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ABSTRACT 
Load shedding techniques generate approximate sliding window 
join results when memory constraints prevent exact computation. 
The previously proposed random load shedding method drops 
input tuples without consideration for the number of outputs 
created, while the recently proposed semantic load shedding 
technique aims to produce the largest possible result set. We 
consider a new model in which data stream tuples contain 
numerical importance values relevant to the query source and seek 
to maximize the importance of the approximate join result. We 
show that both random load shedding and semantic load shedding 
are sub-optimal in this situation, while the techniques presented in 
this paper satisfy the objective function by considering both tuple 
importance and join attribute distributions. We extend the existing 
offline semantic approximation technique to make it compatible 
with our objective function and show that it is less space and time 
efficient than our new optimal offline algorithm for small and 
large join memory allotments. We also introduce four efficient 
online algorithms, which are quite promising in maximizing the 
importance of the approximate join result without foreknowledge 
of input streams. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Query Processing 

General Terms 
Algorithms, Management, Performance 

Keywords 
Data streams, importance semantics, sliding window join, 
approximation algorithms, load shedding 

1. INTRODUCTION 
Research in data stream processing is motivated by the important 
application domains in which data naturally occurs in the form 
continuous streams. Examples of these applications include 
weather monitoring via sensor networks [4], life signs monitoring 
in hospitals, vehicle tracking via a global positioning system 

(GPS) or through a digital radio service, internet traffic 
monitoring [12], or transaction log analysis [7]. 

Data stream processing poses challenges which cannot be 
overcome by directly applying traditional DBMS techniques. 
Firstly, it is impossible to store unbounded streams in their 
entirety.  Secondly, recently arrived data stream elements may be 
more relevant than older data. Thirdly, standard blocking 
operators cannot be used, as they may indefinitely delay output 
production. Further, data stream management systems (DSMSs) 
are subject to real time processing constraints. To satisfy these 
requirements, DSMSs may produce approximate results. 
 We consider these problems in the context of the join 
operator. The familiar blocking join operator must be adapted to 
operate in a streaming environment because it would require 
infinite time and storage to compute the join result over a pair of 
unbounded streams. 
 Data stream joins are computed incrementally and 
continuously, with new result tuples being generated and streamed 
away as matching input tuples arrive [17]. To bound a streaming 
join’s memory requirement, the criterion of exactness is altered to 
require that the join operates on a finite prefix of the input 
streams. While several variations are possible, such as fixed and 
landmark windows [13], we consider sliding windows (which we 
refer to simply as windows), where both endpoints conceptually 
move over the input stream, allowing in the newest element and 
displacing the oldest. Sliding windows may be time (i.e. holding 
tuples from the last 20 minutes) or count-based. We consider the 
time-based windows in this paper. 
 Although incremental computation and windowing unblock 
the join operator and bound its processing and memory 
requirements, operating conditions may still overwhelm a DSMS’ 
resources. In reality, stream arrival rates fluctuate over time and 
may exceed the DSMS’ processing capability. In addition, the 
DSMS’ resources may become constrained when it 
simultaneously performs multiple continuous queries. In these 
situations, there is no recourse to generating approximate query 
results. In this paper, we consider approximation by load 
shedding, where tuples are prematurely dropped either before or 
after entry into a sliding window. 

Our work is motivated by the following example. Consider a 
network of battery-powered sensors monitoring environmental 
conditions. Sensors, which have limited processing, storage, and 
communications capabilities, transmit gathered data to proxies, 
which are terminals to which users pose queries. Rather than 
sending raw tuple data to proxies as in [8], sensors append 
importance metadata before transmitting tuples. A tuple’s 
importance metadata may be a function of its frequency, its 
presence in a predetermined range, its degree of statistical 
aberrance, or its distance to a cluster point [7], [18], for instance. 
A proxy accepts input streams and streams output tuples to the 
query source. The importance of an output tuple, which provides 
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domain information to the query source beyond the raw tuple data, 
is a function of the importance of the input tuples which compose 
it. 

In this paradigm, an approximation may occur at a sensor or 
at a proxy, and the objective is to minimize the approximation 
error to the greatest extent possible. In the former case, an 
approximation arises if power constraints prevent the sensor from 
transmitting all its tuples. In this event, the sensor aims to transmit 
the most relevant tuples to the proxies. Approximations in the 
latter case occur when the number of queries being posed or the 
volumes of incoming data exceed a proxy’s computational 
resources. 

