
Multiple-Granularity Interleaving for Piggyback

Query Processing �

Brian Dunkely Qiang Zhuz Wing Lauz Suyun Chenx

Abstract

Piggyback query processing is a new technique,
described in [24], intended to perform additional
useful computation (e.g., database statistics col-
lection) during normal query processing, taking
full advantage of data resident in main mem-
ory. Di�erent types of bene�cial piggybacking
have been identi�ed and studied, but how to
eÆciently integrate piggyback operations with
a given user query is still an open issue. In
this paper, we propose a technique of multiple-
granularity interleaving to eÆciently integrate
multiple piggyback operations with a given
query at di�erent levels of data granularity. We
introduce an algebraic notation to capture the
main characteristics of data
ows in a database
management system (DBMS), facilitating the
study of piggybacking and enabling the auto-
mated integration of piggyback operations and
user queries in a DBMS supporting the piggy-
back method. Various integration techniques
are introduced to facilitate multiple-granularity
interleaving including merging shared work,
augmenting user queries, and downgrading pig-
gyback operations. A set of transformations
and heuristics are suggested that preserve the
semantics of a user query, while eÆciently in-
terleaving the operations. Our preliminary ex-
periments indicate that interleaving at proper
levels of data granularity is key to the eÆcient
implementation of the piggyback method.

Keywords: Query processing, query optimiza-
tion, piggybacking, multiple-granularity inter-
leaving, database statistics

�Research was supported by the Centre for Advanced

Studies at IBM Toronto Lab and The Univ. of Michigan.
yDept of Electrical Engineering and Computer Sci.,

The Univ. of Michigan, Ann Arbor, MI 48109, USA.
zDept of Computer and Information Science, The

Univ. of Michigan, Dearborn, MI 48128, USA.
xIBM Toronto Lab, North York, Ontario, Canada.

1 Introduction

In our previous work [24], we described a
methodology for the collection and maintenance
of database statistics during the normal pro-
cessing of user queries. The purpose of this so-
called piggyback method is to improve both the
quantity and quality of data statistics for use
in query optimization, while at the same time
relieving the burden of the database adminis-
trator to maintain these statistics. Our study
has demonstrated that this method is promising
in maintaining statistics for query optimization,
compared with the current utility method em-
ployed in most commercial database manage-
ment systems (DBMS) including DB2, Oracle,
Sybase and Informix [5, 11, 15, 20]. Di�er-
ent types of useful piggybacking were studied
in our previous work, including vertical, hor-
izontal, mixed, and multi-query piggybacking.
However, an important issue left unresolved was
how to eÆciently perform the piggyback oper-
ations in conjunction with the normal query
processing in an existing or newly developed
DBMS. We address this issue with the current
work.

In order to properly express and implement
an automated integration of query and piggy-
back operations, we must recognize that data-
base statistics are collected at a number of levels
of data granularity. For example, the size of a
table is important both in the number of rows
and the number of physical blocks. Since oper-
ations in relational algebra are expressed only
at level of the table, we need to extend the rela-
tional algebra in a way that allows us to handle
the di�erent levels of data granularity.

The multiple-granularity interleaving ap-
proach we propose in this paper allows a DBMS
implementing the piggyback method to identify
what degree of interleaving or even true par-

1

qzhu
Typewritten Text
Proceedings of CASCON'1999, Canada, 1999

qzhu
Typewritten Text

qzhu
Typewritten Text

qzhu
Typewritten Text

allel processing is possible and appropriate for
a given query and a �xed set of piggyback op-
erations. As operations are decomposed into
sub-operations at lower and lower levels of data
granularity, the possible choices for interleav-
ing and parallelism are increased. The pur-
pose of our work is to develop a technique that
will enable the automated integration of query
and piggyback processing at appropriate levels
of data granularity in an eÆcient way for their
interleaved or parallel execution. We use an al-
gebraic notation, which also has a correspond-
ing graphical representation, for data
ows in
a query execution plan to express these various
data granularities explicitly so that piggyback
operations can be integrated with user queries
at appropriate levels by a simple algorithm.

In addition to enabling the e�ective and eÆ-
cient interleaving of query and piggyback op-
erations in a newly constructed DBMS, the
multiple-granularity interleaving approach can
also be used to identify which types of pig-
gybacking are appropriate for implementation
in an existing DBMS. Clearly the piggyback
method can be more easily incorporated into a
newly constructed DBMS than into an existing
one since the latter may have some restrictions
on where the piggyback processing may take
place. For example, in an existing DBMS, it
may be infeasible for piggyback processing to be
implemented directly inside the query process-
ing engine at the row level, perhaps for reasons
of security or programming complexity. In this
case, only manipulations at the table or state-
ment level will be appropriate. Our technique
of multiple-granularity interleaving allows a sys-
tem to integrate piggyback operations with a
query at the most e�ective levels of data gran-
ularity that are accessible.

The integration of multiple piggyback oper-
ations with a single user query operation is
similar in some ways to the problem of multi-
ple query optimization studied in the literature
[2, 4, 18], for example, the techniques related to
common subexpressions [3, 7]. However, there
are some signi�cant di�erences between multi-
ple query optimization and our task here. First
of all, in multiple query optimization the prob-
lem is to combine a set of user query operations
that are of equal importance, while in our prob-
lem piggyback operations are of secondary im-

portance relative to the user query operation,
and in the extreme case, a piggyback operation
can even be ignored. This observation provides
new opportunities for optimizing piggybacking
integration. Secondly, in multiple query opti-
mization the set of query operations can be arbi-
trary, whereas in piggybacking integration only
the user query is arbitrary, and the set of pos-
sible piggyback operations is �xed for a given
database schema. This observation opens pos-
sibilities to adopt special (rather than generic)
eÆcient techniques speci�cally targeted toward
piggyback operations. Finally, multiple query
optimization does not usually consider the data
explicitly at multiple levels of granularity, as we
must do here.

The area of statistics collection and maint-
enance for query optimization has been stud-
ied from a number of perspectives. Mannino et

al. provides in [14] a comprehensive survey of
existing techniques for statistics collection and
cost estimation in DBMSs. A number of tech-
niques have been developed as well for the es-
timation of database statistics, including tech-
niques to estimate physical statistics (e.g., page
references) by Copeland, Mackert, and Zander
et al. in [8, 13, 23]. Christodoulakis, Lip-
ton, Selinger, and Shapiro et al. have proposed
in [6, 12, 17, 19] various techniques including
parametric methods, table-based methods, and
sampling methods to estimate the intermediate
and target table sizes from some base statis-
tics, and in [9], Haas et al. introduced sev-
eral sampling-based estimators to estimate the
number of distinct values of a column in a ta-
ble. Yu and Lilien et al. suggested a number
of dynamic (adaptive) query optimization tech-
niques in [21], and classi�ed them into direct
ones, which dynamically optimize the current
query based on runtime information, and in-
direct ones, which collect dynamic information
from the current query to optimize subsequent
queries. An adaptive query optimization algo-
rithm was also proposed by Yu and Sheu to dy-
namically complete a partial access plan based
on latest statistics collected at runtime in [22].

Some of the issues of data granularity that
we study here have also been examined, espe-
cially in areas related to parallel processing. For
example, in [10] Jamieson shows that the gran-
ularity of data access impacts the performance

2

of parallel algorithms, while in [1] Ahmed uses
transformations of data granularity to imple-
ment eÆcient execution on parallel hardware.
More directly related to the management of
data, in [16] Pernul et al. describe how data
granularity a�ects the design of multilevel se-
cure databases.
The rest of this paper is organized as follows.

