
Supporting Database Access in the Hermes Programming
Language*

Qiang Zhut

	

Frank Pellow=

1 Introduction

P.-A . Larsont

Abstract

The work reported in this paper is part of a
project aimed at designing and prototyping a n
application development environment that al-
lows easy development of platform-independen t
distributed applications . The main goals of th e
database subproject are to investigate meth-
ods for (1) providing (SQL) database acces s
and (2) supporting transaction managemen t
within a distributed programming environmen t
based on the paradigm of communicating se-
quential processes . This paper looks at how
SQL database access can be provided in Her-
mes, a new language for distributed program-
ming based on this paradigm . The paper com-
pares the characteristics of Hermes and SQ L
tables, discusses potential ways of supportin g
database access in Hermes, and then define s
an embedding of SQL in Hermes . Some imple-
mentation aspects are also discussed .

Keywords: distributed applications, database
access, Hermes, SQL .

The research reported here was supported by IB M
Canada Ltd . This paper is also available as IBM
Canada Laboratory Technical Report TR 74 .06 8

t Department of Computer Science, University of
Waterloo, Ontario, Canada .

=Centre for Advanced Studies, IBM Canada Labo-
ratory, Toronto, Ontario, Canada .

As distributed computing systems emerge, in-
creasingly complex and sophisticated applica-
tions will be required. These applications will
consist of multiple communicating processes
distributed over a large, constantly evolving ,
heterogeneous network of computers . Develop-
ing such applications using today's technolog y
is feasible but difficult and expensive . The ba-
sic problem is caused by working at too low
a level of abstraction; having to master too
many technical details about the underlying
platform (hardware, network, protocols, an d
so on) . Hence, applications become platform -
dependent which (as we know from bitter ex-
perience) ends up being very expensive . To
remove platform dependence, the level of ab-
straction at which applications are developed
must be raised .

The main objective of the CORDS project i s
to design and prototype an application devel-
opment environment that allows easy develop-
ment of platform-independent distributed ap-
plications . The programming model adopte d
by the project, hereafter referred to as the pro-
cess model, is based on communicating, sequen-
tial processes . In this model, an application i s
structured as a collection of concurrently exe-
cuting processes that communicate by message
passing . The application developer's task is
to design and implement these processes . The
mapping of these processes onto the currentl y

205

qzhu
Typewritten Text
Proceedings of CASCON'1991, pp 205-222, Toronto, Canada, 1991

existing platform should be a completely sep-
arate concern, and should not be allowed to
influence the application logic .

Virtually all applications require access to
shared, persistent data . Frequently, such data
is stored in and managed by some database sys-
tem. It would be naive to assume that all dat a
is managed by a single (even if distributed)
database system ; more typical would be a sce-
nario where it is managed by multiple, hetero-
geneous database (and file) systems. One im-
portant objective is to provide application pro-
grammers with a simple and consistent view of
database access ; a view that is completely in-
dependent of how and where the data is stored .
Mapping this view onto a physical reality con-
sisting of multiple, heterogeneous database sys-
tems running in a distributed environment i s
the main challenge of the database subproject .

Hermes is a new programming language
[10] . It based on the process model an d
is specifically intended to support distribute d
computing. One aim of the CORDS project
is to evaluate the suitability of Hermes for th e
development of distributed applications . Given
the widespread use of relational databases an d
SQL, it is imperative that support for databas e
access through SQL be added to Hermes . Her-
mes provides a table data type and several
built-in table operations . From a database
point of view, this is one of its most interestin g
features . It raises the question whether Her-
mes and SQL tables can be integrated, that
is, whether SQL operations can be applied t o
Hermes tables and Hermes table operations t o
SQL tables .

This paper proposes a way of adding suppor t
for database access through SQL to Hermes .
Section two contains a comparison of the char-
acteristics of Hermes and SQL tables, including
table operations . In section three, we discus s
potential models for supporting database ac-
cess . Section four describes our proposed solu-
tion. A few implementation considerations are

discussed in section five. The last section pro-
vides a summary and a list of issues requiring
further investigation . A syntax description is
contained in an appendix .

This paper concentrates on language-level in-
tegration on SQL and Hermes ; many other is -
sues are ignored . Work on transaction manage-
ment is in progress and will be discussed in a
separate paper [6] .

It is assumed that readers of this paper is fa-
miliar (at least at the introductory level) wit h
both SQL and Hermes. There are many vari-
ants of SQL. Unless otherwise stated, the as-
sumed variant is the one defined by ISO 9075 -
1989 [1], hereafter referred to as SQL-89 .

2 Comparison of Herme s
and SQL Tables

2 .1 Table Characteristics
A Hermes table is a collection of values of th e
same type and typestate . A table may be or-
dered or unordered, and may have one or mor e
keys. A key consists of one or more fields . Any
two elements of the table will have different val-
ues of all keys . A component in a Hermes table
may itself be a table, resulting in a nested ta-
ble . A table where all components are atomic
(single-valued, unary) will here be referred t o
as a fiat table.

One notable characteristic of Hermes is it s
lack of global data; every variable belongs t o
a process and cannot be referenced (directly)
by other processes . At first glance, this seem s
to imply that Hermes processes cannot shar e
data. However, a Hermes process may "ex-
port" functions, called ports, that provide ac-
cess to its data . (This is similar to the concep t
of access functions or operations for abstrac t
data types .) Any process with the necessary
capabilities can invoke an exported function b y
sending the owner process an appropriate mes-

206

sage . The net effect is that all operations o n
shared data are controlled by the owner pro-
cess . Since Hermes supports persistent pro-
cesses, a Hermes table within a process can b e
used for storing permanent data .

