2.
The domain Domain(SQ) of an SQ is defined
as the set of its input tables. An input table
can be an external table or the result table of
a previous SQ.
In our previous work [14], we considered a

special type of the multiple-input linear PQ,
called the monotonic linear PQ, where multiple

inputs are allowed only for the initial SQ. In
this paper, we consider general PQs, namely,
all types of PQs mentioned above are allowed.

As mentioned earlier, the main characteristic
of a PQ is that the user cannot predict what
the next SQ is before the previous SQs are ex-
ecuted. Therefore, the result tables of previous
SQs for a given PQ have to be made available
(not discarded) since they may be used in a fu-
ture SQ. Usually, multiple PQs are simultane-
ously processed in a DBMS. The result tables
of the executed SQs for these in-process PQs
are all kept in the system. We may consider
these result tables as temporary materialized
views. Conceptually, an SQ uses the result ta-
bles of previous SQs from the same PQ. In this
paper, we also allow users to use the result ta-
bles of SQs from other in-process PQs rather
than from the same PQ if a better performance
can be achieved. Usually, the result tables for
the SQs of completed (historical) PQs are no
longer kept in the system. However, for pop-
ular result tables of some SQs, we choose to
retain them as materialized views even after
their corresponding PQs are completed. Such
SQs are named critical SQs. The goal is to give
users more flexibility (options) in specifying an
efficient SQ.

In this work, we employ a so-called multi-
ple query dependency graph (MQDG) to cap-
ture the data source dependency relationships
among the SQs of the in-process PQs as well
as the critical SQs in the system. Let SPQ
be the set of the in-process PQs and the PQs
that have at least one critical SQ. The multiple
query dependency graph for SPQ is defined as
a directed graphMQDG(SPQ) = (V,E, P, F ),
where V is a set of nodes, E is a set of edges, P
is a set of labels representing the id’s for PQs
in SPQ, and F is a function that maps a node
in V to a label in P .

Let SSQ be the set of SQs of in-process PQs
and critical SQs of completed PQs. Each node
in V represents either an external table used by
an SQ in SSQ or directly an SQ in SSQ. The
former is called a table node, while the latter is
called a temporary node (the result table of an
SQ from an in-process PQ) or a critical node
(the result table of a critical SQ). If a node v2
representing an SQ uses as input the external
table or the result table associated with node
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v1, we say v2 depends on v1, which is repre-
sented by a directed edge e =< v1, v2 > from v1
to v2 in E. In this case, we also say that there
exists a dependency relationship from v1 to
v2. Set P in MQDG(SPQ) consists of unique
identifiers for all the PQs in SPQ. Function F
in MQDG(SPQ) maps (labels) each tempo-
rary node representing an SQ in SPQ to the id
in P for the corresponding PQ to which the SQ
belongs. A table node has no label. An MQDG
dynamically grows as more SQs of current PQs
or new PQs are issued. Figure 1 shows an ex-
ample of the MQDG.

Figure 1: An example of the multiple query depen-
dency graph (MQDG).

Several properties of an MQDG can be ob-
served. First of all, there exist no directed cir-
cle in the graph. A directed edge from node v1
to node v2 in the graph implies that the SQ for
v2 makes use of the result table of v1 if v1 is a
temporary node or v2 is executed on the exter-
nal table for v1 if v1 is a table node. In other
words, v2 is generated later than v1. On the
other hand, all the outgoing paths from v2 are
to connect the nodes which are generated later
than v2. Therefore, it is impossible to form a
recursive cycle in the graph. Secondly, there
may exist isolated subgraphs even among the
SQs from the same PQ in an MQDG. As men-
tioned earlier, when a user issues an SQ, he/she
can not only make use of the result tables for
the previous SQs of the same PQ but also take
advantage of the result tables of the SQs from

other PQs. Hence, the result of an SQ in a PQ q
may never be used by any subsequent SQs of q.
Similarly, the SQs from different PQs may be
connected together in the graph. Other proper-
ties of an MQDG include that each table node
has no incoming edge and that there is a single
sink (final) node for each PQ that returns the
final result for the PQ.

Note that a dependency graph (DG) for a
given PQ was defined in [15]. There are sev-
eral differences between a DG and an MQDG.
First of all, a DG is for a single PQ, while an
MQDG is for multiple PQs. Secondly, a DG is
used to illustrate the definition of a (complete)
PG, while an MQDG is used to optimize mul-
tiple in-process PQs that are incomplete and
growing. Finally, a DG does not include nodes
for external tables, while an MQDG does.

