
DMVI: A Dynamic Materialized View Index for Efficiently

Discovering Usable Views for Progressive Queries ∗

Chao Zhu† Qiang Zhu†⋆ Calisto Zuzarte‡⋆ Wenbin Ma‡

†Department of Computer and Information Science

The University of Michigan, Dearborn, MI 48128, USA
⋆IBM Canada CAS Research, Markham, Ontario, Canada
‡IBM Canada Software Lab, Markham, Ontario, Canada

Abstract

Progressive queries (PQ) are a new type of
query emerged from numerous data intensive
applications. A user formulates a PQ in several
steps using a set of inter-related step-queries
(SQ). Efficiently processing PQs in a DBMS
is crucial in supporting these applications. In
our previous work, we introduced a material-
ized view based approach to efficiently process-
ing PQs, where our focus was on selection of
promising materialized views. The problem of
how to efficiently find usable views to answer
SQs for a PQ remained open. In this paper, we
present a new index technique, which is called
the dynamic materialized view index (DMVI),
to rapidly discover usable views to answer a
given SQ. The structure of the index and the
strategies to construct, maintain and use the
DMVI are discussed. The Experimental re-
sults demonstrate that our technique is quite
promising in improving the performance of the
materialized view based query processing for
PQs.

Keywords: Database, query processing,
query optimization, progressive query, materi-
alized view, index

∗Research was partially supported by the IBM
Canada Software Laboratory and The University of
Michigan.

c©Copyright Chao Zhu, Qiang Zhu and IBM
Canada Ltd., 2012. Permission to copy is hereby
granted provided the original copyright notice is repro-
duced in copies made.

1 Introduction

The problem of analyzing a large amount of
data in databases has recently received signif-
icant attention because of the rapid growth
of numerous data intensive applications (e.g.,
astronomy, biology, and social media). In
such data intensive applications, a new type
of query, which is so-called progressive queries
(PQ) [25], is demanded. Unlike a conventional
query, a PQ consists of a set of inter-related
step-queries (SQs). Each SQ is formulated by
a user based on the result(s) returned by the
previous SQ(s). Hence, the user gradually ap-
proaches his/her desired result by issuing sev-
eral SQs to the database.

As an illustration, let us consider the follow-
ing example. Assume that a user wants to buy
a car. In the first step, he/she searches all the
cars available at a website. However, the result
returned is too large. Hence, in the second step,
he/she adds a search condition to only return
cars which were manufactured in the USA. Af-
ter analyzing the result, he/she prefers to se-
lect a Ford car. Therefore, in the third step,
he/she checks the details (e.g., prize, configu-
ration, etc.) of all the Ford cars to make a final
decision.

From the above example, we can see that
the main characteristic of a PQ is that the SQs
of a PQ cannot be known beforehand. Each
SQ is formulated based on the result(s) of the
previous SQ(s). Hence, to execute such un-
predictable SQs, the results of previous SQs of

qzhu
Typewritten Text

qzhu
Typewritten Text
Proceedings of the Conference of

qzhu
Typewritten Text
 the Centre for Advanced Studies

qzhu
Typewritten Text

qzhu
Typewritten Text

qzhu
Typewritten Text
on Collaborative Research (CASCON'2012), pp. 42 - 56, IBM,

qzhu
Typewritten Text
Toronto, Canada, Nov. 5 - 7, 2012

qzhu
Typewritten Text
42

qzhu
Typewritten Text

each in-process PQ have to be kept in the sys-
tem (as one type of (temporary) materialized
views) until the PQ is completed. On the other
hand, it is desirable to retain some popular re-
sults (i.e., those being utilized frequently) of
SQs in the system (as another type of (criti-
cal) materialized views) even after their corre-
sponding PQs are completed so that the SQs
of future PQs can utilize these results to im-
prove their processing efficiency. To achieve
this goal, we introduced a dynamic material-
ized view based approach to processing PQs in
[24]. A model was developed to determine if
the result table for an SQ of a completed PQ
should still be kept in the system as a (critical)
materialized view. Both the popular results of
SQs from completed PQs and the results of pre-
vious SQs from in-process PQs are kept as ma-
terialized views in a view storage (VS).

In our previous work, we mainly focused on
how to select promising materialized views for
processing PQs. A straightforward linear scan
method was assumed to search/match a desired
materialized view for answering a given SQ
in a PQ. To improve the searching efficiency,
in this paper, we present a new index tech-
nique, called the dynamic materialized view in-
dex (DMVI), designed specifically for indexing
materialized views for PQs. The DMVI is dy-
namically built for all the (materialized) views
in the VS. When a new view v is added to the
VS, a search path is created in a tree structure
of the DMVI for v and the relevant information
(including some bitmaps for refined pruning) of
v is stored at the end (leaf) of the path. Using
the DMV I, the views in the VS can be effi-
ciently managed and searched to answer SQs
of PQs. Algorithms/strategies to construct the
DMVI, maintain the DMVI, and search desir-
able views using the DMVI are presented. As
demonstrated in our experimental results, the
DMVI can be utilized to efficiently discover us-
able views for answering a given SQ and ef-
fectively remove many undesirable views from
consideration for view matching. Since check-
ing if a view matches a given query is com-
putationally expensive, removing undesirable
views from consideration for view matching can
significantly improve the performance of query
processing based on materialized views.

Indexing and view materialization are two

important techniques for improving query per-
formance. Extensive work has been reported
for each of them in the literature. There is also
a substantial body of work exploring these two
techniques together. Roussopoulos [18] pre-
sented a method to select a set of views and
maintain an index for each of them to support
efficient query processing. The index of each
view contains pointers to the tuples of the base
tables used to construct the view. Kimura et

al. [10] adopted a form of Integer Linear Pro-
gramming (ILP) to select the best set of mate-
rialized views and indexes for a given workload
under given database size constraints, taking
into consideration of the effect of correlated
attributes. Bellatreche et al. [3] introduced
a technique to select optimal or near optimal
join indexes for a given set of OLAP queries,
where the indexes can be built on materialized
views as well as dimension and fact base ta-
bles. Talebi et al. [21] examined the exact
and inexact methods for selecting materialized
views and indexes to efficiently process OLAP
queries. Aouiche and Darmont [2] applied a
data mining process to select candidate mate-
rialized views and indexes in data warehouse
environments. Graefe and Zwilling [7] studied
techniques for transaction support for indexed
summary views. Kuno and Graefe [11] pro-
posed a deferred technique to maintain indexes
and materialized views. However, all the above
work considered indexes that were built on base
tables and/or materialized views to accelerate
the processing of queries on the database in
conjunction with materialized views. In con-
trast, the index technique we introduce in this
paper directly uses materialized views, instead
of the underlying data, as indexed objects, with
a goal of removing as many undesirable views
as possible from consideration for view match-
ing during query processing based on material-
ized views.