An SQL table is a multi-set of rows, wher e
each row has the same cardinality and contains
a value for every column of the table. A row
is the smallest unit of data that can be in-
serted into or deleted from a table . The value
of a column in a row is the smallest unit of
data that can be updated or selected from a
table . A value is either a null value or a non-
null value . An SQL table may have constraint s
associated with it . Three types of constraints
are allowed : unique (key) constraints, referen-
tial (foreign key) constraints, and check con-
straints.

Comparing the characteristics of these tw o
table types, we see that :

• An unordered, flat Hermes table is equiv-
alent to an SQL table . (In Hermes, char-
acter strings are defined as ordered tables
of characters ; even so, we still consider a
Hermes table containing character string s
to be flat .) However, the table data type i n
Hermes is broader than SQL tables and in-
cludes nested tables and extendible array s
(ordered tables of unlimited size) . Fig 1
illustrates the characteristics that can be
specified for a Hermes table and the subse t
corresponding to SQL tables .

• Keys for Hermes tables play the same role
that unique constraints do for SQL ta-
bles. Hermes has no direct equivalent
to SQL 's referential constraints and check
constraints .

• An uninitialized component of a tuple i n
a Hermes table may be considered to hav e
the (SQL) value null. It is not clear at
present whether the semantics of (SQL)

Options for Hermes table s

ordered - - not ordered

keyed

	

not keyed 0
r

flat

	

nested

Subset corresponding t o

SQL tables

Figure 1 : Hermes and SQL table characteris-
tics .

null values can be implemented by Her-
mes' typestate mechanism .

• SQL provides authorization and access
control features. There are no direct
equivalents in Hermes .

• SQL supports viewed tables that may b e
updatable, possibly with a check option .
There is no direct equivalent in Hermes .

2 .2 Table Operations

Both Hermes and SQL provide table (set) oper-
ations . Some operations are available in bot h
languages, but in general SQL provides mor e
powerful ones .

• Hermes provides the following set-level op-
erations: every of (makes a copy of a sub -
set), insert, extract, remove, merge
(union) . The inspect statement makes a
copy of a selected element available, and
the for-inspect statement iterates over
selected elements . The Boolean function s
exists and for all test whether at leas t
one or all elements, respectively, satisfy a
given condition .

207

• No update operation is provided in Her-
mes. An update operation can be imple-
mented by using remove and insert op-
erations .

• A Hermes retrieve operation cannot di-
rectly join data from two or more tables .
A join would have to be implemented by
nested selectors, as illustrated in the fol-
lowing example . Or stands for projection ,
N for join, and o for selection .)

7R1 .• (RI M R1 .a=R3 .a R2)
is equivalent to

every of ti in R 1
where (exists of t2 in R2

where (tl .a = t2 .a))

• Unlike SQL, Hermes does not com-
bine projection with its retrieval opera-
tions. For example, we cannot implement
rRi .a,Ri .b(ORi .a>lo(Rl)) by using Herme s
every of alone if R1 has other columns i n
addition to a and b. Separate assignment
statements are required to implement a
projection .

• It appears that all Hermes table operation s
can be easily simulated by SQL table oper-
ations. The reverse must also hold becaus e
Hermes has the power of a general-purpos e
programming language .

• Several facilities provided by SQL are
not (directly) available in Hermes, for
example, (1) set functions (AVG, MAX ,
MIN and SUM); (2) additional predicate s
(LIKE and IS NULL) ; (3) some clauses in
a query (GROUP BY, HAVING, ORDE R
BY); (4) transaction management (COM-
MIT WORK, ROLLBACK WORK) .

3 Potential Models

The reasons for extending Hermes with fa-
cilities for database access through SQL ar e
straightforward :

• It provides access to the large amounts o f
data stored in external databases .

• It enables applications to exploit the ser-
vices provided by database systems.

• It enables application programs written i n
Hermes to share (persistent) data with ap-
plications written in other languages .

• Relational databases and SQL are widely
used and have become standard "tools" for
application development .

We see two different conceptual models fo r
adding database support to Hermes, which we
will call the database programming language
(DBPL) model and the database server model .

The DBPL model advocates a complete
integration of database and programming lan-
guage facilities . If a relational model is used ,
this amounts to adding the notion of global ,
persistent tables to some base language. To
achieve complete integration, it must be pos-
sible to manipulate such tables using normal
programming language constructs . In essence ,
the programmer's view is one of "importing" a
table (by some declarative statement) into hi s
program, after which it can be manipulated us-
ing normal facilities in the base language.

Hermes already supports tables and table op-
erations . If we add the concept of global tables ,
database access can be provided by mapping
database tables onto Hermes tables . The basi c
idea is simply to provide some way of declar-
ing that a table is an imported database tabl e
(or view) . (We ignore the possibility of a Her-
mes process "exporting" a table .) The follow-
ing question arises immediately : What opera-
tions are allowed on imported database tables ,

208

that is, Hermes table operations, SQL table op-
erations, or both ?

Allowing only Hermes table operations is ap-
pealing because of conceptual simplicity: al l
that is added to the language is the notion of
importing a database table . However, Hermes
table operations are more restricted than SQ L
table operations . Consequently, programmer s
would have t o

• write more code and

• repatedly redevelop and re-implement op-
erations already provided by database sys-
tems.

SQL provides powerful table operations an d
the system takes responsibility for finding th e
best way of executing operations requested by
users . This is one of the main advantages of re-
lational database systems . By not supporting
SQL operations, Hermes programmers woul d
not be able to take advantage of these services .
Disallowing SQL operations does not appear t o
be an acceptable solution .