2.2 View Storage

As mentioned earlier, the result table associ-
ated with a temporary node or a critical node
is considered as a materialized view. The sys-
tem needs to have a place to store them. We
call such a place the view storage (VS). The
VS is divided into two subspaces: temporary
node view space (TNS) and critical node view
space (CNS). TNS is to store the result table
(view) of a temporary node, while CNS is to
store the result table (view) of a critical node.
For each stored view, the corresponding PQ id
and query expression are also save. Figure 2
shows the structure of the view storage.

Figure 2: The structure of the view storage

If a space limit is given, it is observed that
the size of the TNS determines how many in-
process PQs are allowed, while the size of the
CNS determines how many beneficial critical
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SQ results can be retained. In this work, we
make an assumption that the size of TNS is
large enough to hold the result tables of all the
issued SQs of in-process PQs. We only take the
size of the CNS into consideration for our tech-
nique. This may be a reasonable assumption
given that temporary results for the reasonably
small set of currently executing queries might
generally be needed to complete the queries al-
though intermediate results could be pipelined
without hitting the disk and as such need not
be materialized

3 A Materialized-View

Based Technique for Effi-

ciently Processing PQs

In this section, we discuss how to construct the
MQDG and how to use the MQDG to iden-
tify the critical nodes to help users efficiently
process concurrently executing PQs. The main
processing procedure is introduced in Section
3.1. The critical nodes finding algorithm is pre-
sented in Section 3.2. The removal of a node
from the MQDG is described in Section 3.3 and
the maintenance issue is discussed in Section
3.4.

3.1 Main processing procedure

As mentioned earlier, the result tables of the
SQs of in-process PQs as well as the result ta-
bles of critical SQs are considered (temporary)
materialized views to help users specify future
SQs. Users may use the cost estimates provided
by the system to decide whether to utilize the
materialized views or not for their next SQs.

Since the result tables of all the SQs of in-
process PQs are automatically stored in TNS
and available to users, no further issue needs to
be considered. However, it is clear that it is im-
possible to keep the result tables of the SQs for
all the completed PQs. Hence a key issue that
needs to be studied is how to properly choose
the critical SQs from completed PQs and retain
their results for future use. A technique to ad-
dress this and other relevant issues is presented
in this section. The main processing procedure
is introduced in this subsection, and the details

of its invoked functions are to be discussed in
the following subsections.

Specifically, our technique will address the
following four issues: (1) how to construct an
MQDG; (2) how to use the MQDG to find the
critical nodes from completed PQs; (3) how to
remove the non-critical nodes of a completed
PQ from the MQDG; and (4) how to remove
some critical nodes and reconstruct the MQDG
when the CNV overflows. The main procedure
to carry out the tasks to address these issues is
given below.

Algorithm 3.1 : Selection of Materialized Views
via Dependency Analysis
Input: (1) newly arrived step-query (nsq); (2) multiple
query dependency graph mqdg = (V, E, P, F ); (3) view
storage (vs) including temporary node view space (tns)
and critical node view space (cns).
Output: (1) revised mqdg; (2) revised vs.
Method:
1. execute nsq and save its result table in tr;
2. add tr and relevant information into vs.tns;

/* revise mqdg to include nsq */
3. if nsq is an initial SQ for a new PQ then
4. add the id of PQ into mqdg.P ;
5. end if
6. create a temporary node tn labeled with the

corresponding PQ id for csq in mqdg.V ;
7. for each table r in Domain(nsq) do
8. if r is an external table then
9. if r does not have a node in mqdg.V then
10. create a table node m for r in mqdg.V ;
11. else
12. find the table node m representing r in mqdg.V ;
13. end if
14. else
15. find the corresponding temporary node m for r

in mqdg.V ;
16. end if
17. generate an edge < m, tn > from m to tn

in mqdg.E;
18. end for

/* find critical nodes in a completed PQ */
19. if a PQ pq1 in mqdg is completed then
20. cnset = FindCriticalNode(mqdg, pq1);

/* remove non-critical nodes for a completed PQ */
21. for each non-critical node ncn in pq1 do
22. RemoveAndTransfer(mqdg, ncn);
23. end for
24. for each node cn in cnset do
25. if cns has enough space to accommodate the

result table (view) of cn then
26. transfer result table of (cn) from tns to cns;

/* the maintainance issue for the CNS */
27. else /* cns overflows */
28. CriticalNodeRemove(mqdg, cns, cn);
29. end if
30. end for
31. end if.

There are two phases in Algorithm 3.1. The
first phase (lines 1 - 18) executes the newly
arrived SQ and revises MQDG and VS to in-
clude this SQ. The second phase (lines 19 - 31)
finds the critical nodes of a completed PQ, re-
moves non-critical nodes of the PQ, updates
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the MQDG, and maintains the VS. The second
phase is done by invoking several functions.