The most related work in the literature is
a so-called collective index method introduced
by Zhu et al. [25]. It is the only existing in-
dex technique specifically designed for process-
ing PQs. The main idea of this technique is
to construct a special index structure so that a
collection of member indexes on an input table
of an SQ in a PQ can be efficiently transformed
into indexes on the result table of the SQ, which

qzhu
Typewritten Text
43

can be utilized to process the subsequent SQs
of the PQ. However, like many other existing
indexes, the collective index is also built for the
underlying data objects rather than for mate-
rialized views used directly as indexed objects,
which is different from our index in this paper.

Our previous work includes one studying
how to apply materialized views to optimize a
special type of PQs, called monotonic PQs, in
[23] and another one studying how to apply ma-
terialized views to optimize generic PQs in [24].
However, the focus of our previous work was on
how to select materialized views, while the fo-
cus of this work is on how to efficiently find
desirable materialized views to answer an SQ
in a given PQ. Our indexing technique can be
used in conjunction with existing view match-
ing [4, 8, 12, 13, 15, 16, 20, 22] to identify de-
sirable views for answering a given SQ. To our
knowledge, no similar work has been reported
in the literature.

The rest of this paper is organized as follows.
The preliminaries and background knowledge
are introduced in Section 2. The dynamical
materialized view index (DMVI) and related
algorithms/strategies are presented in Section
3. Experimental results are reported in Section
4. The conclusions are summarized in Section
5.

2 Preliminaries

In this section, an overview of some related con-
cepts that were introduced in our earlier work
[24] is given. Specifically, Section 2.1 discusses
two types of materialized views for processing
progressive queries, and Section 2.2 presents
the concept of a materialized view storage.

2.1 Two types of materialized

views

As mentioned in Section 1, the main charac-
teristic of a PQ is the unpredictability of its
SQs. The user cannot know what the next SQ
is before the result(s) of the previous SQ(s) is
returned. Therefore, the result tables for all
the finished SQs of an in-process PQ have to
be kept in the system because they may be
used to execute the following SQs. Since multi-

ple PQs are allowed to execute simultaneously,
the result tables for the finished SQs of all in-
process PQs in the system are kept as materi-
alized views, which we call them the temporary
materialized views (TMV).

Usually, after a PQ is completed, all the
TMVs for its SQs are removed from the sys-
tem. However, it is possible that the result
tables of some SQs of a completed PQ are pop-
ular, e.g., they are frequently used by the SQs
of other PQs. In such a case, they may also
have a high chance to be used to optimize fu-
ture SQs. Thus, the popular results of SQs
of completed PQs are still kept in the sys-
tem and constitute another type of material-
ized views, which we call them the critical ma-
terialized views (CMV). Generally, the lifetime
of a TMV is shorter, which is removed after its
corresponding PQ is completed, than a CMV,
which is kept in the system until the allocated
view space overflows.

2.2 View storage

To store the materialized views, the system al-
locates a space, called the view storage (VS).
At the logical level, we divide the VS into two
subspaces according to the two different view
types, i.e., the temporary view space (TVS) for
the TMVs, and the critical view space (CVS)
for the CMVs.

However, at the physical level, the TMVs
and the CMVs are mixed and stored together
in the VS. TMVs and CMVs are differentiated
by their view type identifiers, which are stored
in our new index. Figure 1 shows the structure
of the view storage.

3 Dynamic materialized

view index

To efficiently find the usable views to answer
SQs, we present a so-called dynamic mate-
rialized view index (DMVI) to index all the
views in the VS in this section. The struc-
ture of the DMVI is introduced in Section 3.1.
An encoding-based matching technique is pre-
sented in Section 3.2. The DMVI construc-
tion issue is discussed in Section 3.3. The view

qzhu
Typewritten Text
44

View Storage

(VS)

.

.

TMV 1

.

.

TMV 2

CMV 1

CMV 2Logical level

TVS CVS

.

.

TMV 1

CMV 1

CMV 2

TMV 2

Physical level

Figure 1: The structure of the view storage

search by using the DMVI and the maintenance
issue for the DMVI are discussed in Section 3.4.

3.1 Index structure

In this work, we mainly focus on addressing
the issue on how to efficiently answer SQs us-
ing the available TMVs and CMVs to reduce
the SQ processing cost. In other words, we
want to develop an efficient method to search
for possibly usable views from the VS to an-
swer a given SQ. A straightforward way to do
this is to apply a sequential scan to the VS for
checking each view to see if it is usable to an-
swer the given SQ. However, the overhead of
this approach is usually high, especially when
the number of views is large. Note that, in gen-
eral, matching a view with a given query (i.e.,
to check if the former can be used to answer the
latter) is computationally expensive. Hence,
developing a view search technique to rapidly
identify desirable views to answer a given SQ
(without having to check all the views) is cru-
cial in achieving efficient optimization for PQs.

However, the special characteristics of the
materialized views for PQs raise some new chal-
lenges to develop such an access method for
the views. The first challenge is that all the
materialized views are dynamically generated
while PQs are processed. Therefore, the view
access method has to support how to dynam-
ically add new views. The second challenge
is the high complexity of maintaining the VS

since the TMVs are created and removed with a
high frequency. Furthermore, all of the CMVs
in the VS are transformed/selected from the
TMVs. Therefore, the view access method has
to support efficient maintenance of the VS.

In this paper, we develop a dynamic mate-
rialized view index to efficiently find the views
that are possibly usable for answering the SQs.
The main idea is to dynamically build an in-
dex for all the materialized views in the VS.
For each materialized view v, its corresponding
query expression contains the input tables of v.
Unlike a conventional index on a table, which
uses the attribute values as search keys to find
the satisfied rows of the table, the DMVI uses
the identifiers of the view input tables as the
search keys to find the desirable views. We call
the set of all the input tables of an SQ (view)
as the domain of the SQ (view). Hence, we
also call an input table as a domain table. The
criterion used to search the DMVI is that the
domain of a desirable view is the same as that
of the given SQ. Note that, although a view
may also be usable if its domain is a superset
of the domain of the given SQ, such a view usu-
ally does not match the given SQ as closely as a
view whose domain equals to that of the SQ. To
reduce the number of views returned from the
index search, we do not consider the superset
criterion. On the other hand, it does not guar-
antee that the views returned from the equal-
domain criterion are always usable for answer-
ing the given SQ. Hence, a refined checking on
the usability of the returned views is required.
Therefore, the DMVI is an approximate index
with an objective to return a set S of materi-
alized views for a given SQ such that (1) the
views in S match the given SQ as closely as
possible; (2) the size of S is as small as possi-
ble. The views in S are then examined to see if
they can be used to efficiently process the given
SQ.