Allowing SQL operations to be applied to all
tables would require extensions to SQL . As dis-
cussed in section two, SQL-89 cannot handl e
ordered tables or nested tables . Extensions to
SQL for such tables have been proposed [7, 8 ,
9] . However, they are not supported by any
widely available, mature database system .

The database server model retains a strict
separation between data internal to a program
and external data managed by a database sys-
tem. The programmer's view is one of inter -
acting with a server that provides certain ser-
vices, in particular, services for retrieving, stor-
ing and updating external data. They are re-
lated in a client-server relationship .

This model is easier to implement, mainl y
because of the looser integration with the pro-
gramming language . All that needs to be de-
fined is the client-server interface, that is, ho w
to request database services in an application

program and how to pass data and status in -
formation between the client and server . In
most practical implementations, this interfac e
is defined at two levels: a call-level interfac e
and programming language embeddings . The
call-level interface consists of a number of func-
tion calls and associated parameters and is in -
tended to be language independent . To make
application programming easier (less tedious ,
less error-prone), an embedded interface can
be provided. This interface allows SQL state-
ments to be embedded in the programming lan-
guage . A preprocessor is used to extract thes e
statements and translate them into "native "
code, including calls to the server . Existing
(and proposed) SQL standards are all base d
on the database server model [1, 2, 4, 5], at-
tempting to standardize both server function-
ality (SQL statements) and the embedding of
SQL statements in a variety of programming
languages .

For this project, we have decided to use th e
database server model and to define an em -
bedding of SQL in Hermes . This provides th e
required functionality and has several advan-
tages :

• It provides a clear separation of databas e
issues and facilities from language issues
and facilities . Experience has shown such
"separation of concerns" to be highly de-
sirable .

• It is consistent with the model used in ex-
isting standards and SQL embeddings in
other programming languages .

• The looser integration makes it easier t o
accommodate variants and future exten-
sions of SQL and/or Hermes .

• It is significantly easier to implement
than attempting to extend Hermes into a
database programming language .

209

4 Embedding SQL in Her-
mes

Current SQL standards [1,2], define two meth-
ods for providing a program with database ac-
cess . In the module method, the application
program is divided into two separate modules :
a host program and an SQL module . All SQL
statements are placed in the SQL module; ther e
are no SQL statements in the host program .
All database access requests are issued throug h
procedure calls in the host program (in Her-
mes, they would be outport calls) . The host
program can be compiled in the normal way
while a special SQL module compiler would b e
used to compile the SQL module . The resulting
object modules are then linked in the norma l
way. This provides a clean separation betwee n
the host language and SQL .

In the embedded method, SQL state-
ments and host language statements are inter -
mixed in the same source program . Before th e
program is compiled, it is run through an SQ L
preprocessor that extracts all SQL statement s
and replaces them with function calls (and pos-
sibly other statements in the host language) .
Exactly what happens to the extracted SQ L
statements varies . Some preprocessors do little
more than validate the syntax and convert each
statement to a text string which is then use d
as a parameter in a call to the database sys-
tem. Note that this solution does not requir e
any communication with the database syste m
at compile time and that the target tables need
not even exist yet . At the other end of the
spectrum, we have preprocessors that perform
complete syntactic and semantic analysis, opti-
mization, and compilation into an access pla n
at this stage. (Much of this work is in fact
done by the database system.) The preproces-
sor must be able to interact with the databas e
system at compile time and the target table s
must have been defined .

The embedded method is, by far, the more
popular one and we have chosen this metho d
as well . A Hermes/SQL program is a compila-
tion unit that consists of Hermes text and SQ L
text. The Hermes text must conform to th e
Hermes Reference Manual [10] . The SQL text
must conform to the syntax described in an ap-
pendix of this paper. Compared with SQL-89 ,
our version of SQL has the following specia l
properties:

• There are no cursor-related statement s
(OPEN, FETCH, CLOSE) . The main use
of SQL cursors is for fetching the result of
a query one row at a time . This is required
when SQL is embedded in a language tha t
does not have a set or table type . In Her-
mes, the result of a query can be loaded
directly into a Hermes table. Hermes ta-
bles are (theoretically) of unlimited size. If
needed, normal Hermes features can the n
be used to process the result .

• As a consequence of the above, SQL -
89's Positioned UPDATE and Positione d
DELETE statements are not allowed .
(These statements either modify or delete
a row pointed to by a cursor.) This is
not a serious loss . The same effect ca n
be achieved by Searched UPDATE and
DELETE statements on any table that i s
defined with a primary key (and we argu e
that all tables should be so defined) .

• An INSERT statement can insert data
directly from a Hermes table or record .
A SELECT statement can retrieve dat a
into a Hermes table, a Hermes record, or
a list of Hermes unary variables . Thus
data transfer between internal Hermes ta-
bles/variables and external SQL tables is
straightforward.

• We have chosen to use SQLSTATE (from
SQL2) for returning errors and warning s
rather than SQLCODE in SQL-89 .

210

• Several redundant phrases, for example ,
EXEC SQL, BEGIN DECLARE SEC-
TION, END DECLARE SECTION, are
optional . Omitting these redundan t
phrases results in a "cleaner" language .
However, for reasons of compatibility with
SQL-89 standards for embedded SQL, w e
decided not prohibit the use of these
phrases .