In the first phase, the algorithm first exe-
cutes the given SQ and saves its result table
and relevant information in the VS (lines 1 -
2). If the given SQ is an initial (first) SQ of
a new PG, the algorithm adds the PQ id into
the MQDG (lines 3 - 5). It then adds relevant
nodes and edges into the MQDG to include the
given SQ (lines 6 - 18).

In the second phase, the algorithm first in-
vokes function FindCriticalNode() to evaluate
the benefit of each SQ of a completed PQ to
identify and return a set of critical nodes (lines
19 - 20). After all the critical nodes of a PQ are
identified, other non-critical nodes are removed
from the MQDG by invoking function Remove-
AndTransfer() (lines 21 - 23). For each critical
node, its result table is transferred from TNS to
CNS in the VS (lines 24 - 26) if there is enough
space. If the CNS overflows, another function
CriticalNodeRemove() is called to perform nec-
essary maintenance (lines 27 - 29) before the
new materialized view is added.

The invoked functions in this algorithm are
to be discussed in the following subsections.

3.2 SQ benefit estimation and
critical nodes selection

The main use of an MQDG constructed in Sec-
tion 3.1 is to estimate the potential benefits of
SQs of a completed PQ during the process of
identifying critical nodes. As mentioned ear-
lier, how to find the critical nodes from a com-
pleted PQ is a crucial issue in this work. In
this subsection, we focus on discussing this is-
sue and introducing an approach to estimating
the potential benefits of SQs using the MQDG.

Let us first introduce some basic concepts for
the MQDG, which will be used in the following
discussion.

Direct parent node: if there exists an edge
from node m to node n in an MQDG, then m is
called a direct parent node of n in the MQDG.

Direct child node: if there exists an edge from
nodem to node n in an MQDG, then n is called
a direct child node of m in the MQDG.

Indirect child node: if there exists a (di-
rected) path p from node m to node n and p
consists of more than one edge in an MQDG,

then n is called an indirect child node of m in
the MQDG.

Note that node n in an MQDG could be both
a direct child node and an indirect child node of
node m. See the example in Figure 3, there ex-
ists an edge from sq1 to sq6, and there also ex-
ists a directed path from sq1 to sq6 which con-
sists two edges {< sq1, sq2 >, < sq2, sq6 >}.
Consequently, sq6 is both a direct child node
and an indirect child node of sq1.

Internal node: if there exists a (directed)
path from node m to node n and the PQ id’s
of both n and m are the same, then n is called
an internal node of m.

External node: if there exists a (directed)
path from node m to node n, and the PQ id of
m is different from that of n, then n is called
an external node of m.

Now let us discuss the details about how to
estimate the potential benefit of an SQ and how
to find the critical nodes by using the MQDG.
The main idea to estimate the potential benefit
of an SQ sq1 for future queries is to consider
the benefit that sq1 has already brought to its
direct and indirect child nodes in the MQDG.

We have developed a model to quantitatively
capture the benefit that an SQ (i.e., a tempo-
rary node) in an MQDG has brought to its di-
rect and indirect child nodes. Assume that we
want to calculate the benefit that node (SQ)
sq1 has brought to its direct/indirect child node
(SQ) sq2 using the MQDG. The following af-
fecting factors are considered.

(1) The distance: it is the number of edges in
a path from node sq1 to node sq2. The larger
the distance is, the smaller the benefit sq1 could
bring to sq2. As an illustration, we consider
the following two scenarios: 1) sq2 is a direct
child node of sq1. In this case, sq2 could di-
rectly make use of the result of sq1. 2) sq2
is an indirect child node of sq1 and the path
from sq1 to sq2 that is under consideration is
{< sq1, sq3 >,< sq3, sq2 >}. In this case, sq2
could not directly take advantage of the result
of sq1. It is clear that sq1 could make more con-
tribution to executing sq2 in the first scenario
than in the second scenario. In other words,
sq1 could bring more benefit to sq2 if the dis-
tance from sq1 to sq2 along the path that is un-
der consideration is shorter. Note that, if there
are multiple paths from sq1 to sq2, the benefits

qzhu
Typewritten Text

qzhu
Typewritten Text
65



gained by sq2 through them are accumulated.

(2) The node type (internal or external): it
also makes a significant difference whether sq2
is an internal node or an external node of sq1.
Obviously, the SQs of a PQ have a much higher
chance to use the results of previous SQs from
the same PQ. However, after the PQ is com-
pleted, most internal SQ nodes may never be
used by other queries. Thus, an PQ may have
many internal nodes, but they may not bring
any benefits for future queries. On the other
hand, future SQs can be considered as exter-
nal nodes of sq1 if they make use of the result
of sq1. Therefore, external nodes are more rel-
evant than internal nodes to represent future
SQs. In other words, an external node of sq1
could have a higher benefit than an internal
node of sq1.