Section 2 reviews the statistics obtainable via
piggybacking and describes a high-level view of
query processing in a DBMS with and without
piggybacking. Section 3 de�nes more carefully
the necessary elements to describe multiple-
granularity interleaving, and Section 4 demon-
strates how these can be used to represent
multiple-granularity interleaving in a DBMS,
along with some experimental results that ver-
ify our technique. Finally, Section 5 presents
our conclusions and some areas for future work.

2 Background

We review here some of the key points from
[24] related to database statistics and examine
the context in which piggyback query process-
ing takes place in a DBMS.

2.1 Query Optimization Statistics

Di�erent DBMSs may maintain di�erent types
of statistics on databases in their system cata-
logs for query optimization. Table 1 shows some
typical statistics maintained in a DBMS. More-
over, the statistics for query optimization can be
classi�ed into logical and physical types, where
the logical statistics can be determined by the
data values in a database, and physical ones are
determined by the properties of the physical or-
ganization of the database on a storage medium.
Using the labels of Table 1, C1, C2, C3, C4, T1,
I3 and I4 are logical statistics, and T2, I1 and
I2 are physical statistics. An implementation of
the piggyback method should be able to collect,
estimate or validate both logical and physical
statistics.
In a DBMS, a user query is implemented

by one or more access methods such as the
sequential scan method and the hash join
method. In principle, the access methods
involving more than one table can be imple-
mented by the ones involving a single table,

i.e., the ones used to access the results of
sub-queries. Hence, we mainly consider unary
access methods, and the common ones are:

Sequential scan (SS) { scan a table sequentially.
Index scan (IS) { get quali�ed rows via an index.
Index-only (IO) { get values from an index tree.
Hash access (HA) { get rows via a hash table.

Certain statistics can be obtained during the
execution of each access method, although at
di�ering levels of accuracy. At the top level, an
accurate statistic is calculated using a complete
data set. At the second level, a given statis-
tic is estimated via sampled data. At the next
level, validity information (i.e., whether or not
the statistic is up-to-date) may be determined.
At the lowest level, no information about a par-
ticular statistic can be found at all. Table 2
shows at what level some statistics may be ob-
tained during the execution of di�erent access
methods.
For the sequential scan method, since the

whole data �le of a table is scanned, all column
and table statistics can be accurately calculated
during its execution. However, since indexes are
not accessed, the physical index statistics can at
best be estimated.
For the index scan method, there are sev-

eral cases. The �rst case occurs when an in-
dex tree is used as a means to scan the whole
corresponding table in the sorted order of the
indexed column. Since both the index and the
table are fully scanned, all statistics can be ob-
tained. The second case occurs when the re-
trieved values of an indexed column a from the
index tree cover (at least) both the range a < �1
and the range a > �2, where �1 and �2 are con-
stants. Since a < �1 (if not empty) implies
min(a) is retrieved and a > �2 (if not empty)
implies max(a) is retrieved, both the maximum
and minimum statistics (C1 and C2) can be ob-
tained accurately. Since the index tree is ac-
cessed, statistic I2 can also be obtained accu-
rately. Other statistics can be estimated by us-
ing the set of retrieved data as a set of sample
data. For example, statistic C3 for column a in
table R can be estimated as C3 = jRj�n(a)=jSj;
where jRj, n(a), and jSj are the cardinality of R,
the number of distinct values in the sample set
S, and the cardinality of the sample set, respec-
tively. A sample set can be improved by apply-
ing horizontal piggybacking or multi-query pig-
gybacking, which are described in greater de-

3

Type Label Description

C1 max value of a column (or second max value)
Column C2 min value of a column (or second min value)
Statistics C3 number of distinct values of a column

C4 distribution (frequent values and quantiles)
Table T1 number of rows in a table

Statistics T2 number of pages used by a table
I1 number of leaf pages

Index I2 number of B-tree index levels
Statistics I3 number of distinct values for the 1st column of index key

I4 number of distinct values for the full index key

Table 1: Typical Statistics Maintained in a System Catalog

C1 C2 C3 C4 T1 T2 I1 I2 I3 I4

SS
p p p p p p � � p p

IS (I) full
p p p p p p p p p p

(II) a < �1; a > �2
p p � � � � � p � �

IO (I) full
p p p p � p p p p p

(II) a < �1; a > �2
p p � � � � � p � �

HA � � � � � � � � � �
`
p
' | accurate statistics; `�' | estimated statistics via sampling;
`�' | validity information of statistics; `�' | no obtainable/applicable statistics;
`a' | an indexed column; `�1', `�2' | constants, where �1 < �2;

Table 2: Statistics Obtainable via Access Methods

tail in [24], along with further discussion of the
index-based access methods. Note that when
the retrieved values of an indexed column cover
the range a < �1 but not the range a > �2,
statistic C2 can be obtained accurately, but not
statistic C1. For C1, the following condition
can be used to check its validity: (9x 2 S s.t.
x > C1)) (C1 is out-of-date).
For the index-only access method, the obtain-

ability of statistics is similar to the index scan
method. The only di�erence is that table statis-
tic T1 cannot be obtained since the data �le
is never actually accessed. Note that T1 may
be obtained or estimated when the referenced
structure is a unique index.
For the hash access method, we have identi-

�ed conditions (see [24] for more details) that
can be used to validate statistics C1 and C2.
Other column statistics and most table statis-
tics can be estimated by taking data in the hit
bucket(s) of the hash �le as a set of sample data.
It is clear that no index statistics can be ob-
tained.

2.2 Query Processing Architec-

ture

Figure 1 shows a high level block diagram of the
query processing performed in a typical DBMS.
Each of the blocks represents a functional com-
ponent and the paths between them represent
an exchange of information in the indicated di-
rection. The dotted portions of Figure 1 show
extensions to the architecture for a DBMS im-

plementing the piggyback method. In this case,
when the parser reads schema information from
the system catalog to check the semantics of
a user query, statistics are also read for veri-
�cation and possible update. The user query
is parsed, and the parse tree is given to the
query optimizer. An optimized query execution
plan is generated. If possible, the query execu-
tion plan is modi�ed to integrate any relevant
piggyback operations. The integrated execution
plan is processed by the database execution en-
gine. As blocks of data are retrieved from the
database, piggyback operations are performed
on the data while in main memory. If needed,
the results from the database engine are �l-
tered after statistics have been analyzed, so that
the correct results for the original query are re-
turned to the user. Finally, as warranted by the
statistics collected and other factors such as sys-
tem load, the system catalog will be modi�ed to
re
ect the updated statistics.

If we restrict ourselves to the highest level of
data granularity, there is very little integration
between the piggyback processing and the nor-
mal processing of the user query. In a sense, the
various components of the query processing sys-
tem are used as \black boxes". For this reason,
we refer to this level of piggybacking as external
piggybacking. However, if we integrate more
fully the query processing with the piggyback
processing (e.g., when building a new DBMS
\from the ground up"), we can take advantage
of the information associated with data at �ner

4

user query
table-level

execution plan

database

query & piggyback
integrated

required

database statistics updates

Parser Optimizer Execution

data
block-level

Filter

parse tree

statistics

Catalog
System

Piggybacking

execution plan query result
(augmented)

query result
optimized

Database

Figure 1: High-level representation of typical query processing

levels of data granularity. For example, exter-
nal piggybacking cannot determine directly the
number of blocks in a base table or the height
of an index tree. For this reason, we develop
the notion of multiple-granularity interleaving
to combine operations at the most e�ective ac-
cessible level.