The data structure of the DMVI is an or-
dered tree in which there is an order among
the children of a node. Each leaf node of the
tree represents a materialized view and keeps
the relevant view information. Each internal
node n (except the root) represents a domain
table used by the materialized views for the leaf
nodes of the corresponding subtree rooted at n,
namely, n is associated with the identifier of the

qzhu
Typewritten Text
45

corresponding domain table. The root node of
the tree is the starting point for a search. The
domain tables labeled on the path between the
root and a leaf node for a materialized view v

are all the domain (input) tables for v. Note
that, for simplicity, we will use a domain table
and a domain table identifier interchangeably.
Figure 2 shows an example of the dynamic ma-
terialized view index, where four materialized
views v1, v2, v3 and v4 are indexed and four
domain tables t1, t2, t3 and t4 are used by the
views. The domains of v1 and v2, for example,
are t1, t2 and t1, t3, respectively. The tables
in a domain are used as a search key for the
corresponding materialized view in the DMVI.

n1

root

n2 n4

n5 n6

n9

(v1)

n3

n7

n11

(v3)

n10

(v2)

n8

(v4)

t1 t2 t4

t2 t3 t3

Figure 2: An example of the DMVI

As we mentioned earlier, the first challenge
to create an index for the views is that all
the materialized views are dynamically gener-
ated. To tackle the challenge, the DMVI must
support how to dynamically incorporate new
views. In the previous example, assume that
we have another materialized view v5 whose do-
main tables are: t1 and t4. v5 can be indexed in
the tree in two alternative ways: (1) create an
internal node n12 labeled with t4 and connect
n12 to n2 as a child, then create a leaf node
n13 for v5 and connect n13 to n12 as a child;
(2) create an internal node n14 labeled with t1
and connect n14 to n4 as a child, then create a
leaf node n15 for v5 and connect n15 to n14 as a
child. To avoid ambiguity, we need to define a

priority order for the nodes for insertions. The
DMVI is constructed by following the priority
order defined as follows.

Suppose we want to index a new material-
ized view v in the DMVI. Assume that node ni

is either the root or the last internal node that
has been chosen on the search path of v in the
DMVI, and ni has internal nodes n1, n2, ..., nm

as m ordered (from the left to the right) chil-
dren. The domain tables represented by these
internal nodes are t1, t2, ..., tm, respectively.
The priority order used to determine the next
node on the search path for v is given by the
following:

Case 1: n1 is chosen to be the next node on
the search path for v if the domain of v contains
table t1.

Case 2: n2 is chosen to be the next node on
the search path of v if the domain of v contains
t2 but not t1.

......

Case m: nm is chosen to be the next node on
the search path of v if the domain of v contains
tm but not t1, t2, ..., or tm−1.

If none of node nj (1 ≤ j ≤ m) has its labeled
table contained in the domain of v and the do-
main of v still has tables that have not been
labeled on the search path of v, a new internal
node for each unlabeled table is created one at
a time until all domain tables of v are labeled
on its search path. If all the domain tables of
v have been labeled on the search path of v,
a leaf node representing v is created and con-
nected to the last internal node on the search
path.

The above rule implies that, in the DMVI, a
left child node has a higher priority to produce
descendants. In the previous example, two can-
didate nodes considered are n2 and n4. n2 is on
the left of n4. Hence, n2 rather than n4 is cho-
sen as the next node on the search path of view
v5. n3 is excluded because table t1 represented
by n3 is not in the domain of v5.

From the rule, we observe two properties of
the DMVI.

(1) At the first level of the tree (i.e., the level
just below the root), if the leftmost internal
node n is labeled with a domain table t, then
all the indexed views whose domains contain t

can be found in the subtree rooted at n.

(2) At the first level of the tree, if an in-

qzhu
Typewritten Text
46

ternal node n that is not the leftmost node is
labeled with a domain table t, then all the in-
dexed views whose domains contain t can be
found in the subtree rooted at n or the sub-
trees rooted at the left brothers of n. Note
that the internal node with t as a label must
be at a level higher than one in the latter case.

In general, given an internal node nm labeled
with a domain table t at the m-th level of the
tree, if an indexed view v is under the subtree
rooted at nm, t must be the m-th domain table
of v; if v is under a subtree rooted at a left
brother of nm, the node with t as a label can
only be found at a level higher (>) than m; if
v is under a subtree rooted at a right brother
of nm, the node with t can only be found at a
level lower (<) than m.

The second challenge for developing a
method for accessing views for PQs, which we
mentioned earlier, is the high complexity of
maintaining the views in the VS. To tackle the
challenge, the DMVI has to support a way to
efficiently maintain the TMVs and CMVs.

On one hand, the DMVI should support a
logical level transformation from a TMV to a
CMV (not physically move the view). As we
mentioned earlier, each leaf node of the DMVI
stores the information of a view. The informa-
tion of a view includes the view name, a view
type indicator to differentiate the view types
(TMV or CMV), etc. We will discuss the de-
tails of the view information structure in Sec-
tion 3.2. When a transformation occurs, the
view itself and all its related information are
kept unchanged except the view type indica-
tor.

On the other hand, it is not trivial to main-
tain the TMVs and CMVs in the DMVI. In
general, an SQ can be formulated using as in-
puts the external (base) tables, the result ta-
bles of the previous SQs of in-process PQs (i.e.,
TMVs) and the result tables of the SQs of his-
torical PQs (i.e., CMVs). Therefore, the TMVs
and CMVs can also be the domain tables of an
SQ besides the external tables. This implies
that the CMVs and TMVs can appear in the
search keys for the views indexed in the DMVI.
For CMVs, their long lifetimes make them rela-
tively easy to handle. However, for TMVs, the
frequent updates make their management more
challenging.

Let us consider an example. After an SQ of
a PQ is executed, its result table is saved as
a TMV v1 and indexed in the DMVI. Assume
that v1 is used by some other SQs. When the
PQ is completed, the SQ needs to be discarded
or transformed into a CMV. In the former case,
view v1 should be removed from the VS. As a
result, the search keys (i.e., the search paths) of
all the views whose domains include v1 become
invalid.

To tackle this challenge, we have designed an
algorithm to rebuild the invalid search paths in
the DMVI. The details of the algorithm will be
discussed in Section 3.4.

To apply the algorithm, we have to find all
the views whose domains contain the discarded
view. A straightforward way to do this would
be to traverse the DMVI. However, we observe
that we can make use of the two properties of
the DMVI to improve such a search. According
to the first property of the DMVI, at the first
level of the tree, if an internal node n is the
leftmost child of the root and its represented
domain table t becomes invalid, all the views
whose domains contain t can be found in the
subtree rooted at n. Furthermore, according to
the second property of the DMVI, at the first
level of the tree, no matter where node n whose
domain table t becomes invalid is, all the views
whose domains contain t can be found in the
subtree rooted at n or the subtrees rooted at
the left brothers of n. Therefore, there is no
need to search the right brothers. This is one
of the reasons why the priority order for node
insertions was defined as such.

Since TMVs need to be removed and trans-
formed frequently while CMVs and external ta-
bles are quite stable, the search keys which in-
volve TMVs are easy to become invalid. When
a view v is indexed in the DMVI, if the domain
of v contains some TMVs, then the TMVs (in-
ternal nodes) are picked up first and inserted
into more left branches than its brother nodes
which represent CMVs and/or external tables.
The tree construction details will be discussed
in Section 3.3.