• Like most practical SQL implementa-
tions, we will extend SQL-89 by allow-
ing some schema statements to be embed-
ded. Schema statements tend to vary a
great deal among different SQL implemen -
tations . We intend to support many differ-
ent underlying database systems and nee d
be able to handle requests that contain
product-unique features . We would like t o
identify a basic set of schema statement s
that (1) meets users' basic requirements
for defining, manipulating, and controllin g
access to tables and views; (2) can be eas-
ily supported by all the database systems
that we utilize ; (3) conforms to ISO SQ L
standards . SQL-89 schema facilities are
not sufficient (for instance, they do no t
provide statements to add columns to a
table or to drop a table) . In the appendix ,
we have tentatively included CREAT E
TABLE/VIEW, ALTER TABLE, DRO P
TABLE/VIEW, and GRANT/REVOK E
statements . We show the SQL2 syntax o f
these statements .

• It appears that dynamic SQL can be
supported without circumventing Herme s
type system and type checking . In Her-
mes, programs can not only be executed
but also manipulated as values (of type
program) . We can create, modify, compile ,
and run a program from within a Herme s
process . It should be possible to use this
feature to handle dynamic SQL statements
by creating, on the fly, a Hermes program

with embedded SQL statements . In fact ,
this may allow us to generalize and exten d
dynamic SQL. Dynamic Hermes/SQL pro-
grams will be discussed in a separate pa-
per .

A Hermes program with embedded SQL con-
sists of a declaration part and a body part . In
the declaration part, every Hermes host vari-
able that SQL uses to interact with the Her-
mes host program must be declared, either ex-
plicitly (using <embedded SQL begin declare >
and <embedded SQL end declare>) or implic-
itly (without using the phrases) . A program
body part contains :

• an <embedded exception declaration >
which specifies the action to be taken whe n
an <SQL statement> causes an exceptio n
condition ;

• a <connect statement> which establishes
a connection to a database ;

• one or more <SQL statements> . This
includes <data statement>, < schem a
statement>, <transaction statement>,
and <dynamic statement> expressions .

The following example illustrates the pro -
posed embedding of SQL in Hermes . The
example uses a database DB1 with three ta-
bles : UNDERGRADUATE, GRADUATE and
OLDSTUDENT, each one with four columns :
NO (INTEGER), NAME (CHAR(20)), AG E
(INTEGER) and STATUS (INTEGER) . We
want to retrieve all the rows for older student s
(AGE>=40), do something with them, then in-
sert them into the OLDSTUDENT table . The
following (incomplete) program shows how to
accomplish this .

211

1 EmbeddedProgram: using(. . .)
2 process(. . .)
3 declare
4

	

Newstatus : integer ;
6	
6

	

EXEC SQL BEGIN DECLARE SECTION ;
7

	

Result :

	

TableType ;
8

	

Oldage :

	

integer ;
9

	

SQLSTATE : SglStateType ;
10 EXEC SQL END DECLARE SECTION ;
11

	

. . . .
12 begin
13

	

EXEC SQ L
14

	

WHENEVER SQLERROR RAISE :Errcheck ;

Lines 6-10 specify the interacting Hermes vari-
ables and SQLSTATE . Lines 13-14 say that when
an SQL statement causes an error, the exception
Errcheck is to be raised. Lines 19-26 retriev e
the required data from UNDERGRADUATE an d
GRADUATE into the Hermes table Result . Lines
28-34 use normal Hermes control statements to it-
erate over the records in Result . Lines 32-33 insert

the modified record in y into the SQL table OLD-
STUDENT . Line 36 begins the exception handling
routine for Errcheck .

Instead of inserting the records one by one int o
OLDSTUDENT, we could first have modified th e
records in Result (by Hermes remove and insert op-
erations) and then issued a single SQL statement :
INSERT INTO OLDSTUDENT TABLE :Result ;

5 Implementation Consid-
erations

A Hermes/SQL compilation unit (program) define s
one or more processes . Four steps are required in
order to execute a Hermes/SQL program:

1. preprocessing ,

2. (Hermes) compilation ,

3. linking and loading, and

4. running .

The SQL preprocessor extracts all SQL statement s
from the source program and produces a "pure "
Hermes program. Every executable SQL statement
is replaced with an outport call to a "shadow" pro-
cess . Each Hermes process in the program has
an associated shadow process, which is create d
at the same time as the "owner" process . The
shadow process implements the SQL statement(s)
extracted from the owner process by communicat-
ing with the database system. Figure 2 illustrates
the runtime structure .

Some mechanism is needed for reporting errors ,
warnings, status, and statistics from servers bac k
to application programs. A Diagnostic Manage-
ment facility is being planned . According to cur -
rent plans, it will consists of two parts : (1) facilitie s
for servers to post information; (2) facilities for ap-
plication programs to retrieve information . The fa-
cility will be make use of SQL2's SQLSTATE code
(a return code with different ranges for diagnos-
tics identified by the standard, by individual prod-
ucts and by user-written applications) . It will be
similar to SQL2's Diagnostic Management scheme
and provide mechanism for reporting several warn-
ings/errors raised by a single request from an ap-
plication program) . Although it will be based on

EXEC SQL CONNECT DB1 ;
Newstatus := 15 ;
Oldage := 40 ;

EXEC SQL SELECT •
INTO TABLE :Result
FROM UNDERGRADUATE
WHERE AGE

	

:Oldage
UNIO N
SELECT •
FROM GRADUAT E
WHERE AGE >= :Oldag e

for y in Result where ('true')
inspect

y .status := Newstatus ;

EXEC SQL INSERT INTO OLDSTUDEN T
RECORD :y ;

end for ;

on (Errcheck)

1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
24
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
34
35
3 6
37	
38 end process

212

Hermes/SQ L
source program

Owner process Shadow
process

Database
system

call fl(. . . .

call f2(. . . .

call f3(. . . .

EXEC SQL . .

EXEC SQL . .

EXEC SQL . .