3 Multiple-Granularity

Interleaving

In this section, we describe some elements
of multiple-granularity interleaving, including
user query and piggyback operations, data
ow
plans, data semantics of operations, and data
granularities.

3.1 User Query and Piggyback

Operations

For a given DBMS in which the piggyback
method is to be implemented, there will be a
de�ned set of query processing primitives and
a de�ned set of statistics collection operations
to be piggybacked on user queries. Tables 3
and 4 list some example logical and physical
query processing operations and Table 5 lists
the classes of piggyback (statistics collection)
operations. In each table, we give a symbol to
represent every operation for the remainder of
this paper.

A few notes about the operations of Ta-
bles 3, 4 and 5. First, all query and piggy-
back operations have certain logical and phys-
ical properties in their processing, so our des-
ignation of � as a logical operation and � as
a physical operation, for example, may be ar-
guable. However, the operations of Table 3 are
most relevant when query processing is viewed

from a design perspective, whereas those of Ta-
ble 4 are most relevant during physical imple-
mentation. Also, we recognize that there is a
di�erence between the semantics of SQL and
relational algebra for some operations, because
the former follows the semantics that duplicates
are not necessarily eliminated (unless the key-
word DISTINCT is speci�ed), while the latter fol-
lows set semantics, in which duplicate elements
are identical. This is why we de�ne both the �
and the �0 operations and consider �0 to be a
\physical" operation, for example.
As a concrete example of how we use the no-

tation to represent these operations, consider
the simple query SELECT DISTINCT A1,A4

FROM R1 WHERE A3>200, where the operand ta-
ble R1 has four columns A1, A2, A3, and A4. This
can be written as Q1 = �

A1;A4
(�

A3>200
(R1)). If

we would like to compute the maximum value of
column A3 in R1, then our piggyback operation
can be represented as P1 = '

C1(A3)
(R1).1 The

goal of the piggyback method in this example is
to e�ect an eÆcient interleaving of the two op-
erations Q1 and P1. Since the input operands
of both operations are the same, the piggyback
method can take advantage of the data transfer
from disk required by the user query to per-
form the tasks necessary for the piggyback op-
eration(s). In the rest of this section, we discuss
various elements of our technique for automat-
ing this process.

3.2 Data Flow Plans

A relational algebra expression for a query oper-
ation is often represented as a query tree. Such
a tree diagram implies a certain
ow of data,
with the details being left to the implementa-

1We use the identi�ers of Table 1 to represent the

various statistics collected throughout the examples in

this paper.

5

Operation Symbol Description

select �
Given a set of input rows, produce quali�ed rows according to a given selection

criterion

project �
Given a set of input rows, produce rows with a subset of columns according to a

given set of column names, eliminating duplicate rows

join ./
For two given sets of input rows, perform a join based on a given condition and

produce the output rows

aggregate varies
An aggregation operation is one of MAX, MIN, AVG, COUNT or SUM that, given a set of

input rows, produces an appropriate value for the given (set of) column(s)

Table 3: Logical query processing operations

Operation Symbol Description

duplicate

project
�0

Given a set of input rows, produce rows with a subset of columns according to a

given set of column names without duplicate elimination (bag semantics)

scan
� or

SCAN

Given a set of elements or a composite input, produce each element (or sub-

component) one at a time

index scan ISCAN Produce each element of a given input one at a time, using an index

gather � Collect component elements and produce an element at a coarser granularity level

index

operations

Æ, �, �,

�, �

These operations take an input table and implicitly associated index to produce one

of: a set of ids for quali�ed blocks (Æ), the index itself (�), the data blocks for a set

of ids (�), the set of nodes along a path from the root to the �rst leaf node (�), and

the set of quali�ed leaf nodes via sibling pointers (�).
block nested

loop join
BNLJ

Produce the join result of the two given sets of rows, using a block nested loop join

strategy
loop LOOP Produce a number of copies of an input stream, speci�ed by the given parameter

sort SORT Reorder the values of the input stream according to the speci�ed sort criterion

Table 4: Example physical query processing operations

tion and physical representation, which we re-
fer to as a high-level data
ow plan for the rel-
evant query operation. When we put detailed
implementation information into the plan, it be-
comes a low-level data
ow plan, or often called
as an execution plan. As we will see, piggyback-
ing can be performed with a data
ow plan at
various levels. We will use a similar data
ow
plan to represent piggyback operations. For any
operation
, we use D(
) to denote its asso-
ciated data
ow plan being considered. Note
that since the piggyback method encompasses
both the physical and logical views of data for
query processing, we must re
ect various data
granularities explicitly in our representation of
a data
ow plan. We will discuss this aspect
of data
ow plans and their representation in
Section 3.4.

In order to avoid using extremely complicated
diagrams, we will not indicate the control
ow in
these plans directly, but rather take the conven-
tion that each of the operations in a data
ow
plan such as those shown in Figure 2 represents
an iterator construct that takes an input object
and produces output elements one at a time,
as consumed by the next operation in the data

ow path. We do not concern ourselves with
distinctions between data-driven and demand-

D(Q1) =

resultSet

�
A1;A4

�
A3>200

R1

D(Q2) =

resultSet

./R1:A1=
R2:A1

R1 R2

��@@

D(P1) =

C1(A3)

'
C1(A3)

R1

D(P2) =

C4(A2)

"
C4(A2)

R1

Figure 2: Example data
ow plans

driven models for data
ows, since the results
are equivalent for our purpose.

Although the graphical representation of
Figure 2 is useful for presenting data
ow
relationships, space constraints lead us to use
an equivalent algebraic representation that is
more compact. In this notation, A !
 ! B

indicates that A is the input to operation
,
and B is the output. For operations that
have multiple inputs (e.g., join), we use a
notation similar to the Backus-Naur form
of production grammars to represent the

6

Operation Symbol Description

�nd statistic '
stat

Find the database statistic stat for a given set of data or index elements,

where stat is one of the statistics listed in Table 2.

estimate statistic "
stat

Estimate the database statistic stat for a given set of data or index ele-

ments, where stat is one of the statistics listed in Table 2.

verify statistic v
stat

Verify the database statistic stat for a given set of data or index elements,

where stat is one of the statistics listed in Table 2.

Table 5: Classes of statistics collection operations for piggybacking

connections between the various nodes in a
data
ow plan. For example, D(Q2) (shown
graphically in Figure 2) would be represented by
fR1 ! � ; R2 ! � ; �! ./! resultSet g,
where the additional symbol � simply rep-
resents a common point in the data
ow
plan.

3.3 Data Semantics of Operations

In order to manipulate data
ow plans to gen-
erate correct results, we must always guarantee
that the semantics of interleaved operations do
not di�er from the non-interleaved operations.
For this purpose, we de�ne a number of opera-
tion classes (speci�cally for transformations on
objects consisting of collections of �xed-size vec-
tors or rows) depending on the data semantics
preserved by the operations.
We say that an operation
 preserves the full

semantics of its data input if there exists an
inverse transformation operation (at least con-
ceptually),
�1, such thatX !
!
�1 ! X

for all valid data inputs X . In other words, the
representation of X may change, but no infor-
mation is lost from the input to the output of

. If an operation X !
 ! Y preserves the
full semantics of its input X , then we say that
its output Y is semantically equivalent to input
X (indicated as Y �

S
X).