Let us consider the following example. As-
sume that, in a given DMVI, four TMVs tmv1
∼ tmv4 and one CMV cmv1 are indexed; four
external tables et1 ∼ et4 are used as domain
tables; tmv1, tmv2, and cmv1 are also used as

qzhu
Typewritten Text
47

domain tables. The DMVI is shown in Figure
3.

n1

root

n2 n3 n4

n6 n7

n13

(tmv1)

n10

(tmv3)

n12

(cmv1)

n11

(tmv4)

n14

(tmv2)

n8 n9

n3tmv1 tmv2 et1 et2

et2 cmv1 et3 et4

Figure 3: An example of the DMVI with views as
domain tables

In the figure, we can see that tmv1 and tmv2
are assigned to the first level nodes n2 and n3

in the DMVI. If tmv1 becomes invalid, to find
all the views whose domains contain tmv1, only
the subtree rooted at n2 needs to be searched.
If tmv2 becomes invalid, to find all the views
whose domains contain tmv2, only the subtrees
rooted at n2 and n3 need to be searched. How
to rebuild an invalid search path after it is
found will be discussed in Section 3.4.

3.2 View bitmap-based matching

in the DMVI

The main purpose of introducing the DMVI is
to efficiently find usable views to answer the
SQs. Using the above structure of the DMVI,
the system filters out undesirable views in the
VS and only returns the views which share the
same domain with the SQ to be processed.
However, as mentioned earlier, the returned
views are not guaranteed to be usable for an-
swering the SQ. To reduce the number of cases
in which we have to directly examine a returned
view for its usability, which is computationally
expensive, we adopt an efficient refined filter-
ing, which is called the bitmap-based matching.
The query expression of a view is encoded as

several bitmaps in a special way. The bitmaps

are saved in the DMVI. As mentioned be-
fore, each leaf node stores the information of
a view. The information includes: the view
name/identifier, the view type, the query ex-
pression of the view, the view bitmaps and en-
coding method, and the view location. Hence,
the view bitmaps can be accessed in the leaf
nodes of the tree. As we will see, the encoding
method depends on the domain of a query ex-
pression (for a view or an SQ). In other words,
the encoding method is the same for those
query expressions that share the same domain.
When an SQ sq arrives, the system uses the
DMVI tree discussed in Section 3.1 to find all
the leaf nodes whose associated views share the
same domain with sq. The query expression of
sq is then encoded by using the same encoding
method for these views. For each view in the
returned set, its bitmaps are compared with
those for sq. If the view is found not usable
for sq, it is filtered out. Note that our bitmap
matching is different from a conventional view
matching. As we will see, even if a view passes
the bitmap matching, it still may not be usable
for answering sq. A final direct view match-
ing examination is needed. However, using the
bitmap matching technique, the number of can-
didate views for the direct view matching ex-
amination is further reduced.

Like most related work in the literature, we
consider the common select-project-join query
expressions (for SQs and views) and assume
that the (qualification) conditions for the se-
lect and join operations are in the conjunctive
normal form (CNF) in the following discussion.

To encode a query expression (for an SQ or
view), an encoding method is required. As
mentioned above, our encoding method de-
pends on the domain of the query expression.
Specifically, the encoding method creates three
bitmaps: one for each operation (i.e., project,
select and join) of the query expression. Given
a domain T (consisting of input tables), its en-
coding method is described as follows:

(1) The project bitmap. For each domain ta-
ble t in T , the bitmap for a project op-
eration contains a bit for each attribute a

of t. If a appears in the target attribute
list of the project operation, the bit for a

in the bitmap is set to 1. Otherwise, the

qzhu
Typewritten Text
48

bit for a is set to 0. Let us consider a sim-
ple example. Assume that T contains only
one domain table t. t has four attributes:
a1, a2, a3, and a4. The encoding method
allocates a bit for each of a1, a2, a3 and
a4. If the given query expression is: select
a1, a2 from t, then the bits for a1 and a2
are set to 1 and the bits for a3 and a4 are
set to 0. Hence, the bitmap for this query
is 1100.

(2) The select bitmap. For each domain table
t in T , every attribute a of t is analyzed
and its range of values is divided into n

subranges. n can be 1 if the range of a

cannot be divided. For example, it is diffi-
cult to divide the range of an attribute a1
representing the paper title for a paper ta-
ble. A bit segment which contains n bits is
assigned for a, one bit for each subrange.

If the range of a are restricted by one or
more clauses in the CNF of the condition
of the select operation, the bits in the bit
segment for a are set accordingly. Let us
consider a simple example. Assume that
attribute a1 represents the age of a per-
son and its range is from 0 to 150. The
encoding method divides the range of a1
into 5 subranges: [0, 30], [31, 60], [61, 90],
[91, 120] and [120, 150]. Then the encod-
ing method assigns a bit segment which
contains 5 bits to a1. If the given query
expression is: select a1 from t where a1 >

70. In the bit segment for a1, the bits for
the subranges with at least one value sat-
isfying the condition are set to 1, and the
other bits are set to 0. Note that, although
only some (not all) values in the subrange
[61, 90] satisfy the query condition, its cor-
responding bit in the bit segment is set to
1. Hence, the bit segment for a1 in this
example is 00111.

If the range of a is not restricted by any
clause in the CNF of the condition of the
select operation, all the bits of the bit seg-
ment of a are set to 1. In other words, we
take a conservative approach by keeping
all the subranges.

The bitmap for the select operation con-
sists of all the bit segments for the at-
tributes of the domain tables in T .

(3) The join bitmap. To generate a bitmap for
a join operation, all the possible attribute
pairs that can be used for a join operation
are discovered from the domain tables in
T first. Such an attribute pair is called a
join pair. For each join pair, it is assigned
with a bit in the bitmap. If a join pair
appears in the join condition of the query
expression (with any comparison such as
=, <, >), then its bit in the bitmap is set
to 1. Otherwise, the bit is set to 0.

Now let us discuss how to use the bitmaps
to compare a given SQ sq with a view v.
As we mentioned earlier, the main purpose of
the bitmap matching is to filter out unusable
views that are returned by the searching on
the DMVI tree. The key idea is to prune some
views which has no containment relationship
with the SQ, namely, the views do not contain
the result of the SQ.

Assume that v and sq are encoded using
the same encoding method (i.e., v and sq have
the same domain). The process of the bitmap
matching can be done in three stages.

In the first stage, the project bitmap pbm1

for v and the project bitmap pbm2 for sq are
compared. The bit value of 1 represents that its
corresponding attribute appears in the result
of the relevant query. Therefore, if the bit for
an attribute a in pbm1 is 0 but in bpbm2 is 1,
it means that a is in the result of sq but not
in v. Hence, the system can conclude that v

cannot contain the result of sq. To compare
pbm1 and pbm2, the system performs a bitwise
complement on pbm2 first and then a bitwise
OR on pbm1 and pbm2. If the result contains 0,
it means v cannot contain the result of sq. For
example, if pbm1 is 00111, pbm2 is 10011. First,
a bitwise complement is performed on pbm2 to
get 01100. Then, a bitwise OR is applied on
pbm1 and pbm2, resulting in 01111. Since the
result contains 0, v cannot contain the result of
sq. Hence, v is filtered out.