Figure 2: Runtime structure .

these SQL2 facilities, it will differ in many partic-
ulars and have a broader scope .

The SQL tables referenced by an SQL reques t
might not all be managed by the same database
system. If so, we need to decompose the reques t
into "smaller" single-database request, and per-
form whatever processing is necessary to combin e
the results obtained from individual databases .
Optimal request processing in an environment o f
multiple heterogeneous database systems is one o f
our main research topics .

6 Summary
Hermes' concept of a table is more general than
that of SQL . In particular, nested tables and or-
dered tables are supported by Hermes but not b y
SQL. However, the table operations provided b y
SQL are much more powerful than those provide d
by Hermes .

Users need to be able to access data in ex-
ternal (relational) databases from Hermes pro-
grams. Two models for providing this capabil-
ity were outlined : the database programming lan-
guage (DBPL) model and the server model . The
DBPL model attempts a complete integration o f
the programming language and database service s
and strives to eliminate the distinction betwee n
internal and external data . The database server
model is less ambitious and retains a strict separa-

tion between internal and external data . All that
is provided are means for requesting services and
interchanging data between the server and appli-
cation programs .

We decided to adopt the database server model .
It provides the required functionality, provide s
a clean separation, and is significantly easier t o
implement . An application program requests
database services by SQL statements embedded
in the source program . The syntax for SQL em-
bedded in Hermes has been designed and an SQ L
preprocessor for Hermes will be implemented . For
each process in the user's program, the preproces-
sor will generate a "shadow " process which han-
dles all interaction with the underlying databas e
system(s) . A process interacts with its shadow pro-
cess through normal calls .

The following issues are not fully discussed in
this paper, and will require further investigation :

• implementation of null values in Hermes ;

• interface between an "owner" process and it s
shadow process ;

• interface between the shadow process and th e
underlying database system(s) ;

• support for dynamic SQL ;

• diagnostics management ;

• transaction management ;

• request processing in an environment of mul-
tiple heterogeneous database systems .

213

Trademarks
IBM and SQL/DS are trademarks of International
Business Machine Corporation, Armonk, N .Y .

Acknowledgements
Many ideas in this paper were discussed at meet-
ings of our research group . We would like to thank
Dexter Bradshaw, Neil Coburn, Jan Pachl and Bob
Sunday for their valuable suggestions and com-
ments.

Reference s

[1] ANSI-ISO, Database Language - SQL wit h
Integrity Enhancement, ISO 9075-1989/ANSI
X3.135-1989 .
[2] ANSI-ISO, Database Language SQL2, ANS I
X3H2, ISO/IEC JTC1 SC21 WG3 N985 (DB L
SLC-1/SEL-2), December 1989 .
[3] IBM, SQL/Data System : Application Program-
ming for IBM VM Systems, Version 3 Release 2 ,
1991 .
[4] ISO, Information Technology - Open System s
Interconnection - Remote Database Access - Par t
1: Generic, ISO/IEC DP 9579-1, October 1990 .
[5] ISO, Information Technology - Open Systems
Interconnection - Remote Database Access - Par t
2: SQL Specialization, ISO/IEC DP 9579-2, Octo-
ber 1990 .
[6] D .P. Bradshaw et al ., Transaction Managemen t
in Hermes using Camelot, Technical Report (in
preparation), Department of Computer Science ,
University of Waterloo, 1991 .
[7] P. Dadam et al ., A DBMS Prototype to Suppor t
Extended NF' Relations : An Integrated View o f
Flat Tables and Hierarchies, Proc . ACM-SIGMO D
Conference, 1986, 356-367 .
[8] P:A. Larson, The Data Model and Query Lan-
guage of LauRel, Data Engineering, Quarterly Bul-
letin (September, 1988), Vol 11, No 3, 23-30 .
[9] M.A. Roth, H.F . Korth, and D.S . Batory,
SQL/NF: A Query Language for non-NF Re-
lational Databases, Technical Report TR-85-19 ,
Dept . of Computer Science, University of Texa s
at Austin, 1985 .

[10] R .E . Strom, D .F . Bacon, A .P. Goldberg, A .
Lowry, D .M. Yellin, and S .A . Yemini, Hermes :
A Language for Distributed Computing, Prentice-
Hall, 1991 .

About the Authors

P:A . (Paul) Larson is a Professor in the De-
partment of Computer Science, University of Wa-
terloo, where he currently serves as chairma n
of the department . His research is focussed on
database systems, in particular, file structures ,
query processing and optimization, and paralle l
and distributed databases . His Internet address
is palarson@uwaterloo .ca .

Qiang Zhu is a Ph.D. student in the Depart-
ment of Computer Science, University of Water -
loo . He holds M.Eng. and M.Sc . degrees in
Computer Science and Applied Mathematics, re-
spectively. He was principal developer of a re-
lational database management system. His cur -
rent interests include distributed database system s
and query optimization. His Internet address i s
gzhu@violet .uwaterloo .ca .

Frank Pellow is a senior development analyst at
the IBM Laboratory in Toronto . He enjoys jug-
gling his jobs as a member of IBM's SQL Language
Council, a developer of the SQL/DS product, and a
researcher in CAS . He enjoys construction projects
on his island in northern Ontario even more . His
Internet address is pellow@torolab3 .vnet .ibm.com.

214

Appendix : Syntax of SQL Embedded in Hermes

Unless otherwise noted, this syntax is that of embedded SQI, in ISO 9075-I9S9 (also called SQI .S9) . Ele-
ments that arc taken from SQ1 .2 arc nagged as such . The CORDS extensions appear in hold face . The
syntactic notation is an extended version of BM' (Backus Naur Form) and is the same as the notation use d
in ISO 9075-19R9 .

t 2

source note line syntax cross referenc e

C *a 0010 <Hermes variable definition> : :_

	

. . . as defined in Hermes manual .