This paper addresses the problem of load shedding at a 
sliding window join operator where such a system has sufficiently 
fast CPUs but lacks enough memory to compute the exact join 
result. Since all load shedding approximations are subsets of the 
exact result [8], our techniques are aimed at producing the 
approximation with the least error. Random load shedding 
techniques [10], [5], [17], which drop tuples randomly with 
respect to join attribute values, are known to produce sub-optimal 
approximations because the join result is composed of pairs of 
matching tuples from the input streams. In the extreme, a bad load 
shedding strategy can produce few or no output tuples, even 
though the largest possible approximate result is large. Semantic 
load shedding [8] improves upon random load shedding by taking 
into account join attribute value correlations between the two 
input streams with the aim of maximizing the size of the 
approximate join result under the memory constraint. However, 
semantic approximation depends only upon join attribute 
distributions and not importance semantics. 

The presence of embedded per-tuple importance semantics 
relevant to the query source differentiates our work from previous 
load shedding techniques. Our objective is to compute the 
approximate result having the largest aggregate importance, given 
the memory constraint. Unlike those previously mentioned, our 
techniques process data streams whose tuples have different 
explicit importance values and evaluate these tuples on two 
independent criteria: importance and the expected number of 
matches. 

Firstly, highly important output tuples provide more domain 
information to the query source than output tuples with lower 
importance. In this way, tuple importance semantics assist in QoS-
based approximation. Dropping an input tuple randomly or 
because of its relatively low number of matches ignores the fact 
that the tuple may provide valuable information to the query 
source if it creates an output. For example, semantic 
approximation techniques will likely drop a highly anomalous 
tuple prematurely because its join attribute value occurs 
infrequently.  Yet, despite its infrequent occurrence, this 
anomalous value might be actually be a “needle in the haystack” 
that provides the application with valuable information whenever 
it joins, especially in the case of an approximation. It may be 
desirable to retain this tuple in the join memory for as long as 
possible with the expectation that it will produce at least one 
important output tuple. 

Secondly, assuming equal importance, an input tuple with 
many matches creates more aggregate importance in the join 
result than a tuple with fewer matches. Consequently, retaining 
input tuples solely because of their high importance may run 
counter to the objective function. Because it, in effect, regards all 
input and output tuples as having equal explicit importance, 
semantic load shedding deals with a special case of the problem 
we consider. Indeed, domain importance together with join 

semantics constitute a novel, non-trivial extension to the problem 
of load shedding in sliding window join approximation. 

In this paper, we consider a new model in which data stream 
elements contain numerical importance values relevant to the 
query source. We propose different strategies of incorporating 
tuples’ importance attributes into the priority formulation of 
online algorithms. In addition, we propose various methods of 
formulating the importance of output tuples from matching inputs 
and establish the objective function of maximizing the 
approximate join result’s aggregate importance. We demonstrate 
that this new objective function is a non-trivial extension of load 
shedding by showing that random and semantic load shedding 
solutions previously proposed in the literature yield sup-optimal 
approximations. We extend the existing offline semantic load 
shedding algorithm [8] to compute the maximum importance 
under memory constraints and also present a new optimal offline 
join approximation algorithm with superior space efficiency and 
time efficiency at small and large join memory allotments. 
Furthermore, we propose four efficient online join approximation 
algorithms with superior efficacy to online random and semantic 
load shedding techniques. 

The remainder of this paper is organized as follows. We 
review related work in Section 2. In Section 3, we formally state 
our problem and describe different methods of formulating join 
memory priorities and output tuple importance. We present our 
offline and online algorithms in Section 4 and experimentally 
evaluate them in Section 5. Finally, we conclude the paper and 
outline directions for future work in Section 6. 

2. RELATED WORK 
Golab et al. [14] investigate the problem of join ordering in 
queries with multiple sliding window joins and explore the 
tradeoffs of eager and lazy re-evaluation and expiration. Data 
stream summary structures [3] produce approximate results when 
a sliding window is too large to fit in available memory or when a 
streaming version of a blocking operator does not exist or is too 
inefficient. These techniques also provide an efficient way to 
maintain data stream statistics used in computing tuple priorities 
for online join memory maintenance. 