(3) The number of inputs: it represents the
number of incoming edges of sq2, assuming sq2
is a direct child node of sq1. The reason why
this factor matters is that an SQ may only
make a partial contribution to the evaluation
of its direct child nodes. The larger the number
of inputs that sq2 has, the less the benefit that
sq1 could bring to sq2. Consider the following
two different scenarios. The first scenario is
that sq2 has only one incoming edge, which is
from sq1. In this case, sq2 is evaluated totally
based on the result table of sq1. The second
scenario is that sq2 has n (n > 1) incoming
edges, one of which is from sq1. In this case,
sq2 is evaluated based on several SQ result ta-
bles and maybe some external tables as well.
It is obvious that sq1 makes more contribution
(bring more benefit) to sq2 in the first scenario.
If sq2 is an indirect child node of sq1, the situa-
tion becomes more complicated because many
intermediate SQs on the path from sq1 to sq2
may also have more than one incoming edge.
In this case, sq1 makes even less contribution
to sq2 and the incoming edges of all the inter-
mediate nodes need also to be considered.

To estimate the potential benefit of a tem-
porary node (SQ) sq in an MQDG for fugure
queries, we can use the accumulated benefit
that sq has brought to all its direct and indi-
rect child nodes along all the possible paths.
Let ChdS(sq) be the set of direct and indi-
rect child nodes of sq, PthS(sq, c) be the set
of paths from sq to its child node c, NdeS(p)

be the set of child nodes (including c) of sq on
the path p from sq to c, |p| denote the length
of path p, NE(x) is the number of incoming
edges that node x has, Ex(sq, c) is a function
having value 1 if c is an external node of sq
and having value 0 if c is an internal node of
sq, and In(sq, c) = 1−Ex(sq, c). Assume that,
if sq′ is a direct child node of sq, sq′ has only
one incoming edge (from sq), and sq′ and sq
belong to the same PQ, then sq brings 1 unit1

of benefit to sq′. The following model/formula
is derived to estimate the potential benefit of
sq:

Benefit(sq) =
∑

c ∈ ChdS(sq)

∑

p ∈ PthS(sq,c)

(Wd)
|p|−1 ∗ [WE ∗ Ex(sq, c) +WI ∗ In(sq, c)]∏

x ∈ NdeS(p) NE(x)
,

where Wd ∈ (0, 1), WE > 0 and WI > 0 are
real number constant coefficients.

The formula essentially calculates the total
benefit that sq has brought to all its direct and
indirect child nodes along all possible paths.
Wd represents the benefit reducing rate as the
distance increases. For example, for a typical
value Wd = 0.5 (it will be used in our remain-
ing discussion), the relevant benefit contribu-
tion (Wd)

|p|−1 becomes 1.0, 0.5, 0.25, 0.125 ...
for distance 1, 2, 3, 4, ..., respectively. We
could see that the larger the distance is, the
smaller the benefit is. WE and EI are the
constant coefficients to differentiate the ben-
efit impact from an external node or an inter-
nal node. For example, we can set WE = 2
and WI = 1 (they will be used in our remain-
ing discussion), which implies that an exter-
nal node is twice as important as an internal
node. The factor 1/

∏
x ∈ NdeS(p) NE(x) rep-

resents how the benefit for node c from sq is
affected by the number of incoming edges for
all the child nodes of sq along path p from sq
to c.

Let us consider the example in Figure 3. As-
sume that we want to calculate the benefit that
sq1 could bring to sq6. First, all possible paths
from sq1 to sq6 are listed:

1We could take the effect of the result table size |sq|
of sq into consideration by assigning a benefit value pro-
portional to |sq|. However, we choose to use a constant
unit to simplify our discussion.
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(1) p1 = {< sq1, sq6 >};
(2) p2 = {< sq1, sq2 >, < sq2, sq6 >};
(3) p3 = {< sq1, sq2 >, < sq2, sq3 >, <
sq3, sq5 >, < sq5, sq6 >}.
Clearly, Ex(sq1, sq6) = 0, In(sq1, sq6) = 1.
For path p1, |p1| = 1, NE(sq6) = 3. Thus,

the benefit that sq1 could bring to sq6 through
p1 is:

Benefit p1 =
(0.5)0 ∗ 1

3
=

1

3
.

For path p2, |p2| = 2, NE(sq2) = 1,
NE(sq6) = 3. Thus, the benefit that sq1 could
bring to sq6 through p2 is:

Benefit p2 =
(0.5)1 ∗ 1

1 ∗ 3
=

1

6
.