0020 <embedded SQL declare section>

	

: . _
<embedded SQL begin declare> 003 0

C *a <Hermes variable definition> . . . 001 0
<embedded SQL end declare> 0060

0030 <embedded SQL begin declare>

	

: . _
*b [<SQL prefix>]

	

BEGIN DECLARE SECTION

	

<SQL terminator> 0040 0050

0040 <SQL prefix>

	

: := EXEC SQL

0050 <SQL terminator>

	

: :_

	

;

0060 <embedded SQL end declare> : . _
*b (<SQL prefix>]

	

END DECLARE SECTION

	

<SQL terminator> 0040 0050

0070 <embedded SQL statement> : : =
*b [<SQL prefix>] 0040

{

	

<embedded exception declaration> 0080
I

	

<SQL statement>

	

} 0120

<SQL terminator> 0050

0080 <embedded exception declaration>

	

: . _
WHENEVER

	

<condition>

	

<exception action> 0090 0100

C

0090 <condition>

	

SQLERRO R
I

	

HOT

	

FOUN D
I

	

SQLWARNING

0100 <exception action>

	

CONTINUE
C I

	

RAISE :<Hermes exception name> 011 0

C 0110 <Hermes exception name> : := Hermes identifier which identifie s
an exception name .

0120 <SQL statement>

	

: : _
<data statement> 013 0

C *c *d I

	

<schema statement> 084 0
2 *e I

	

<transaction statement> 1160

2 I

	

<connection statement> 1170

2 *f I

	

<dynamic statement> 1180

2 * g I

	

<diagnostics statement> 1190

t Blank means the source is SQI .R9 ; '2' meant the coerce is SQI .2 ; 'C' means the source is the CORDS project .

2 Note references take the form of 'letter ' to the 101 of the line to which they apply . All the notes may he found a t
the end of the list .

21 5

source note line

	

syntax

	

cross referenc e

C

C *m

*k

C

0130

	

<data statement> : : =

	

<select statement : single row>

	

0140

I <select statement : all rows>

	

067 0

I <data change statement>

	

074 0

0140

	

<select statement : single row> :

.

. _

SELECT [ALL I DISTINCT] <select list>

	

0150

	

INTO { <select target list>

	

0380

I RECORD :<embedded record variable name> }

	

0390

<table expression>

	

8400

0150

	

<select list> : :=

	

<value expression> [{,<value expression>} . . .]

	

8160 --- -

I *

0160

	

<value expression>

	

<term>

I <value expression> + <term>
I <value expression> - <term>

0170

	

<tern

	

<factor >

I <term> * <factor>
I <tern' / <factor>

0180

	

<factor>

	

+ I - <primary>

0190

	

<primary> : :=

	

<value specification>

	

8200

I <column specification>

	

025 0

I <set function specification>

	

035 0

I (<value expression>)

	

816 0

0200

	

<value specification>

	

<variable specification>

	

0210

	

I <literal>

	

0240

I USE R

0210

	

<variable specification>

	

:<embedded unary variable name >

[<indicator variable>]

0220

	

<embedded unary variable name> : := Hermes identifier which identifie s

a variable of data type INTEGER ,

REAL or CHARSTRING .

0230

	

<indicator variable>

	

[INDICATOR] :<embedded unary variable name>

	

0220

0240

	

<literal> : := as defined in ISO 9075-198 9

0250

	

<column specification> : . _

	

[<qualifier> .] <column name>

	

0260 0320

I :<embedded table variable name> .<embedded column name>

	

0330 034 0

0260

	

<qualifier> : ._ <table name> I <correlation name>

	

0270 0310

0270

	

<table name>

	

[<authorization identifier>] . <table identifier>

	

0280 0300

0280

	

<authorization identifier>

	

<identifier>

	

0290

0290

	

<identifier> : := as defined in ISO 9075-1989

0300

	

<table identifier> : := <identifier>

	

0290

0310

	

<correlation name> : := <identifier>

	

0290

0320

	

<column name> : ._ <identifier>

	

0290

8170

0180

0190

0220

0230

216

source note line

	

syntax

	

cross referenc e

C

C

C

C

	

0330

	

<embedded table variable name> : := Hermes identifier which identifies

a variable of a Hermes common table .

	

0340

	

<embedded column name> : .= Hermes identifier which identifies a

component variable of a Hermes common table .

	

0350

	

<set function specification>

	

COUNT(*)

1 <distinct set function>

	

836 0
I <all set function>

	

037 8

	

0360

	

<distinct set function> : : =
{AVG I MAX I MIN 1 SUM I COUNT} (DISTINCT <column specification>) 825 0

	

0370

	

<all set function> : : =

{AVG I MAX I MIN I SUM) ([ALL] <value expression>)

	

0160

	

0380

	

<select target list> : : _

<variable specification> [{,<variable specification>) . . .]

	

0210 ----

	

0390

	

<embedded record variable name> : := Hermes identifier which identifie s

a variable of Hermes common record .