If R is a table, we use notation S(R) to rep-
resent its schema, or set of column identi�ers
associated with each row in R. A table R0 is
a vertical subset of another table R (written as
R0 �

V
R) if (1) there is a one-to-one mapping

between the row identi�ers of R and R0 and
(2) S(R0) � S(R). A table R0 is a strict vertical
subset of another table R (written as R0 �

V
R)

if S(R) � S(R0) 6= ;. R0 is a horizontal sub-

set of another table R (indicated as R0 �
H
R),

if there exists a one-to-one mapping between
the elements of R and R0 [(R � R0). R0 is a
strict horizontal subset of R (written R0 �

H
R)

if R�R0 6= ;.

An operation
 on a set of rows is said to be a
vertical reduction if there exists some input set
X such that X !
 ! Y and Y �

V
X . If an

operation
 performs no strict vertical reduc-
tion on any input, it is said to preserve vertical

semantics. An operation
 on a set of rows
is said to be a horizontal reduction if there ex-
ists some input X such that X !
 ! Y and
Y �

H
X . Operations which preserve horizontal

semantics perform no strict horizontal reduc-
tion on any input. As an example, the physi-
cal project operation (without duplicate elimi-
nation) preserves horizontal semantics, and the
select operation preserves vertical semantics.

Table 6 shows the semantics preserving prop-
erties of some relational query and piggyback
operations. The scan (�) and gather (�) op-
erations will be described in greater detail in
Section 3.4. The standard aggregate functions
of SQL (i.e., MAX, MIN, AVG, SUM, and COUNT), in-
dicated in the table by aggr, all have the same
semantics preservation behavior, as do all of the
piggyback statistics collection operations, rep-
resented by stat in the table.

3.4 Data Granularities

In order to interleave operations at multiple lev-
els of data granularity in a single data
ow plan,
we introduce a notation for describing explic-
itly the granularity at which a given operation

is processed. The graphical notation
g2

g1 indi-

cates that operation
 has an input granularity
of g1 and an output granularity of g2, where g1
and g2 are not necessarily the same.

Table 7 lists the logical and physical data
granularities that we have identi�ed as impor-
tant in the description of data
ow for the var-
ious user query and piggyback statistics collec-
tion operations. The table also gives a nota-
tional identi�er for each level of data granular-
ity.

The vector-based data collections of Figure 7

7

out �
S
in out �

H
in out �

V
in

sort Yes No No
� Yes No No
� Yes No No
� No Yes No

�0 No No Yes
� No Yes Yes
./ No No No

aggr No No No
stat No No No

Table 6: Semantics-preserving properties

Data granularity Notation

Scalar value v

Set of distinct scalar values S

Index node n

Set of distinct nodes (tree) T

Vector or row t

Block of rows b

Set of distinct blocks (extent) E

Set of distinct rows (table) R

Table 7: Logical and physical data granularities

have a sequential containment relationship to
one another. In other words, a collection of rows
(t) makes up a block (b), a block extent (E) is
composed of multiple blocks, and a table (R) is
composed of multiple extents. Note that rows
and tables are logical constructs, while blocks
and extents are physical. The transformation
from one level in this sequence to another is
represented in a data
ow plan by � operations
(to transform a composite granularity into its
individual components) and � operations (to
transform a collection of elements into a coarser
granularity).

As an example of how these granularities rep-
resent operations in practice, consider the re-
lational � operation. Diagram (a) in Figure 3
shows explicitly that both the input and output
objects are tables (as indicated by R). However,
in order for the selection and any piggyback op-
erations to be interleaved row by row, we must
de�ne an equivalence between the � operation
at the row level and the table level.

Diagram (b) of Figure 3 shows the explicit
row-level (t) selection operation in a way that
is logically equivalent to the table-level � opera-
tion. So, diagram (b) of Figure 3 also illustrates
the fact that a table can be converted into a set

of rows (t�
R) and that the output rows can

then be gathered into a single table (R�
t) .

Note that the equivalence shown in Figure 3 is
bi-directional, and that we can expand or col-
lapse operations as necessary to represent them
at the appropriate level of data granularity for

eÆcient interleaving.
As in Section 3.2, the graphical representa-

tion of Figure 3 is illustrative, but space con-
straints lead us to use the equivalent algebraic

resultSet

j
R

��
R

j
R1

,

resultSet

j
R

�
t

j
t

��
t

j
t

�
R

j
R1

(a) (b)

Figure 3: Operations of explicit data granularities

representation, augmented with explicit indi-
cators of data granularity. In this notation,

A !

���g2g1 ! �

���g3g2 ! B indicates that

A is the input to operation
, which has an in-
put granularity of g1 and an output granularity
of g2. The output of
 is then the input to �,
and B is the output of the entire process. Note
that the output granularity of
 must neces-
sarily match the input granularity of �. So, in
this notation, diagram (a) of Figure 3 would be

represented as R1 ! ��

���RR ! resultSet.

For operations that have multiple inputs
(e.g., join) or that have outputs connected to
multiple consumers as a result of combining
multiple data
ow plans, we again use the same
notation described in Section 3.2, augmented
with explicit data granularities. For exam-
ple, a table-level join A ./ B that produces a
table-level output C would be represented byn
A ! �; B ! �; � ! ./

���RR, R ! C
o
.

4 Multiple-Granularity

Query Processing

The basic idea of the piggyback method is to
modify the processing of a normal user query in
an eÆcient way so that statistical information
can be collected about the relevant data. How
to interleave the sub-operations of a user query
with a �xed set of piggyback operations is the
issue to be discussed in this section.

8

4.1 Multiple-Granularity Inter-

leaving Algorithm

Our algorithm for multiple-granularity inter-
leaving provides an integration of a given user
query with a �xed set of piggyback operations
so that all the operations can be performed ef-
�ciently. In fact, the integration is done for
the execution plans (i.e., the data
ow plans
at low levels) of the operations. We assume
that such a data
ow plan for the user query
is determined by the query optimizer prior to
the execution of this algorithm. However, the
data
ow plans for the piggyback operations
as well as their integration with the data
ow
plan for the user query are to be determined by
this algorithm. For each piggyback operation,
there may be multiple feasible data
ow plans,
each of which represents one data
ow path 2

from the underlying table for the argument to
the output. We can view all the feasible data

ow plans (paths) for a piggyback operation to-
gether as a non-deterministic data
ow plan for
it. The task of our algorithm is to determine
a data
ow path in the non-deterministic plan
that can be most eÆciently interleaved with the
data
ow plan for the given user query. Knowl-
edge is assumed to be embedded in the sys-
tem itself about which statistics are possible to
collect via piggybacking (i.e., determining pig-
gyback operations) and which data
ow paths
for each piggyback operation can be instanti-
ated for the current query (i.e., determining the
non-deterministic data
ow plan). In the fol-

lowing discussion, we use eD(�) to denote the
non-deterministic data
ow plan for piggyback
operation �.
Note that the data
ow plan for a user query

from a query optimizer typically does not ex-
plicitly express all available levels of data gran-
ularity in the system. Hence our algorithmmust
�rst expand the plan to include the implicit lev-
els implemented in the system.
For each user query over which piggybacking

is to take place, our algorithm runs as follows:

� Input: Data
ow plan D(Q) for user query
Q, as produced by the query optimizer

2Unlike a data
ow plan for a piggyback operation,

the data
ow plan for a user query may have multiple

data
ow paths from its leaves to its root.