In the second stage, the select bitmap sbm1

for v that has passed the first stage test and
the select bitmap sbm2 for sq are compared.
If the bit segment for an attribute a in sbm1

indicates a narrower range (i.e., missing some
1’s) than the bit segment for a in sbm2, it im-
plies that v restricts the range of a in its select

qzhu
Typewritten Text
49

operation more, i.e., the select operation filters
out more rows than sq. Hence, there may ex-
ist some rows in the result of sq but not in v.
In other words, v cannot contain the result of
sq. In this case, v should be filtered out. Sim-
ilar to the first stage, a bitwise complement is
performed on sbm2 first, then a bitwise OR is
applied on sbm1 and sbm2. If the result con-
tains 0, it implies v cannot contain the result of
sq. For example, assume that each of the two
bitmaps for v and sq consists of only one bit
segment, say, sbm1 is 00011 and sbm2 is 00001.
First, a bitwise complement is performed on
sbm2, resulting in 11110. Then, a bitwise OR is
applied on sbm1 and sbm2, resulting in 11111.
Thus, the containment relationship between v

and the result of sq is still unknown. v needs
to be further examined.

In the third stage, the join bitmap jbm1 for
v that has passed the second stage test and the
join bitmap jbm2 for sq are compared. Each
bit in the join bitmap indicates the occurrence
of a pair of join attributes in the condition of
the join operation for a given query. If the join
bitmaps of v and sq are different, it is very dif-
ficult to determine if the containment relation-
ship between v and sq holds, which makes the
view matching examination difficult. To reduce
the view matching cost, we exclude such views
from consideration. Hence, we require jbm1

and jbm2 to be the exactly same. Otherwise,
v is filtered out.

From the above discussion, we can see that
our complete DMVI consists of the tree struc-
ture discussed in Section 3.1 and the bitmaps
presented in this section. The objective of the
DMVI is to efficiently filter out those views that
are clearly unusable for answering the given SQ
or very difficult to perform view matching, re-
sulting in a small set of candidate views. The
candidate views are then further examined (i.e.,
perform view matching) to see if they are in-
deed usable for answering the given SQ.

3.3 The DMVI construction

In this section, we discuss the details of the
DMVI construction. The DMVI is dynamically
created. If no view is indexed, the DMVI con-
tains only a root node. When the result table
of an SQ becomes a materialized view, the view

is added into the VS and indexed in the DMVI.
The main idea is to build a search path p for
v in the DMVI using the domain tables of v
as the elements of the search key. Each inter-
nal node in p represents a domain table (i.e., a
search key element) of v. The leaf node which
is at the end of p represents v (including all its
relevant information).

In Section 3.1, we defined a priority order for
the existing internal nodes of the DMVI tree
so as to determine the next node on the search
path for a new view that is being inserted into
the tree. However, there are two other related
orderings that need to be decided when index-
ing a new view v, that is, the order of the do-
main tables of v and the order of the domain
tables for the entire workload. The former de-
termines which domain table (internal node) of
v is inserted (created) first. The latter deter-
mines where to insert a domain table of v in
the tree in relation to other domain tables in
the DMVI. Let us consider the following exam-
ple. Assume that a domain table t of v is to be
added as a child node of n. n has one existing
child node cn. How to insert t is ambiguous
because t can appear as the left brother or the
right brother of cn. In this case, the order of
the domain tables for the entire workload is re-
quired. The policy we use is that the domain
table with a higher priority appears on the left.
We have mentioned the idea of this second or-
der briefly in Section 3.1.

To solve the above two ordering issues, we as-
sign different priorities to different domain ta-
bles. A two-level priority rule is used to order
the domain tables. At the first level, the do-
main tables are recognized only by their types
(TMVs, CMVs, or external tables). The pri-
ority order for these three domain table types
from high to low are: TMVs, CMVs, and the
external tables. At the second level, within
each table type, an older domain table is given
a higher priority. With the two-level priority
rule, the order of the domain tables of v and
the order of the domain tables in the entire
workload can be determined.

Let us consider an example: given a set of
domain tables: T = {cmv1, et2, et1, tmv2,
tmv1}, where cmv1 is a CMV; tmv1 and tmv2
are TMVs; et1 and et2 are external tables. To
determine the order of the tables in T , the ta-

qzhu
Typewritten Text
50

bles are first sorted by the table types: tmv2,
tmv1, cmv1, et2, et1. After that, the tables are
further sorted by their time order within each
type. The ordered list is: tmv1, tmv2, cmv1,
et1, et2.

Now let us discuss how to index a new view v

in the DMVI. The basic process is described as
follows. All the domain tables of v are sorted by
the two-level priority rule. The domain tables
in the entire workload are also sorted by the
rule and saved in a workload list. The domain
tables of v are picked up one at a time in the
given order. For the first picked domain table
t1, each node of the root at the first level of
the tree is checked. If there exists an internal
node n1 labeled with t1, then n1 is picked as
the first node in the search path for v and used
to lead the rest of the domain tables (internal
nodes) of v. In this case, the insertion process is
recursively applied to n1 and the next domain
table for v. Otherwise, a new internal node n2

is created for t1. In the latter case, we need
to decide where to insert n2. Clearly, n2 must
be a child node of the root. In the DMVI, if a
node has multiple child nodes, the order (from
the left to the right) of these child nodes is
determined by the order in the workload list.
Thus, each child node of the root is compared
with n2 one by one from the left to the right.
If a node n3 in the DMVI is found to be the
first node to appear after n2 based on the order
from the workload list, n2 is inserted as the
immediate left brother of n3 and an edge from
the root to n3 is created. If no node after n2 is
found in the DMVI, it means all the child nodes
of the root should appear before n2. Hence, n2

is inserted as the rightmost child node of the
root, and an edge from the root to n2 is created.
n2 is used to lead the rest search path with a
new internal node created for each remaining
domain table of v. After all the domain tables
of v are associated with the search path, a leaf
node which contains the information (including
bitmaps) of v is created and linked to the last
domain table of the search path. If multiple leaf
nodes (views) share the same search path, the
order of the leaf nodes is unimportant, which
can be given, for example, on the first-come-
first-serve base.

The following recursive algorithm describes
the formal procedure for inserting (indexing)

a new view (v) into the DMVI (dmvi). At
the beginning, the algorithm is invoked using
the root node of the DMVI (for cnode) and
the complete list of domain tables of the view
(for cdomainlist). It assumes that the input
lists of the domain tables for both the view
(cdomainlist) and the workload (workloadlist)
have been sorted using the two-level priority
rule.