	

0400

	

<table expression>

	

<from clause>

	

0410

[<where clause>]

	

0430
[<group by clause>]

	

0650

[<having clause>]

	

8660

	

0410

	

<from clause> : := FROM <table reference> [{,<table reference>)]

	

8420 --- -

	

0420

	

<table reference> : := { <table name>

	

0270
I :<embedded table variable name> }

	

033 0
(<correlation name>]

	

031 0

	

0430

	

<where clause> : := WHERE <search condition>

	

0440

	

0440

	

<search condition>

	

<boolean term,

	

0450

	

I <search condition> OR <boolean tern

0450

	

<boolean tern- : :=

	

<boolean factor>

	

0460

	

<boolean tern- AND <boolean factor

> 0460

	

<boolean factor>

	

[NOT] <boolean primary>

	

047 0

	

0470

	

<boolean primary> : ._ <predicate> I (<search condition>)

	

0480 0440

	

0480

	

<predicate>

	

<comparison predicate>

	

0490
I <between predicate>

	

053 0
I <in predicate>

	

054 0
I <like predicate>

	

056 0
1 <null predicate>

	

0590
I <quantified predicate>

	

0600
I <exists predicate>

	

064 0

	

0490

	

<comparison predicate> : ._ -value expression> <comp op>

	

0160 0500

{ -value expression> <subquery > }

	

---- 0510

	

0500

	

<comp op>

	

= I <> I < I > I <= 1 >_

	

0510

	

<subquery>

	

(SELECT [ALL I DISTINCT] <result specification>

	

0520

<table expression>)

	

0400

	

0520

	

<result specification> : ._ <value expression> I *

	

0160

217

.source note line syntax cross referenc e

0530 <between predicate> : ._ <value expression>

	

[NOT]

	

BETWEEN

<value expression>

	

AND

	

<value expression>

0160

0540 <in predicate>

	

: ._ <value expression>

	

[NOT]

	

IN 0160

{ <subquery>

	

I

	

(<in value list>)

	

} 0510 0550

0550 <in value

	

list>

	

: ._ <value specification>{,<value specification>} . . . 0200 --- -

0560 <like predicate>

	

: ._ <column specification>

	

[NOT]

	

LIKE 0250

<pattern>

	

[ESCAPE <escape charater>] 0570 0580

0570 <pattern>

	

: ._ <value specification> 0200

0580 <escape charater> : :_ <value specification> 0200

0590 <null predicate> : :_ <column specification> IS

	

[NOT]

	

NULL 0250

0600 <quantified predicate>

	

: := <value expression> <comp op> 0160 0500

<quantifier> <subquery> 0610 051 0

0610 <quantifier>

	

: ._ <all>

	

I

	

<some> 0620 0630

0620 <all>

	

: := AL L

0630 <some> : := SOME

	

I

	

ANY

0640 <exists predicate> : := EXISTS <subquery> 051 0

0650 <group by clause>

	

: : _

GROUP BY <column specification>

	

[

	

{,<column specification>} . . .

	

] 0250 --- -

0660 <having clause> : .= HAVING <search condition> 0440

C 0670 <select statement : all rows> : . _

SELECT

	

[ALL

	

I

	

DISTINCT]

	

<select list> 0150

C INTO TABLE :<embedded table variable name> 0330

<table expression>

	

[UNION

	

[ALL]

	

<query expression>] 0400 0680
[<order by clause>] 0710

0680 <query expression>

	

<query tern 0690

1

	

<query expression>

	

UNION

	

[ALL]

	

<query tern --- -

0690 <query tern : := <query specification> I

	

(<query expression>) 0700 0680

0700 <query specification>

	

: . _

SELECT

	

[ALL

	

I

	

DISTINCT]

	

<select list>

	

<table expression> 0150 0400

0710 <order by clause>

	

: . _
ORDER BY <sort

	

specification>

	

[{,<sort specification>} . . .

	

] 0720 --- -

0720 <sort

	

specification>

	

: . _
*n {

	

<unsigned

	

integer> 0730
1

	

<column specification>)

	

[ASC

	

I

	

DESC] 0250

0730 <unsigned integer>

	

: .= as defined in ISO 9075-1989

21 8

source note line syntax cross referenc e

0740 <data change statement> : : =

<insert statement> 0750

I

	

<delete statement :

	

searched> 0800

I

	

<update statement :

	

searched> 8810

0750 <insert statement>

	

INSERT INTO <insert object> 0768

{

	

VALUES (<insert value list>) 0788

C *m I RECORD :<embedded record variable name> 0390

C I TABLE :<embedded table variable name> 8330
I

	

<query specification>

	

} 8780

0760 <insert object> : := {

	

<table name>

	

(<insert column list>) 8270 0770

I

	

:<embedded table variable name> } 8330

0770 <insert column list> : := <column name>

	

[{,<column name>} . . .] 0320 --- -

0780 <insert value list>

	

: := <insert value>

	

[

	

{,<insert value>} . . .

	

] 0790 --- -

0790 <insert value>

	

: ._ <value specification>

	

I

	

NULL 0200

0800 <delete statement :

	

searched>

	

: . _

DELETE FROM {

	

<table name> 8270

C I

	

:<embedded table variable name> } 0330

[WHERE <search condition>] 8440

0810 <update statement :

	

searched> : : =

UPDATE {

	

<table name> 8270

C I

	

:<embedded table variable name> } 0330

SET <set clause>

	

[

	

{,<set clause>} . . .

	

] 0820 --- -

[WHERE <search condition>) 0440

0820 <set clause> : := <object column> = {<value expression> I

	

NULL} 0830 0160

0830 <object column> : .=

	

<column name> 0320
C I

	

:<embedded column name> 0340

*c *d 0840 <schema statement>

	

: . _

*h <create table statement> 0850

2 I

	

<drop table statement> 1000

2 I

	

<alter table

	

statement> 181 0

*i I

	

<create view statement> 1060

2 I

	

<drop view statement> 1080
*j I

	

<grant statement> 1090

2 I

	

<revoke statement> 1150

*h 0850 <create table statement>

	

: . _

CREATE TABLE <table name> 0270

(

	

<table element>

	

[

	

{,<table element>} . . .