For path p3, |p3| = 4, NE(sq2) = 1,
NE(sq3) = 1, NE(sq5) = 2 and NE(sq6) = 3.
Thus, the benefit that sq1 could bring to sq6
via p3 is:

Benefit p3 =
(0.5)3 ∗ 1

1 ∗ 1 ∗ 2 ∗ 3
=

1

48
.

Therefore, the total benefit that sq1 could
bring to sq6 is to add the above three benefit
values together, i,e., Benefit sq6 ≈ 0.52. If we
want to estimate the total benefit of sq1, we
just need to add all the benefit values that sq1
could bring to all its direct and indirect child
nodes via all the possible paths together.
Let us give an algorithm to estimate the ben-

efit of a temporary node in an MQDG using the
above model. The main idea of the algorithm
is to traverse all the paths from the given node
in a deep-first fashion to accumulate the bene-
fit values that the node has brought to each of
its direct and indirect child nodes.

Algorithm 3.2 : CalculateBenefit(mqdg, t)
Input: (1) multiple query dependency graph mqdg; (2)
temporary node t.
Output: benefit value bt of t.
Method:
1. bt = 0;
2. for each direct child node n of t do
3. N = number of incoming edges of n;
4. if n.pqid = t.pqid then

/* n is an internal node */
5. bn = WI/N;
6. else if n.pqid != t.pqid then

/* n is an external node */
7. bn = WE/N;
8. end if
9. bt = bt+bn;
10. bt = RecursiveAcc(mqdg, t, n, bt, bn);

11. end for
12. return bt.

In Algorithm 3.2, bt denotes the total benefit
that t could bring to all its direct and indirect
child nodes, and bn denotes the benefit that t
could bring to its current individual (direct or
indirect) child node n along one path. They
are calculated for each direct child node n of t
(lines 2 - 11), and they are calculated in differ-
ent ways based on if n is an internal or external
node of t (lines 4 - 8). A recursive function Re-
cursiveAcc() is called to calculate the benefit
that t could bring to the children of n along
the current path.

Algorithm 3.3 : RecursiveAcc(mqdg, t, n, bt, bn)
Input: (1) multiple query dependency graph mqdg; (2)
temporary node t; (3) child node n of t; (4) current ac-
cumulative benefit value bt of t; (5) current individual
benefit value that t has brought to n.
Output: benefit value bt of t.
Method:
1. for each direct child node m of n do
2. N = number of incoming links of m;
/* n and m are both internal nodes or both external

nodes*/
3. if (n.pqid = t.pqid and n.pqid = m.pqid) or

(n.pqid! = t.pqid and m.pqid != t.pqid) then
4. bm = Wd * bn * (1/N);
/* n is an internal node and m is an external node*/

5. else if n.pqid = t.pqid and n.pqid != m.pqid then
6. bm = Wd * bn * (1/N)* WE/WI ;
/* n is an external node and m is an internal node*/

7. else if n.pqid != t.pqid and m.pqid =t.pqid then
8. bm = Wd * bn * (1/N) * WI/WE ;
9. end if
10. bt = bt + bm;
11. bt = RecursiveAcc (dg, t,m, bt, bm);
12. end for
13. return bt;

Algorithm 3.3 is a recursive function to tra-
verse all the (direct and indirect) child nodes of
an input node n in the depth-first fashion. The
benefit bn that t has brought to n along a tra-
versed path is known as an input. The benefit
bm that t has brought to each direct child node
m of n is computed based on bn (lines 4, 6, 8)
and the total benefit bt of t is accumulated (line
10). If the node type (internal or external) of
m is the same as that of n (line 3), the rele-
vant coefficient (WI or WE) used in the benefit
calculation for bm does not change (line 4). If
the node type changes from internal to exter-
nal (line 5), the relevant coefficient used in the
benefit calculation for bm needs to change from
WI to WE (line 6). If the node type changes
from external to internal (line 7), the relevant
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coefficient used in the benefit calculation for bm
needs to change from WE to WI (line 8).
Using function CalculateBenefit(), we iden-

tify all the critical nodes from a completed PQ
as follows.

Algorithm 3.4 : FindCriticalNode(mqdg, fpq)
Input: (1) multiple query dependency graph mqdg; (2)
a completed PQ fpq.
Output: a set of critical nodes for fpg.
Method:
1. Initialize cnset to empty;
2. for each SQ fsq in fpq do
3. benefit = CalculateBenefits(mqdg, fsq);
4. if benefit > THRESHOLD then
5. add fsq into cnset;
6. end if
7. end for
8. return cnset.