Algorithm 3.1 : ViewInsertion(v, dmvi, cnode,
cdomainlist, workloadlist)
Input: (1) the new view v for indexing; (2) the DMVI
dmvi; (3) the node cnode in the DMVI that leads
the remaining search path of the view; (4) the list
cdomainlist of current (unprocessed) domain tables of
the view; (5) the list workloadlist of domain tables in
the workload;
Output: the revised DMVI.
Method:
1. if cdomainlist is empty then
2. create a leaf node lnode with view info for v;
3. link lnode to cnode as the rightmost child;
4. return;
5. else
6. let ftable be the first domain table in cdomainlist;
7. remove ftable from cdomainlist;
8. if there exists a child node dnode of cnode in dmvi

associated/labeled with ftable then
9. ViewInsertion(v, dmvi, dnode, cdomainlist,

workloadlist);
10. else
11. create an internal node inode for ftable;
12. if cnode has no child node then
13. link inode to cnode as the only child;
14. ViewInsertion(v, dmvi, inode, cdomainlist,

workloadlist);
15. else
16. find the right position for inode among the

ordered children of cnode based on
the order given in workloadlist;

17. link inode to cnode as a child at the right
position;

18. ViewInsertion(v, dmvi, inode, cdomainlist,
workloadlist);

19. end if
20. end if
21. end if.

Using the above algorithm, we can build the
DMVI dynamically by inserting every new view
when it becomes available.

3.4 The view searching using the
DMVI and the DMVI main-
tenance issues

Let us first describe how to apply the DMVI to
find the desirable views in the VS for the view
matching. When an SQ sq is issued, the set T
of domain tables of sq is extracted and sorted
using the two-level priority rule. According to
T , a proper encoding method is applied to gen-
erate the bitmaps for sq. The ordered tables in
T are then used as a search key to find the set

qzhu
Typewritten Text
51

lns of leaf nodes whose views share the same
domain with sq. For each node ln in lns, the
bitmaps of the view for ln are extracted and
compared with those of sq. If the view is not
filtered out by the three-stage bitmap match-
ing, the view is found and returned. Using the
DMVI, as we will see in Section 4, the number
of the candidate views that are used to per-
form the final direct view matching for an SQ
is significantly reduced.

The last issue we want to discuss is how to
maintain the DMVI when a view v is removed
from the VS. First, the domain of v is used
as the search key to find the set lns of all the
leaf nodes whose corresponding views have the
same domain in the DMVI. Second, the leaf
node ln in lns which was assigned for v is
found. After that, the parent node pn of ln

in the DMVI is found and checked. If pn con-
tains multiple child nodes, it means pn is still
on the search path(s) for other views. Hence,
only ln is removed. If pn has ln as the only
child, pn becomes useless after ln is removed.
Thus, both ln and pn are removed. This node
removal may be propagated up the root in the
DMVI.

However, only removing the useless nodes on
the search path for v in the DMVI is not suf-
ficient since the search paths of all the views
that use v in their search keys also become in-
valid in the DMVI. To solve this problem, we
adopt an approach to efficiently rebuild all the
invalid search paths in the DMVI. The work
is done in two stages. In the first stage, every
view v′ which includes v in its domain is found.
The main idea is to discover all the search paths
which contain a node labeled with v. The de-
sired views can be found at the end of these
search paths. To improve the performance, we
utilize the properties of the DMVI. As men-
tioned in Section 3.1, if the internal node n for
v appears as at the first level (i.e., a child of
the root), all v′s can be found in the subtree
rooted at n or the subtrees rooted at the left
brothers of n. Therefore, the branches for the
right brothers are pruned.

In the second stage, the search path for each
discovered v′ in the first stage is rebuilt. The
old search path for v′ is removed first. The re-
moving process is similar to the one for delet-
ing the search path of a removed view in the

DMVI, as described above. Then, the query
expression qe of v′ is rewritten by merging it
with the query expression of v after the occur-
rence(s) of v is removed, and the domain T of
v′ is updated by replacing v in T with the do-
main tables of v. After that, the domain tables
in T are sorted using the two-level priority rule,
and v′ with the updated T is inserted back to
the DMVI.

Let us consider the following example. As-
sume that the domain T1 of a view v1 is: {ec1,
ec2}; the query expression of v1 is: select a1
from ec1, ec2 where ec1.a1 = ec2.a2; the do-
main T2 of a view v2 is: {ec3, v1}; the query
expression of v2 is: select a3 from v1, ec3 where

v1.a1 = ec3.a3. In this example, v2 uses v1 in
its domain. Hence, if v1 is removed, the search
path for v2 in the DMVI becomes invalid and
has to be rebuilt. The old search path for v2
is removed first. Based on T1 and the query
expression of v1, T2 is changed to {ec1, ec2,
ec3} and the query expression of v2 is rewrit-
ten to: select a3 from ec1, ec2, ec3 where ec1.a1
= ec2.a2 and ec1.a1 = ec3.a3. After that, the
new query expression is saved and the domain
tables in T2 are sorted and used to build a new
search path for v2.

4 Experiments

In this section, we report the results of our
simulation experiments to demonstrate the ef-
ficiency of our technique. The experiment pro-
grams are implemented in Matlab 2010 on a
PC with Intel R© dual core (1.5 GHz) CPU and
4 GB memory running the Windows R© 7 op-
erating system.

100 random progressive queries were gener-
ated for our experiments. The starting and
ending times for each PQ and the execution
time for each SQ were recorded. The maximum
number of PQs allowed to be executed simul-
taneously in the system was set to 10. Each
PQ was formulated by several SQs, where the
step number was randomly chosen from 2 to
20. 50 random external tables were used as
domain tables by SQs. Each external table
consisted of several attributes, where the at-
tribute number was randomly chosen from 2 to
10. Each attribute was assigned with a random
range, where the number of subranges for the

qzhu
Typewritten Text
52

select bitmap was also randomly chosen from 1
to 5. For each SQ sq, a corresponding TMV
was created when sq was completed and re-
moved when the corresponding PQ of sq was
completed. When a PQ was completed, the re-
sults of its SQs had a chance (probability) to
become CMVs. Both TMVs and CMVs were
also used as domain tables by SQs.

Each SQ sq was generated in two steps.
First, the domain of sq was determined. The
domain of sq contains one or more domain ta-
bles, where the domain size is randomly cho-
sen between 1 and 5. Each domain table of sq
could be either an external table or a materi-
alized view (TMV or CMV). The probabilities
to choose an external table and a materialized
view were different in our experiments. We as-
sumed that users preferred to choose previous
SQ results (i.e., TMVs and CMVs) over exter-
nal tables for their new SQs if possible. Hence,
CMVs and TMVs were assigned a larger prob-
ability to be chosen. Second, the query expres-
sion of sq was built. According to the domain T

of sq, attributes were randomly chosen from the
domain tables in T to determine the project op-
erations (target attributes), select operations
(attributes whose ranges were restricted), and
join operations (pairs of joining attributes).

In our experiments, the DMVI started with
a single root node. When a materialized view
v (TMV or CMV) was determined, its domain
tables were sorted by the two-level priority rule,
and a search path was created for v in the
DMVI. At the end of the path, the bitmaps
of v was saved in a leaf node. Before each SQ
sq was executed, the DMVI was searched and
the desirable views (both the domains and the
bitmaps matched) were returned.