� Output: Integrated data
ow plan for
query Q and the relevant piggyback opera-
tions

1. Expand all data
ow paths in D(Q) to
match available levels of data granularity
implemented by the system, using transfor-
mation rules F4 and F5 described in Sec-
tion 4.3.

2. Determine the set, O, of data objects (i.e.,
tables, indexes and their related columns)
that are referenced in D(Q).

3. Based on the objects in O, instantiate the
set of relevant piggyback operations P =
fP1; : : : ; Png.

4. For each piggyback operation Pi 2 P , �nd
the table object oj 2 O such that the argu-
ment of Pi is related to oj . Note that there
may be multiple references to a single un-
derlying table object in a query data
ow
plan, and we must consider each of these
references as possible candidates for piggy-
backing. For all such objects oj 's:

(a) Merge each path (feasible plan) ineD(Pi) with a path starting from an
instance of oj in D(Q) as far as pos-
sible toward the root. If there exists
at least one path in eD(Pi) that can
be merged, choose the best of these
paths (denoted by D(Pi)) and loop
to Pi+1. The process of merging and
ranking di�erent possible paths will
be discussed in Section 4.2.

(b) If no merging is possible for any in-
stance of oj in D(Q), augment Q

properly along the paths from an in-
stance of oj to the root in D(Q),
according to the overhead tolerance
speci�ed by the user, and attempt
to merge paths in eD(Pi) with the
augmented plan for Q. If there ex-
ists at least one path that can be
merged, choose the best one (denoted
by D(Pi)) and loop to Pi+1.

(c) If no merging for the augmented plan
is possible, downgrade Pi to P 0i , and

attempt to merge the paths in eD(P 0i)
with a path from an instance of oj in

9

D(Q). If there exists at least one path
that can be merged, choose the best
one (denoted by D(Pi)) and loop to
Pi+1.

(d) If no merging is possible after aug-
menting Q and downgrading Pi, no
statistical information will be col-
lected by Pi. Loop to Pi+1.

5. Collapse the data granularity of the inte-
grated data
ow plan, where necessary, us-
ing transformation rules F4, F5 and F6 in
Section 4.3.

6. Where possible, combine piggyback oper-
ations of the same type connected at the
same point into an equivalent vector oper-
ation. For example, if the maximum val-
ues of three di�erent columns in a table
are being collected during the same scan,
all should be collected as a single (vector)
operation.

7. Return integrated3 data
ow plan D(Q) +
D(P1) + : : :+D(Pm).

It should be noted that the manner in which
these plans can be combined is generally not
unique. However, this is not to say that the
complexity of this algorithm grows unchecked.
To demonstrate this, we outline brie
y the com-
plexity of step 4 in our algorithm, where the
dominating portion of the work is done. Let N
be the total number of occurrences of all tables
in a query (which we will take to be the vari-
able, in this case). Also, let I be the maximum
number of indexes and C the maximum num-
ber of columns associated with any table in the
database. Theoretically, I could be as large as
2C (which is a constant, in any case), but in
practice the overhead for values of I � C

2
tend

to be prohibitive and thus avoided. If we use s
to represent the maximum number of of statis-
tics to be piggybacked on any object (usually s
is on the order of 10), then the maximum num-
ber of piggyback operations considered by our
algorithm will be s �N + s �C �N + s � I �N ,
i.e., O(N). For each piggyback operation Pi,
we may need to attempt to merge every pos-
sible path in eD(Pi) with each of the N paths

3We use the `+' symbol in the algorithm only to in-

dicate that the data
ow plans have been combined in

some appropriate way.

in the query data
ow plan from a table re-
currence to the root. Since no more than N

paths will be possible to instantiate in eD(Pi)
for a given query Q, the merging complexity for
one piggyback operation will be at worst O(N2)
and the complexity of the entire algorithm (for
O(N) piggyback operations) is at worst O(N3).
Note that, since we use heuristics to integrate
the data
ow plan for a given query with the
data
ow plans for a limited set of compatible
piggyback operations, the complexity of our al-
gorithm is not exponential.
In the following subsections, we elaborate

some details of the algorithm. In particular,
we describe the three basic strategies for inte-
grating two data
ow plans in Section 4.2. In
Section 4.3, we provide some basic transforma-
tion rules and heuristics that can be used by
the algorithm to determine when a particular
integration is possible or more likely to be ef-
�cient. These techniques are demonstrated in
Section 4.4, where we give some concrete exam-
ples of how the data
ow plans for a user query
and a set of piggyback operations can be inte-
grated. Finally, in Section 4.5, we discuss some
of our experimental results using a research pro-
totype for piggybacking.

4.2 Integrating Data Flow Plans

We have identi�ed three general classes of tech-
niques to integrate data
ow plans for a user
query and its compatible piggyback statistics
collection operations:

� Merge | If an initial sequence of sub-
operations from two data
ow plans per-
form the same set of manipulations on the
same data input, they can be performed
at the same time, rather than repeated for
each data
ow plan. The reading of data
blocks is a good example of this technique,
as is shown graphically in Figure 4, using
the data
ow plans for Q1 and P1 from Fig-
ure 2. Note that transformation rules F1
� F3 allow merging to be also done for two
data
ow plans with convertible initial se-
quences (not necessarily to be identical).

� Augment | This technique applies only
to user queries. If a user query retrieves
a given amount of data and a particular

10

�
A1;A4

�
A3>200

SCAN

R1

'
C1(A3)

SCAN

R1

)

�
A1;A4

�
A3>200

'
C1(A3)

SCAN

R1

��@@

Figure 4: Merged data
ow plan for Q1 and P1

piggyback operation would only be possi-
ble with a larger set of data, the original
query plan can be augmented (see the con-
cept of \horizontal piggybacking" in [24]).
As an example, an added node in the plan
could allow more rows to be read into mem-
ory (e.g., by relaxing the selection criterion
for an encapsulated operation implement-
ing both scan and select from which only
quali�ed rows are accessible), and then an-
other node would �lter out the original
rows required by the query. This is demon-
strated in Figure 5, where the presumption
is that the larger set of data introduced by
the additional condition � would, for ex-
ample, provide a better estimate of some
statistics for columns other than A3. Simi-
larly, the idea of \vertical piggybacking" in
[24] can also be applied here.

�
A1;A4

�
A3>200

SCAN

R1

)

�
A1;A4

�
A3>200

�
A3>200 _ �

SCAN

R1

Figure 5: Augmented data
ow plan for Q1

� Downgrade | This technique applies only
to piggyback operations. When the avail-
able data for a query is not suÆcient to
perform a more exact statistical analysis,
the given operation may be downgraded.
For example, if a table is not read by a
full scan, but a suÆcient number of blocks
is retrieved, a piggyback operation to �nd
the distribution of a column could be down-
graded to an operation to estimate or ver-
ify the distribution. Thus, the plan on the

left in Figure 6 could have been the origi-
nal piggyback operation requested, but the
plan on the right is the result of downgrad-
ing.