Algorithm 3.4 selects each SQ fsq from the
completed PQ fpq whose potential benefit is
sufficiently large as a critical SQ (node).

3.3 Non-critical node removal

After the critical SQs (nodes) of a completed
PQ are identified, all the non-critical nodes of
the PQ need to be removed from the MQDG.
However, when a node n is removed from the
MQDG, how to deal with the edges associated
with n need to be properly addressed. Edges in
an MQDG represent the dependency relation-
ships on which our benefit calculation relies.
We need to maintain the dependency relation-
ships among the remaining nodes in the MQDG
after the removal, including those went through
the removed node n. Hence non-critical nodes
should be removed carefully and the relevant
dependency relationships should be transferred
to the remaining nodes.
The following algorithm removes the non-

critical nodes and transfers the dependency re-
lationships properly.

Algorithm 3.5 : RemoveAndTransfer(mqdg, n)
Input: (1) multiple query dependency graph mqdg; (2)
a node n that needs to be removed.
Output: a revised mqdg with n removed.
Method:
1. let r be the result table of n;
2. let q be the query expression of n;
3. for each direct child node m of n do
4. replace r in the query expression of m by q;
5. for each direct parent node t of n do
6. create a directed edge from t to m in mqdg;
7. end for
8. end for
9. remove all the incoming and outgoing edges for n

from mqdg;
10. remove n from mqdg;
11. return mqdg.

In Algorithm 3.5, the given node n is safely
removed and all dependency relationships are
transferred in four steps. In the first step, the
query expressions for all the direct child nodes
of n are changed (lines 3 - 4). We know that the
result table r of n is used in each of its direct
child nodes. Since node n is to be removed,
r will no longer exist. Hence, we replace r in
the query expression of each direct child node
of n by the query expression of n. As a re-
sult, r is removed from the domain of each di-
rect child SQ (node). For example, consider
sq1: σc1=v1 (R1); sq2: σc2=v2 (Result(sq1));
where σ is the selection operation in the re-
lational algebra. When node sq1 is removed,
the query expression of sq2 has to be changed
to: σc2=v2 (σc1=v1 (R1)). In the second step,
new directed edges are generated from each di-
rect parent node t of n to each of its direct
child node (lines 5 - 7). Essentially, the tables
represented by the direct parent nodes of n are
added to the domain of each of its direct child
nodes. In the third step, all the edges associ-
ated with n are safely removed (line 9). In the
last step, n is finally removed (line 10).

Let us use an example to illustrate how to
remove a node and transfer all its dependency
relationships in an MQDG using Algorithm 3.5.
Assume that we are given an MQDG as shown
in Figure 3. The set of SQs in the figure in-
cludes:
1. sq1: πc1,c2,c3(σc1=v1(R1 ⊲⊳ R2 ⊲⊳ R3)),
2. sq2: σc2=v2(R(sq1)),
3. sq3: σc3=v3(R(sq2)),
4. sq5: σc5=v5(R(sq3) ⊲⊳ R(sq4)),
5. sq6: σc6=v6(R(sq1) ⊲⊳ R(sq2) ⊲⊳ R(sq5)),
6. sq7: σc2=v7(R(sq1)),
7. sq8: σc7=v8(R(sq6) ⊲⊳ R(sq7)),
where R(sqi) denotes the result table of sqi.

Let us try to remove sq6 from the graph.
In the first step, the query expressions of the
nodes that use the result table of sq6 are rewrit-
ten. In this example, sq8 is changed and rewrit-
ten to: sq8: σc7=v8((σc6=v6(R(sq1) ⊲⊳ R(sq2) ⊲⊳
R(sq5))) ⊲⊳ R(sq7)).

Next, directed edges are generated from each
direct parent node of sq6 to each direct child
node of sq6. In this example, the edges are
generated from sq1 to sq8, sq2 to sq8 and sq5
to sq8. After that all edges associated with sq6
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Figure 3: The MQDG for the example

are removed and finally, sq6 is removed. The
resulting MQDG is shown in Figure 4.

3.4 Critical node view space
maintenance

The last issue we want to discuss in this sec-
tion is the maintenance of the critical node view
space (CNS). As we mentioned in Section 2.2,
the CNS stores all the materialized views for
the critical nodes in the VS. The size of CNS
is constrained. Therefore, when the CNS over-
flows, we have to make a decision to remove
some views and free some space for accommo-
dating new critical nodes (views). A natural
way to do this is to sort the critical nodes in
the CNS according to their potential benefits.
The node (view) with the smallest benefit is
removed first. However, the potential benefit
of a critical node is dynamically changing since
the nodes and edges in the MQDG are updated
very frequently. Therefore, when the CNS over-
flows under a given space constraint, we adopt
an approach to re-estimating the potential ben-
efit for each critical node (view) in the CNS by
using the current MQDG. All the critical nodes
are then sorted according to their new bene-

Figure 4: The MQDG of the example after sq6 is
removed

fit values. The critical nodes (views) with the
small benefit values are removed from the CNS
until sufficient space is freed to accommodate
a new critical node (view). This approach is
described in the following algorithm, which is
invoked in Algorithm 3.1.