In the first experiment, the performance
of the DMVI based view searching technique
(DMVIT) was compared with that of the se-
quential scan based view searching technique
(SST). The main idea of the SST is as follows.
The views are picked from the VS one by one
sequentially. Each view is compared with the
given SQ sq. If the view v contains the result
of sq, then v is considered as a candidate view.
After all the views are checked, a best view is
chosen from the candidate views to answer sq.
In contrast to the SST, our technique first uses
the DMVI to filter out the views that do not

share the same domains with the given SQ sq.
It then prunes the views whose bitmaps do not
match the ones for sq. After that, our tech-
nique processes the desirable views in the same
way as the SST, i.e., the view matching tech-
nique is applied to examine each view against
sq to find the candidate views and then the
best view for answering sq. Figure 4 shows the
number of view matching comparisons saved
by the DMVIT over the SST. The X-axis rep-

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14
x 10

4

Number of step queries

S
av

ed
 n

um
be

r
of

 c
om

pa
ris

on
s

Figure 4: Saved view matching comparisons between
DMVIT and SST

resents the total number of SQs in the test,
and the Y-axis represents the saved number of
view matching comparisons. From the figure,
we can see that as the number of SQs increases,
the view matching cost saving is increasingly
larger, which demonstrates the efficiency of our
proposed technique.

0 100 200 300 400 500 600 700 800 900 1000
0

5000

10000

15000

Number of step queries

T
ot

al
 n

um
be

r
of

 c
om

pa
ris

on
s

us
in

g
th

e
D

M
V

IT

probability = 0.2
probability = 0.25
probability = 0.3

Figure 5: The performance of the DMVIT with vari-
ous probabilities of selecting CMVs

The second experiment was to examine the
effect of various probabilities of choosing the

qzhu
Typewritten Text
53

results of SQs as CMVs on the performance
of the DMVIT and SST. As mentioned earlier,
TMVs are removed after their corresponding
PQs are completed. Thus, the size of the VS
is mainly determined by the number of CMVs
kept in the system. A higher probability of
choosing CMVs usually leads to a larger VS.
Therefore, we wanted to see the performance
of the DMVIT and SST for different sizes of
the VS. The view matching cost comparisons
for the DMVIT with various probabilities are
shown in Figure 5, and the view matching cost
comparisons for the SSTs are shown in Figure
6. From Figure 5, we observe that the three
performance curves are very close to each other,
which implies that the view matching costs by
using the DMVIT with various probabilities
(i.e., VS sizes) are nearly the same. However,
from Figure 6, we can see significant differences
among the three performance curves. The rea-
son for this phenomenon is as follows. Using
the SST, the number of views that need to be
compared grows quickly with the size of the
VS. From this experiment, we can see that the
performance of our technique is stable relative
to the size of the VS.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18
x 10

4

Number of step queries

T
ot

al
 n

um
be

r
of

 c
om

pa
ris

on
s

us
in

g
th

e
S

S
T

probability = 0.3
probability = 0.25
probability = 0.2

Figure 6: The performance of the SSTs with various
probabilities of selecting CMVs

In the third experiment, the view deletion
cost for the two-level priority ordering based
DMVI constructing technique (TPDMVI) and
the no-priority ordering DMVI constructing
technique (NPDMVI) were compared. The
main idea of the TPDMVI is as follows. When
a view v needs to be inserted into the DMVI,
the domains of v are sorted by the two-level
priority rule. After that, each domain ta-

ble is picked up in turn and inserted into the
DMVI. Furthermore, if a node has multiple
child nodes, the order of its child nodes is deter-
mined by the two-level priority order of the do-
main tables in the workload. The NPDMVI, on
the other hand, assigns no priority to any do-
main table, which causes the DMVI to be cre-
ated randomly. In our technique, when a view
v becomes invalid, the system has to discover
all the views which uses v in their domains. Us-
ing the TPDMVI, if v appears as a first level
node of the DMVI, the searching process only
occurs on the subtree of v and the subtrees of
the left brothers of v (if any). However, using
the NPDMVI, the entire tree of the DMVI al-
ways needs to be traversed. The performance
of searching the views with invalid search paths
was compared between the TPDMVI and the
NPDMVI and the results are shown in Fig-
ure 7, where X-axis represents the number of
SQs in the test and Y-axis represents the to-
tal number of nodes visited in the DMVI. In
this experiment, to make the figure clearer, we
set the upper bound for the number of SQs to
200. From the figure, we can see that the view
deletion cost for the TPDMVI is significantly
smaller than that for the NPDMVI. Note that
the view deleting process only happens after a
PQ is completed.

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

Number of step queries

T
ot

al
 n

um
be

r
of

 n
od

es
 v

is
te

d
in

 th
e

D
M

V
I

The TPDMVI
The NPDMVI

Figure 7: The deletion cost comparisons between
TPDMVI and NPDMVI

In the last experiment, the effectiveness of
the DMVIT was compared with that of the
SST. As mentioned earlier, the DMVIT filters
out the views whose domains are different from
that of the given SQ. However, some views
that are filtered out by the DMVIT may be

qzhu
Typewritten Text
54

usable for answering the given SQ. The main
purpose of this experiment is to find out that
what percentage of usable views can be dis-
covered by the DMVIT. We utilized the view
matching mechanism (i.e., materialized query
table matching) of DB2 to conduct the experi-
ment and calculated the percentages of usable
views discovered by the DMVIT and the SST
for the tested cases. The probability of select-
ing CMVs was set to 0.25. The experiment
results we obtained are as follows. The per-
centages of usable views found by the SST and
the DMVIT were 100% and 83%, respectively;
while the numbers of views checked by the SST
and the DMVIT were 163546 and14648, respec-
tively. From the experiment, we can see that,
comparing to the SST, the DMVIT dramati-
cally reduces the number of checked views while
keeping a high hitting rate for its discovered us-
able views.

5 Conclusion

The rapid growth of data intensive applications
leads to an increasing demand to efficiently pro-
cess progressive queries (PQ). A materialized
view based approach to processing PQs was
proposed in our previous work. However, how
to efficiently discover usable materialized views
to answer a given SQ in a PQ was challenging
and remained open.
In this paper, we have presented a new in-

dex technique, called the dynamic material-
ized view index (DMVI), to efficiently discover
usable views for a given SQ from the avail-
able views in the view storage. Domain ta-
ble based search paths are dynamically created
in a tree structure of the DMVI for the arriv-
ing new views. A two-level priority ordering
is adopted to achieve efficient construction and
maintenance of the DMVI tree for a dynam-
ically changing view set. Encoding methods
to generate bitmaps for target attributes, se-
lection condition and join condition are sug-
gested. The relevant bitmaps are stored at the
leaf nodes of the DMVI tree together with other
view information to support a refined pruning
for undesirable views. Since matching a view
with a given query is computationally expen-
sive, using the DMVI to efficiently discover us-
able views for the query can improve the per-

formance of view based query processing.

Our experimental results demonstrate that
our DMVI is quite promising in reducing the
view matching cost and the proposed tree
structure supports efficient view management
for a dynamic view set.

Our future work includes extending the
method for handling aggregate queries and
evaluating the relevant techniques in real
database management systems.