'
C4(A2)

�
A3>200

ISCAN

R1

)

"
C4(A2)

�
A3>200

ISCAN

R1

Figure 6: Downgraded data
ow plan for P1

Note that, when comparing multiple possible
ways to merge the paths in the (deterministic)
data
ow plan for a query with the paths in the
non-deterministic data
ow plan for a piggyback
operation, we must de�ne the utility of each
choice in order to determine the \best". Since
the bene�t of merging the paths from two data

ow plans is to share the common work, paths
should be merged \as much as possible". If we
weight the sub-operations in a data
ow path
according to the amount of work performed for
the path, we can use the amount of common
work divided by the amount of total work to
evaluate the bene�t of that choice. The ac-
tual values for the weighting functions associ-
ated with di�erent paths should re
ect the rel-
evant heuristics from the next section.

For example, one data
ow path for �nding
the maximum value of a column might perform
a sort on that column (the �rst sub-operation,
representing 99% of the total e�ort) followed
by a scan of the �rst row in the sorted result
(the second sub-operation, representing 1% of
the total e�ort). An alternate data
ow path
might perform a full scan of the table (the �rst
sub-operation, representing 80% of the total ef-
fort) with a test of each row to determine if
the maximum should be updated (the second
sub-operation, representing 20% of the total ef-
fort). If only the �rst sub-operations from the
two data
ow paths for the piggyback opera-
tion can be shared with the paths from a query
data
ow plan, the merging for the �rst data

ow path is preferred since 99% of the work is
shared, compared with 80% shared work for the
second merging.

11

4.3 Transformations and Heuris-

tics

When considering possible interleavings of two
or more data
ow plans, it is useful to take
advantage of a number of transformation rules
that we have identi�ed, given in the following
list. We use Sin(
) to indicate the input schema
required by an operation
 with a set of rows
as input and Sout(
) to indicate the output
schema produced.

F1: For X !
! Y , if Y �
S
X , then fX !

�g) fY ! �g

In other words, if an operation
 pre-
serves the full semantics of its input X ,
then its output Y may be connected to
another operation � requiring X as an
input.

F2: For X !
 ! Y , if Y �
V

X and
Sin(�) � Sout(
), then fX ! �g)

fY ! �g

In other words, if an operation
 per-
forms a vertical reduction, then Y can re-
place X as an input only to operations
requiring an acceptable vertical subset of
X . For example, if S(X) = f A1, A2, A3 g,
and
 = �

A2;A3
, then Y can only be used

as an input to operations � for which
Sin(�) � f A2, A3 g.

F3: For X !
! Y , if Y �
H
X and Y is an

acceptable subset4 of X for operation �,
then fX ! �g) fY ! �g

In other words, if an operation
 per-
forms a horizontal reduction, then Y can
replace X as an input only to operations
requiring an acceptable horizontal subset
of X .

F4: fX !

���g3g1 ! Y g , fX ! �
���g2g1 !

���g3g2 ! Y g

Scan operations (�) can be
added/removed at the input to make a
given operation
 accept an input at a
�ner/coarser level of data granularity.

4Acceptance can be determined, for example, by a

threshold value for a relative sample size.

F5: fX !

���g3g1 ! Y g , fX !

���g2g1 !

�
���g3g2 ! Y g

Gather operations (�) can be
added/removed to make a given op-
eration
 produce an output at a
�ner/coarser level of data granularity.

F6: f �

���g2g1 !

���g3g2 !
�1
���g2g3 !

	

���g4g2 g) f �

���g2g1 ! 	

���g4g2 g
In other words, a pair of mutual inverse
operations (such as � and �) with ap-
propriately matching granularities can be
collapsed and replaced by an identity op-
eration.

We have also identi�ed a number of heuris-
tics intended to improve the eÆciency of the
data
ow plan integration techniques described
in Section 4.2. These are given in the following
list.

H1: Prefer �ner levels of granularity to piggy-
back.

Sharing of data between two plans should
generally be done at the �nest available
levels of data granularity. So block or
block set (extent) levels are preferable to
table level, and row level is preferred to
block level. Finer levels of granularity al-
low for a tighter integration between the
query and piggyback operations, making
the associated overhead be shared.

H2: Merge as much as possible.

When two plans can be merged, it is
most eÆcient to merge as many of com-
mon sub-operations along the path to-
ward the root of the tree as possible. This
maximizes the common work that can be
shared.

H3: Merge to the minimum support point.

In other words, operations should share
data at the point where the minimum
data requirement of a given operation is
met. For example, given a choice between
merging to before or after a � operation
(implying that the output of � is accept-
able), merge to beyond the �, so that the

12

smaller set of data will be used to perform
the piggyback operation. The overhead is
therefore minimized.

H4: Minimize augmenting and downgrading.

In general, query plans should be aug-
mented only as necessary, since augmen-
tation usually implies more work than the
user query in isolation. Piggyback oper-
ations should be downgraded as little as
possible, so as to guarantee the quality
of the statistics that can be collected by
piggybacking.

H5: Combine individual piggyback operations
into a single operation if possible.

For example, some column-statistics col-
lection operations such as �nding the
maximum and minimum column values
on the same table can be combined into
a single vector operation and performed
during one scan of the table.

4.4 Examples of Interleaving

Using our notation for explicit representation of
data granularities, we have developed data
ow
plans for a number of representative query oper-
ations and piggyback statistics collection oper-
ations to show how they can be combined. The
plans for these operations can be interleaved ac-
cording to the transformation rules and heuris-
tics described in Section 4.3. Once the fully
integrated data
ow plan has been built, it can
be mapped into a set of manipulations to be
performed on each data element as it is made
available in memory.

Example 1: Let us again consider the simple
query Q1 and piggyback operation P1 of Fig-
ure 2. Using the notation introduced in Sec-
tion 3.2 plans for these operations can be rep-
resented as

D(Q1) =

n
R1! �A3>200

���R
R
! �A1;A4

���R
R
! resultSet

o
;

D(P1) =

n
R1! 'C1(A3)

���v
R
! C1(A3)

o
:

If we expand both D(Q1) and D(P1) to a �ner
level of data granularity using F4 and F5, we
get

D(Q1) =

n
R1! �

���E
R
! �

���b
E
! �

���t
b
! �A3>200

���t
t

! �

���b
t
! �

���E
b
! �

���R
E
! �

���E
R
! �

���b
E
! �

���t
b

! �A1;A4

���t
t
! �

���b
t
! �

���E
b
! �

���R
E
! resultSet

o
;

D(P1) =

n
R1! �

���E
R
! �

���b
E
! �

���t
b
! 'C1(A3)

���v
t

! C1(A3)
o
:

If we then merge the two plans, beginning with
R1, we get a combined data
ow plan of

D(Q1) +D(P1) =

n
R1! �

���E
R
! �

���b
E
! �

���t
b
! �;

� ! �A3>200

���t
t
! �

���b
t
! �

���E
b
! �

���R
E
! �

���E
R

! �

���b
E
! �

���t
b
! �A1;A4

���t
t
! �

���b
t
! �

���E
b

! �

���R
E
! resultSet;

� ! 'C1(A3)

���v
t
! C1(A3)

o
:

If we then merge according to transfor-
mation rule F3 the plan for piggyback
operation P2 and an additional plan

D(P3) =
n
R1! '

T2

���vb ! T2(R1)
o

to �nd the block count (i.e., statistic T2) of R1,
we would have

D(Q1) +D(P1) +D(P2) +D(P3) =

n

R1 ! �

���E
R
! �

���b
E
! �;

� ! �

���t
b
! �;

� ! '
T2

���v
b
! T2(R1);