Algorithm 3.6 :
CriticalNodeRemove(mqdg, cns, cn)
Input: (1) multiple query dependency graph mqdg; (2)
the critical node view space cns; (3) the new critical
node cn.
Output: (1) revised cns; (2) revised mqdg.
Method:
1. initialize benefitlist to empty;
2. for each critical node n in cns do
3. bft = CaculateBenefit(mqdg, n);
4. add (n, bft) into benefitlist;
5. end for
6. sort all nodes in benefitlist in the ascending

order by their benefit values;
7. while cns does not have enough space to

accommodate the result table (view) of cn do
8. get the next node m from benefitlist;
9. RemoveAndTransfer(mqdg,m);
10. end while
11. add the result table (view) of cn into cns.

Algorithm 3.6 first initializes a benefit list
benefitlist (line 1). For each critical node in
the CNS, the algorithm re-estimates its bene-
fit by invoking function CalculateBenefit() and
saves the node along with its benefit value in
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benefitlist (lines 2 - 4). It then sorts the
nodes in benefitlist according to their bene-
fit values (line 6). The replacement procedure
repeatedly picks the critical node (view) with
the smallest benefit from benefitlist and re-
moves it by calling function RemoveandTrans-
fer() until enough free space is obtained for the
new critical nodes (line 7 - 10). The new node
(view) is finally added to CNS (line 11). We as-
sume that the CNS has enough space to store
at least one critical node view.

4 Experiments

To evaluate the performance of our technique,
we conducted simulation experiments. Exper-
iment programs were implemented in Matlab
2007 on a PC with Intel R© dual core (1.5 GHz)
CPU and 4 GB memory running the Windows
R© 7 operating system.
Specifically, 100 random generic progressive

queries (PQ) and 10 external tables were used
in our experiments. The sizes for all external
tables ranged from 1 to 1000 disk blocks and
each disk block contained 4096 bytes. Each PQ
was composed of one or more step-queries (SQ),
where the number of steps was randomly cho-
sen between 2 and 10. Each SQ could have one
or more input tables (external tables or previ-
ous SQ result tables) and the number of inputs
was also randomly generated between 1 and 5.
The result table size of an SQ was calculated
by multiplying the product of all the input ta-
ble sizes with a selectivity. The I/O cost was
approximated by the product of the input table
sizes of the SQ. Such I/O cost was used as the
performance measure for our experiments.
In addition, each input table of an SQ could

be either an external table or a (previous) SQ
result table (including a critical node table).
The probabilities to choose an external table
or an SQ result table were not kept the same
in our experiments. It was assumed that users
had a preference to choose SQ result tables
(including the result tables of SQs of other
in-process PQs and critical SQs of completed
PQs) over external tables for their new SQs.
This was because a user tended to utilize their
previous results in their new SQs. Hence, the
SQ result tables were assigned a larger proba-
bility to be chosen.

To build the relevant multiple query depen-
dency graph (MQDG), we recorded the starting
and ending times for each PQ and the execu-
tion time for each SQ. The maximum number
of PQs allowed to be executed simultaneously
in the system was set to 10. The MQDG and
the critical node view space (CNS) were ini-
tially set to empty. When the processing of a
new PQ started, its executed SQs were added
into the MQDG gradually. Each SQ not only
had a chance to use the results of previous SQs
from the same or other in-process PQs in the
MQDG but also had a chance to use the re-
sults of critical SQs in the CNS. When a PQ pqi
was completed, we applied the model/formula
introduced in Section 3.2 to estimate the po-
tential benefit of each SQ in pqi. In the ex-
periments, Wd was set to 0.5, WE was set to
2 and WI was set to 1. After the benefits of
all the SQs in pqi were estimated, we choose
those SQs which could bring sufficient poten-
tial benefits to its direct and indirect children
as critical SQs (nodes).