About the Authors

Chao Zhu is a PhD student in the Department
of Computer and Information Science at The
University of Michigan, Dearborn, USA. He is
a graduate research assistant with an IBM CAS
fellowship. His research interests include query
processing and optimization, data mining, and
Web services.

Qiang Zhu is a Professor in the Depart-
ment of Computer and Information Science at
The University of Michigan, Dearborn, MI,
USA. He received his Ph.D. in Computer Sci-
ence from the University of Waterloo in 1995.
Dr. Zhu is a principal investigator for a num-
ber of database research projects funded by
highly competitive sources including NSF and
IBM. He has numerous research publications
in various top journals and conference pro-
ceedings in the database field including TODS,
TOIS, VLDBJ and VLDB. Some of his re-
search results have been included in several
well-known database research/text books. Dr.
Zhu served as a program/organizing commit-
tee member for numerous international con-
ferences and an editor-in-chief/associate-editor
for a number of international journals. His cur-
rent research interests include query optimiza-
tion, data stream processing, multidimensional
indexing, self-managing databases, Web infor-
mation systems, and data mining.

Calisto Zuzarte is a senior technical man-
ager at the IBM Canada Software Laboratory.
He has been involved in several projects leading
and implementing many features related to the
IBM R© DB2 R© SQL compiler. His main exper-
tise is in the area of query optimization includ-
ing cost-based optimizer technology and auto-
matic query rewriting for performance. Calisto

qzhu
Typewritten Text
55

is also a research staff member at the IBM Cen-
ter for Advanced Studies (CAS).
Wenbin Ma is a Software Engineer at the

IBM Canada Laboratory. He received his first
master degree in Software Engineering from the
Bei Hang of P. R. China and his second master
degree in Algorithms and Theory from the Uni-
versity of Alberta. He works in the DB2 SQL
compiler team. His main expertise is in the
areas of query rewrite and MQT technology.

Trademarks

IBM, the IBM logo, and ibm.com are trade-
marks or registered trademarks of International
Business Machines Corp., registered in many
jurisdictions worldwide. Other product and
service names might be trademarks of IBM or
other companies.
Windows is a trademark of Microsoft Corpo-

ration in the United States, other countries, or
both.
Intel is a trademark or registered trademark

of Intel Corporation or its subsidiaries in the
United States and other countries.

References

[1] Agrawal, S., S. Chaudhuri and V. Narasayya:
Automated selection of materialized views and
indexes in SQL databases. Proc.of VLDB
Conf., pp. 391-398, 2000.

[2] Aouiche, K. and J. Darmont: Data mining-
based materialized view and index selection in
data warehouses. J. Intell. Inf. Syst., 33(1):65-
93, 2009.

[3] Bellatreche, L., K. Karlapalem and Q. Li:
Evaluation of Materialized View Indexing in
Data Warehousing Environments. Proc.of
DaWaK Conf., pp. 5766, 2000.

[4] Calvanese, D., G. D. Giacomo, M. Lenserini
and M. Y. Vardi: View-based query pro-
cess: on the relationship between rewriting, an-
swering and losslessness. Theor.Comput.Sci.,
371(3): 169-182, 2007.

[5] Comer, D.: The ubiquitous B-tree. ACM Com-
puting Survey, 11(2): 121-137, 1979.

[6] Gou, G., M. Kormilitsin and R. Chirkova:
Query evaluation using overlapping views:
completeness and efficiency. Proc.of SIGMOD
Conf., pp. 37-48, 2006.

[7] Graefe, G. and M. J. Zwilling: Transaction
support for indexed views. Proc.of SIGMOD
Conf., 2004.

[8] Halevy, A. Y.: Answering queries using views:
a survey. The VLDB Journal, 10(4): 270-294,
2001

[9] Himanshu, G. and I. S. Mumick: Selection
of Views to Materialize in a Data Warehouse.
IEEE Transaction on Knowledge and Data En-
gineering, 17(1): 24-43, 2005.

[10] Kimura, H., G. Huo, A. Rasin, S. Madden and
S. B. Zdonik: CORADD: Correlation Aware
Database Designer for Materialized Views and
Indexes. PVLDB, 3(1): 1103-1113, 2010.

[11] Kuno, H. A. and G. Graefe: Deferred Main-
tenance of Indexes and of Materialized Views.
Proc. of DNIS Conf., pp. 312-323, 2011.

[12] Larson, P.-Å. and H. Z. Yang: Computing
queries from derived relations. Proc. of VLDB
Conf., pp. 259-269, 1985.

[13] Larson, P.-Å. and J. Zhou: View matching
for outer-join views. VLDB Journal, pp. 29-
53, 2007.

[14] Lehner, W., R. J. Cochrane, H. Pirahesh and
M. Zaharioudakis: Fast Refesh using Mass
Query Optimization. Proc.of ICDE Conf., pp.
391-398, 2001.

[15] Liu, Z. and Y. Chen: Answering Keyword
Queries on XML Using Materialized Views.
Proc. of ICDE Conf., pp. 1501-1503, 2008.

[16] Park, C.-S., M.-H. Kim and Y.-J. Lee:
Rewriting OLAP Queries Using Materialized
Views and Dimension Hierarchies in Data
Warehouses. Proc. of ICDE Conf., pp. 515-
523, 2001.

[17] Pottinger, R. and A. Levy: A Scalable Al-
gorithm for Answering Queries Using Views.
Proc. of VLDB Conf., pp. 484-495, 2000.

[18] Roussopoulos, N.: View indexing in rela-
tional databases. ACM Trans. on Database
Systems,7(2):258-290, 1982.

[19] Roy, P., S. Sudarshan, K. Ramamrithaml:
Materialized View Selection and Maintenance
Using MultiQuery Optimization Hoshi Mistry.
Proc. of SIGMOD Conf., pp.307-318, 2001.

[20] Srivastava, D., S. Dar, H.V. Jagadish, A.
Levy: Answering Queries with Aggregation
Using Views. Proc. of VLDB Conf., pp. 318-
329, 1996.

[21] Talebi, Z. A., R. Chirkova, Y. Fathi and M.
Stallmann: Exact and inexact methods for
selecting views and indexes for OLAP perfor-
mance improvement. Proc. of EDBT Conf., pp.
311-322, 2008.

[22] Xu, W. and Z. M. Ozsoyoglu: Rewrit-
ing XPath Queries Using Materialized Views.
Proc. of VLDB Conf., pp. 121-132, 2005.

[23] Zhu, C., Q. Zhu and C. Zuzarte: Effi-
cient Processing of Monotonic Linear Progres-
sive Queries via Dynamic Materialized Views.
Proc.of CASCON Conf., pp. 224 - 237, 2010.

[24] Zhu, C., Q. Zhu, C. Zuzarte and W. Ma:
A Materialized-View Based Technique to Op-
timize Progressive Queries via Dependency
Analysis. Proc.of CASCON Conf., 2011.

[25] Zhu, Q., B. Medjahed, A. Sharma and H.
Huang: The Collective index: A Technique
for Efficient Processing of Progressive Queries.
The Computer Journal, 51(6): 662-676, 2008.

qzhu
Typewritten Text
56