� ! �A3>200

���t
t
! �

���b
t
! �

���E
b
! �

���R
E
! �

���E
R

! �

���b
E
! �

���t
b
! �A1;A4

���t
t
! �

���b
t
! �

���E
b

! �

���R
E
! resultSet;

� ! '
C1(A3)

���v
t
! C1(A3);

� ! '
T1

���v
t
! T1(R1)

o
:

Finally, we collapse the plan according to F4,
F5 and F6 to get

D(Q1) +D(P1) +D(P2) +D(P3) =

n

R1 ! �

���b
R
! �;

� ! �

���t
b
! �;

� ! '
T2

���v
b
! T2(R1);

� ! �A3>200

���t
t
! �A1;A4

���t
t
! �

���R
t
! resultSet;

� ! 'C1(A3)

���v
t
! C1(A3);

� ! 'T1

���v
t
! T1(R1)

o
:

Example 2: Now, let us consider another ex-
ample using a scan of the table R2 via an index
on column A3 and a piggyback operation '

I2
to

�nd the height of this index tree.5 We use the
convention that a table such as R2 in a data
ow
plan implicitly includes by reference all avail-
able index structures. An index scan can be
represented as a data
ow plan that generates a

5This example is used only to illustrate the notation

and technique. In practice, the height of the index tree

may simply be maintained as the root node is split.

13

set of values for quali�ed block ids, with concur-
rent access to the corresponding data blocks of
the table. Using these two data
ows as the in-
put, an iterator fetches only those blocks of data
that have at least one quali�ed row. Finally a �
operation selects rows that actually qualify for
the given condition from the retrieved blocks.
Using our notation and the symbols for opera-
tions de�ned in Tables 3, 4 and 5 of Section 3,
a data
ow plan for an index scan to select all
rows satisfying A3>200 from R2 can be described
as

D(ISCANA3>200(R2)) =

n

R2 ! ÆA3>200

���S
R
! �;

R2 ! �;

� ! �

����ES, R ! �A3>200

���R
E
! resultSet

o
:

In order to determine the height of the index
tree in this way, we must have access to the iter-
ator that traverses the index from root to leaf.
So, we might implement the 'I2 operation by
getting the index, traversing a single leaf path
from the root, scanning the nodes in that path
and counting them, as follows:

D('
I2(A3)

(R2)) =

n
R2! �A3

���T
R
! �A3>200

���T
T

! �

���n
T
! COUNT

���v
n
! I2(A3)

o
:

If we expand the sub-operation Æ, we can re-

place R2 ! ÆA3>200

���SR ! � by

R2 ! �A3

���T
R
! �A3>200

���T
T
! �A3>200

���T
T

! �

���n
T
! ÆA3>200

���S
n
! �:

Then merging of the two plans would give us

D(ISCANA3>200(R2)) +D('
I2(A3)

(R2)) =

n

R2 ! �A3

���T
R
! �A3>200

���T
T
! �;

� ! �

���n
T
! COUNT

���v
n
! I2(A3);

� ! �A3>200

���T
T
! �

���n
T
! ÆA3>200

���S
n
! �;

R2 ! �;

� ! �

����ES, R ! �A3>200

���R
E
! resultSet

o
:

Example 3: Finally, let us consider a block
nested loop join that uses the data
ow plan
of Example 1 for the outer loop, and the plan
of Example 2 for the inner loop. As described
in [24], more complex queries such as this one
can be piggybacked via the component unary
queries.
A block nested loop join requires an addi-

tional sub-operation, LOOP, that produces a

given number of copies of its input. Concep-
tually, we will represent the block nested loop
as a count of the number of block extents in the
outer loop, which will be used as an input to
the LOOP operation. This can be represented in
our notation as follows, where R1 is taken to be
the outer table and R2 is the inner table

D(BNLJR1;R2) =

n

R1 ! �

���E
R
! �;

� ! COUNT

���v
E
! �;

R2 ! �;

� ! LOOP

����RR, v ! �

���E
R
!
;

� !
;

 ! ./

����RE, E ! resultSet
o
:

If the query optimizer generates a plan that
replaces R2 by ISCAN(R2), we can perform ex-
actly the same manipulations on the outer table
as in Example 1 and on the �rst loop of the in-
ner table as in Example 2. Note that for some
piggyback operations, such as 'C4

to �nd the
distribution of a column, multiple passes over
the data are useful or required. When integrat-
ing these piggyback operations, the DBMS can
take advantage of the multiple passes over the
inner table to compute some of these statistics.

4.5 Experimental Validation

We have demonstrated experimentally that the
amount of overhead for a relatively simple set
of piggyback operations increases substantially
as the interleaving with a user query is im-
plemented at coarser levels of data granular-
ity (i.e., less tightly integrated with the query
processing engine). In our preliminary experi-

table
level

extent
level level

block
level

no
piggybacking

row

200%

150%

100%

50%

0%

169.549%
183.732%

0.655% 0.001% 0%

Piggyback Granularity Levels

O
ve

rh
ea

d
P

er
ce

nt
ag

e

Figure 7: Overhead percentage by granularity level

ments | which were conducted using our pig-
gybacking prototype for single-predicate queries

14

on a Pentium II 300 PC running Linux 2.2.12
| the execution time to collect the minimum-
and maximum-value statistics for all columns
in a table is about as twice (183.732%) as that
of the user query when the piggybacking was
performed at the table level, while the execu-
tion time becomes almost negligible (0.001%)
when the piggybacking was performed at the
row level. The di�erences in overhead accord-
ing to the levels of data granularity at which
the piggybacking is performed is shown graph-
ically in Figure 7. Clearly, the piggybacking
overhead dramatically decreases when the level
of data granularity becomes �ner and �ner. In

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

O
ve

rh
ea

d
P

er
ce

nt
ag

e

1 5 500 1000 2000

0.235%

0.050%
0.045%

0.008% 0.001%

Buffer Size (in blocks)

Figure 8: Overhead percentage by bu�er size

addition, we have found that the percentage of
overhead incurred for a given piggyback opera-
tion (See Figure 8 for a row-level piggybacking)
decreases as the size of the available data bu�er
increases.

5 Conclusions

The concept of multiple-granularity interleaving
is a useful tool for the eÆcient implementation
of the piggyback method within a DBMS. We
have demonstrated the need for such a mecha-
nism to quickly and automatically combine the
processing of user queries and piggyback opera-
tions at an appropriate level of data granularity,
especially in the context of an existing DBMS.
The number and type of statistics to be col-
lected and maintained and the dynamic nature
of user query workloads require a generic ap-
proach that can determine eÆcient interleavings
with a limited description of the rules for do-
ing so. Our representation of query and piggy-
back operations as iterators in data
ow plans at
multiple levels of data granularity gives a
exi-

ble and consistent model for combining the two
types of operations eÆciently. Using the various
techniques for interleaving and plan manipula-
tion, one can build a general toolkit for imple-
menting this model in practice. Descriptions
of the semantics preservation properties of the
various operations provides a guarantee that the
behavior of the interleaved operations is consis-
tent with the results of the individual operations
in isolation. Finally, our work with commercial
and research prototype DBMSs indicates that
the technique of multiple-granularity interleav-
ing is an e�ective mechanism for the implemen-
tation of the piggyback method.
We note that there are still some open issues

not addressed by this work. For example, we
recognize that it should be possible in a DBMS
using the piggyback method to selectively dis-
able piggybacking or even speci�c piggyback op-
erations. Currently, our algorithm for multiple-
granularity interleaving does not explicitly take
this into account. Also, on parallel hardware
processing of common data can be performed by
di�erent physical processors, which brings up is-
sues of synchronization, scheduling, and bu�er
management. However, exclusive (i.e., write)
access to the data is not required by most pig-
gyback operations, so some of these issues will
not be as complex as in arbitrary parallel pro-
cessing.