	

]

	

) 0860 ----

0860 <table element>

	

: :=

	

<column definition> 0870
1

	

<table constraint

	

definition> 0950

0870 <column definition>

	

: ._ <column name> <data type> 0320 0880

[<default clause>] 0890

[<column constraint> . . .

	

] 0900

0880 <data type>

	

: .= as defined

	

in ISO 9075-1989 .

0890 <default clause>

	

: := DEFAULT

	

{ <literal>

	

I

	

USER

	

I

	

NULL } 0240

21 9

source note line

	

syntax

	

cross reference

2

2

2

2

2

2

*i

0900

	

<column constraint> : :=

	

NOT NULL [<unique specification>]

	

0910

I <references specifiaction>

	

092 0

I CHECK (<search condition>)

	

044 0

0910

	

<unique specification> : := UNIQUE I PRIMARY KEY

0920

	

<references specification> : := REFERENCES <referenced table and column>

	

0930

0930

	

<referenced table and column> : . _

<table name> ((<reference column list>)]

	

0270 0940

0940

	

<reference column list> : : _

<column name> [{,<column name>} . . .]

	

8320 ----

0950

	

<table constraint definition>

	

<unique constraint defintion>

	

0960

I <referential constraint definition>

	

8980

I <check constraint definition>

	

099 0

0960

	

<unique constraint definition> : . _

<unique specification> [(<unique column list>)]

	

0910 0970

0970

	

<unique column list> : ._ <column name> [{,<column name>} . . .]

	

0320 --- -

0980

	

<referential constraint definition> : . _

FOREIGN KEY (<reference column list>)

	

8940

<references specification>

	

8920

0990

	

<check constraint definition> : := CHECK (<search condition>)

	

0440

1000

	

<drop table statement> : := DROP TABLE <table name> (CASCADE]

	

0270

1010

	

<alter table statement> : : _

ALTER TABLE <table name> <alter action>

	

0270 1010

1010

	

<alter action>

	

<add column defintion>

	

103 0

I <drop column defintion>

	

104 0

I <replace default clause>

	

105 0

1030

	

<add column definition> : .= ADD <column definition>

	

0870

1040

	

<drop column definition> : .= DROP <column name> [CASCADE]

	

0320

1050

	

<replace default clause> : := REPLACE <column name> <default clause>

	

0320 0890

1060

	

<create view statement> : : =

CREATE VIEW <table name> [(<view column list>)]

	

0270 1070

AS <query specification>

	

0700

[WITH CHECK OPTION]

1070

	

<view column list> : := <column name> [{,<column name>} . . .]

	

0320 --- -

1080

	

<drop view statement> : .= DROP VIEW <table name> [CASCADE]

	

0270

220

2

2

	

* 9

*f

1090

	

<grant statement> : . _

GRANT <privileges> ON <table name >

TO <grantee> [{,<grantee>) . . .] [WITH GRANT OPTION]

<privileges> : :=

	

ALL PRIVILEGE S

I <action> [{,<action>} . . .]

1120

	

<action> : :=

	

SELECT I INSERT I DELET E

I UPDATE [(<grant column list>)]
I REFERENCES [(<grant column list>)]

1130

	

<grant column list> : :_ <column name> [{,<column name>} . . .]

1140

	

<grantee> : := PUBLIC I <authorization identifier>

1150

	

<revoke statement> : : _

REVOKE [GRANT OPTION FOR] <privileges> ON <table name >

FROM <grantee> [{,<grantee>} . . .] [CASCADE]

1160

	

<transaction statement> : :_

	

. . . not determined yet

1170

	

<connection statement> : :=

	

. . . not determined ye t

1180

	

<dynamic statement>

	

. . . not determined ye t

1190

	

<diagnostics statement> : :=

	

. . . not determined ye t

1110

1110 0270

1140 ----

0328 --- -

0280

1110 0270

1140 --- -

1120

1130

source note line

	

syntax

	

cross referenc e

221

Notes :

*a In the SQL/Hermes embedding, host variables may be declared anywhere, that is the Declaration Section i s

optional . In the standards, host variables must be declared in a Declaration Section .

*b In the SQL/Hermes embedding, the <SQL prefix> is optional . It is not optional in the standards .

*c <schema statement>s are called <schema definition>s in ISO 9075-1989 and in SQL2 and they are not suppor '

in embedded SQL .

*d <embedded table variable name>s and <embedded column name>s) can not be used in schema statements .

*e SQL2 contains <transaction statement>s . However, transaction management in CORDS is intended to be wide '

in scope than SQL2, so our <transaction statement>s may vary .

*f We have not yet determined the method that CORDS will use to support dynamic creation and executio n

of SQL statements .

*g We have not yet determined whether or not CORDS will utilize some form of the SQL 2

<diagnostic statement>s .

*h <create table statement>s are called <table definition>s in ISO 9075-1989 and in SQL2 .

*i <create view statement>s are called <view definition>s in ISO 9075-1989 and in SQL2 .

*j <grant statement>s are called <privilege definition>s in ISO 9075-1989 but <grant statement>s in SQL2 .

*k Some syntactic elements support a list of <column specification> elements (for instance, see th e

<group by> clause on line 980) . Only one of these forms of <column specification> is allowed per list .

*m Selecting into a record provides the same capability as host structure support in products such as DB2 .

*n The use of an integer to identify the ordinal position of the column being sorted is a depricated featur e

in SQL2 . The need for it is removed by support of the AS clause when defining a derived column . We may

choose to support this instead in the SQL/Hermes embedding .

222