The first experiment was to compare the
performance between the separately executed
PQ (SEPQ) processing approach and the crit-
ical nodes based PQ (CNPQ) processing ap-
proach. The separately executed PQ process-
ing approach executes PQs separately, i.e., an
SQ of a PQ pq1 could only use as input the re-
sults of the previous SQs within pq1 or external
tables. The critical nodes based PQ processing
approach allows an SQ to use any node tables
(external tables and result tables of any SQs) as
its input. In other words, the CNPQ approach
has more temporary SQs results available to
reuse. Note that, although an SQ (sq1) in
CNPQ may be formulated differently from the
corresponding SQ (sq2) in SEPQ, the results
of sq1 and sq2 are the same. The performance
comparison is shown in Figure 5. The X-axis
represents the total number of SQs in the test,
and the Y-axis represents the I/O cost (i.e., the
number of disk block accesses). From the fig-
ure, we can see that CNPQ always outperforms
SEPQ. Initially, the performance difference is
not very significant. As more and more PQs
were executed, more and more critical nodes
were selected to optimize the future SQs. As a
result, at the right end of the figure, a very sig-
nificant performance improvement can be ob-
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served.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
x 10

15

Number of step queries

T
ot

al
 I/

O
 c

os
t

 

 
Critical nodes based PQ processing approach
Separately executed PQ processing approach

Figure 5: Performance comparison between SEPQ
and CNPQ

The second experiment was to discover the
relationship between the performance of CNPQ
and the probability of using a critical node. In
the first experiment, the probability of using
a critical node was set to 0.01, namely, each
critical node had 1% chance to be used by an
SQ. In this experiment, we varied this prob-
ability to see how it would affect the perfor-
mance. The discovered relationship is shown
in Figure 6. The X-axis represents the proba-
bility of using a critical node in the test, and
the Y-axis represents the I/O cost. From the
figure, we can observe that, as the probabil-
ity increases, the I/O cost of CNPQ becomes
increasingly smaller. In other words, the per-
formance of CNPQ becomes better and better.
This is because, when the probability increases,
a critical node has a higher chance to be used
to optimize the SQs.
In the third experiment, we varied the upper

limit for the number of the critical nodes al-
lowed in the CNS and wanted to see how it
would affect the performance of CNPQ. For
a given upper limit for the number of criti-
cal nodes, say 50, when the CNS overflowed,
the handling strategy discussed in Section 3.4
was used to maintain the CNS. The motivation
for doing this experiment was as follows. We
wanted to know how many critical nodes could
work well for our technique and how many crit-
ical nodes were sufficient. This study would
help us find an appropriate solution to balance
the time complexity and the space complex-
ity. In this experiment, the upper limit for
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Figure 6: Performance behavior for different proba-
bilities of critical node use

the number of the critical nodes was varied be-
tween 0 and 100. The performance behavior
was shown in Figure 7. From the figure, we
can see that, except some individual cases, the
general trend of the performance curve is that,
as the upper limit for the number of the critical
nodes increases, the performance becomes in-
creasingly better. Furthermore, we noted that,
at the beginning, the cost decreases sharply. It
means that increasing a small number of criti-
cal nodes could bring a dynamically improved
performance. However, as the upper limit con-
tinues to increase, the performance improve-
ment becomes more and more flat. It is ob-
served that a trade-off solution for our experi-
ment case is about 30.
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Figure 7: Performance behavior for different maxi-
mum numbers of critical nodes allowed
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5 Conclusions

Efficiently processing PQs is demanded by nu-
merous contemporary applications but is chal-
lenging. In this paper, we have presented a new
materialized-view based technique to efficiently
process generic PQs. The main contributions
of the paper are summarized as follows.
We have introduced a multiple query depen-

dence graph to capture the data source depen-
dency relationships among the external tables,
SQs of in-process PQs and critical SQs of com-
pleted PQs. This graph is used to discover the
critical (popular) SQs of a completed PQ to
keep their result tables as materialized views.
We have identified the important factors that

affect the benefit that an SQ can bring to
its subsequent SQs (children) and developed a
model/formula incorporating these factors to
estimate the potential benefit of an SQ in a
completed PQ using the multiple query depen-
dency graph. A critical SQ is selected if its
estimated benefit is sufficiently large.
We have presented the relevant algorithms to

process the SQs of a given PQ, to dynamically
construct a multiple query dependency graph,
to evaluate the potential benefit of an SQ of
a completed PQ, to identify critical SQs and
store their results in a view storage.
We suggested a strategy to safely remove

nodes from the multiple query dependency
graph while all the dependency relationships
are transferred and retained. We have also pre-
sented a solution to the maintenance issue so
that the critical (node) view space can be effi-
ciently used under a space constraint.
Our experimental results demonstrate that

the proposed technique is quite promising in
processing the generic PQs.
Our future work includes further improving

the benefit evaluation model by incorporating
more factors such as the input table size, de-
veloping multi-layered materialized view tech-
nique to efficiently process PQs, and evaluate
the proposed techniques in a real DBMS envi-
ronment.
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