Acknowledgments

The authors would like to thank Nandit
Soparkar, Berni Schiefer, Calisto Zuzarte,
Cathy McArthur and Gabby Silberman for their
support and valuable comments for the work re-
ported in this paper.

About the Authors

Brian Dunkel is a Ph.D. candidate in the Dept of

Electr. Eng. and Comp. Sci. at The Univ. of Michigan

in Ann Arbor. His primary areas of research interest are

in the use of pre-computed and materialized information

to support data mining, query optimization, and Inter-

net information retrieval technology. He has published
several research papers in these areas, and has worked

with IBM Research at the CAS in Toronto and the T.J.

Watson Center in New York. He has also worked on soft-

ware engineering issues at the Union Bank, Switzerland,

and on neural network systems at Mitre Corp., USA.

His undergraduate research at the Massachusetts Insti-

tute of Technology (MIT) involved hypertext author-

ing and the visual representation of algorithms, which

15

contributed to an interactive CD-ROM version of text-
book \Introduction to Algorithms" by Cormen et al.

(McGraw-Hill/MIT Press).

Qiang Zhu is an Assistant Professor in the Dept of

Comp. and Inf. Sci. at The Univ. of Michigan - Dear-

born. He received his Ph.D. in Comp. Sci. from the

Univ. of Waterloo in Canada in 1995. He also holds an

M.Sc. from the McMaster Univ. in Canada, an M.Eng.

and a B.Sc. both from the Southeast Univ. in China.
He was a lecturer in Comp. Sci. at the Southeast Univ.

from 1984 to 1988. Dr. Zhu has over fourteen years

research experience on centralized/distributed database

systems. He is a principal investigator for a number

of database research projects funded by sources includ-

ing the National Science Foundation and IBM at The

Univ. of Michigan. He has published many research

papers in various journals and conference proceedings.
Some of his research results have been included in several

database research/text books. Dr. Zhu has served as a

session chair and program committee member for some

research conferences. His current research interests in-

clude query processing and optimization, multidatabase

systems, data mining, and Web database technology.

Wing Lau is an M.Sc. student in the Dept of Comp.

and Inf. Sci. at the The Univ. of Michigan - Dearborn.
She is also a research assistant and the computer lab

manager in the department. She received her B.Sc. in

Comp. Sci. from the same university in 1997. She was

a software engineer at Marquip Inc. (Madision, WI)

from 1997 - 1998. Her research interests include query

processing and optimization in database systems.

Suyun Chen is a Sta� Development Analyst in the
Database Technology group at IBM Toronto Lab. She

joined IBM in 1995 after she received her Ph.D. degree

from the McMaster Univ. in Canada. Dr. Chen also

obtained a M.Sc. degree from the Jiangxi Normal Univ.

and a B.Sc. degree from the Zhongshan Univ. in China.

Dr. Chen has been actively involved in a number of

research projects on query optimization and system re-

liability at IBM. She served as a referee for several tech-
nical journals. Her current research interests include

statistical techniques in databases, query optimization,

performance evaluation, system testing, and software re-

liability.

References

[1] H. Ahmed et al. A vector data
ow architecture. In
Proc. of the Int'l Conf. on Databases, Paral. Arch.

and Their Appl., 1990.

[2] J.R. Alsabbagh and V.V. Raghavan. A framework

for multiple-query optimization. In 2nd Int'l Work-

shop on Research Issues in Data Eng.: Trans. and

Query Proc., pp 157{62, Tempe, Arizona, 1992.

[3] J.R. Alsabbagh et al. Analysis of common subex-

pression exploitation models in multiple-query pro-

cessing. In Proc. of the Int'l Conf. on Data Eng.,

pp 488{97, Houston, Texas, 1994.

[4] U.S. Chakravarthy et al. Multiple query processing

in deductive databases using query graphs. In Proc.

of VLDB'86, pp 384{91, Kyoto, Japan, 1986.

[5] D. Chamberlin. Using the New DB2: IBM's

Object-Relational Database System. Morgan Kauf-

mann Publishers, 1996.

[6] S. Christodoulakis. Estimating record selectivites.

Inf. Syst., 8(2):105{15, 1983.

[7] S. Christodoulakis. Common subexpression pro-

cessing in multiple-query processing. IEEE Trans.

on Knowl. and Data Eng., 10(3):493{99, 1998.

[8] G. Copeland et al. Bu�ering schemes for permanent

data. In Proc. of the Int'l Conf. on Data Eng., pp

214{21, Los Angeles, California, 1986.

[9] P.J. Haas et al. Sampling-based estimation of the

number of distinct values of an attribute. In Proc.

of VLDB'95, pp 311{22, Zurich, Switzerland, 1995.

[10] L.H. Jamieson. Features of parallel algorithms. In

Proc. of the 2nd Int'l Conf. on Supercomp., 1987.

[11] J. Kirkwood. Sybase Architecture and Administra-

tion. Ellis Horwood Publishers, 1993.

[12] R.J. Lipton et al. Practical selectivity estima-

tion through adaptive sampling. In Proc. of SIG-

MOD'90, pp 1{11, 1990.

[13] L. Mackert and G. Lohman. Index scans using a �-

nite LRU bu�er: A validated I/O model. Technical

Report RJ4836, IBM Almaden, 1985.

[14] M.V. Mannino et al. Statistical pro�le estimation

in database systems. ACM Comp. Surveys, 20(3),

Sept. 1988.

[15] J. McNally et al. Informix Unleashed. SAMS Pub-

lishing, 197.

[16] G. Pernul, A.M. Tjoa, and T.J. Teorey. A view

integration approach for the design of multilevel

secure databases. In Proc. of the 10th Int'l Conf.

on the E-R Approach, 1991.

[17] P.G. Selinger et al. Access path selection in dis-

tributed data base management systems. In Proc.

of the Int'l Conf. on Data Bases, pp 204{15, Ab-

erdeen, Scotland, 1980.

[18] T.K. Sellis. Multiple-query optimization. ACM

Trans. on DB Syst., 13(1):23{52, March 1988.

[19] G.P. Shapiro et al. Accurate estimation of the num-
ber of tuples satisfying a condition. In Proc. of

SIGMOD'84, pp 256{76, 1984.

[20] E. Whalen. Oracle Performance Tuning and Opti-

mization. SAMS Publishing, 1996.

[21] C.T. Yu et al. Adaptive techniques for distributed

query optimization. In Proc. of the Int'l Conf. on

Data Eng., pp 86{93, Los Angeles, California, 1986.

[22] M.J. Yu et al. Adaptive query optimization in dy-

namic databases. Int'l J. on Artif. Intelli. Tools,

7(1):1{30, 1998.

[23] V. Zander et al. Estimating block accesses when

attributes are correlated. In Proc. of VLDB'86, pp

119{27, Kyoto, Japan, 1986.

[24] Q. Zhu, B. Dunkel, N. Soparkar, S. Chen,

B. Schiefer, and T. Lai. A Piggyback Method to

Collect Statistics for Query Optimization in Data-

base Management Systems. In Proc. of the 1998

CASCON, pp 67{82, Toronto, Canada, 1998.

16