While the symmetric hash join [2] was the first algorithm to 
process joins over unbounded streams, XJoin [10] was the first to 
shed load when stream arrival rates exceed the available join 
processing capacity. Processing two streams, XJoin randomly 
sheds load by spilling tuples to disk and processes backlogged 
inputs when the DSMS is once again able to cope with stream 
arrival rates. Viglas et al. apply their optimization framework for 
maximizing output production rate [17] to MJoin [5], which 
extends XJoin by aggregating or decomposing query plans 
containing multiple join operators. We consider the load shedding 
scenario in which tuples are dropped permanently. 

Given CPU or memory constraints, Kang et al. [16] study the 
problem of optimal resource allocation with the aim of 
maximizing window join processing efficiency or output size and 
propose a per-unit-time cost model to evaluate their random load 
shedding techniques. Das et al. [8] show that random load 
shedding in general yields join approximations of sub-optimal 
size. Their semantic load shedding techniques aim to compute the 
join approximation of maximum size over input streams without 
the importance semantics that we consider here. 

Stream semantics, known as punctuations [9], have been 
proposed in the literature. Punctuations provide information about 
the remainder of an input stream which can be used to unblock an 
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operator. However, work in this area does not address load 
shedding or sliding window join approximation.  

Eddies [15] and NiagaraCQ [5] are adaptive continuous 
query processing systems which deal with resource fluctuations by 
dynamically re-ordering operators. Though promising for 
providing reliable query performance in changing environments, 
they do not address tuple importance semantics or join 
approximation via load shedding. 

The Aurora query processor [1] employs a different approach 
to load shedding in continuous queries. Aurora continuously 
monitors the frequency distribution of output tuples from 
streaming operators and compares it to the distributions of tuples 
in the input streams. It augments input tuples with QoS values 
from its monitoring statistics to ensure that load shedding 
reasonably preserves the distributions of the input tuples in the 
outputs. However, its techniques do not consider optimizations 
taking into account importance semantics embedded within data 
stream tuples at their source. To our knowledge, our work is the 
first to consider offline and online optimization of window join 
approximation in this context. 

3. PROCESSING TUPLE IMPORTANCE 
In this section, we define the problem space and discuss the 
formulation of join memory priorities in online approximation 
algorithms and the importance of output tuples. 

3.1 Problem Definition 
We process a sliding window equi-join between two data streams, 
R and S. Tuples in a stream are identified as <ts, sch, imp>, where 
ts ∈ N, the set of natural numbers, is the tuple’s arrival timestamp; 
sch is the conventional schema of the stream; imp ∈ {x | x ∈ R 
and 0 < x < U} is the tuple’s importance, where R is the set of real 
numbers and U is an upper bound for numerical importance. We 
employ time-based windows where one tuple arrives in each input 
stream per time instant, though our discussion extends to count-
based windows or asynchronous tuple arrival. 

We adopt the notation in [8]. Let R be a sliding window of 
size w over stream R, where w is also the lifetime of tuples in 
window R. Let r(i) be a tuple that arrives in stream R at time i. For 
convenience, this tuple’s join attribute also has a value r(i). At the 
end of time t, window R contains tuples r(i) such that 0 < t–w+1 < 
i < t. The description of tuple s(i) arriving in window S over 
stream S is analogous. 

We employ the Fast CPU approximation model [8], where 
tuples are not dropped before reaching the join operator, with 
eager re-evaluation and expiration [14]. The join memory, M, 
which is fixed, is bounded above by 2w, the amount required for 
exact computation. When input tuples r(t) and s(i) join at time t to 
create output tuple o(t), the importance of o(t) is a function of 
r(t).imp and s(i).imp. Given that streams R and S begin at t=0 and 
end at t=N, the result multiset of the sliding window join is 
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where the inner summation is the total importance of the set of 
output tuples, Y(t) = {o(t)}, created at time t. Any load shedding 

strategy produces a subset of the tuples in the exact answer whose 
importance is, consequently, no larger than that of the exact result. 
Because memory is constrained (i.e. 0 < M < 2w), exact 
computation is not possible. We seek to compute the approximate 
result with the maximum importance. 

3.2 Priorities and Output Tuple Importance 
We first consider the formulation of tuple priorities, the basis of 
join memory retention and eviction in online algorithms. Assigned 
by the join algorithm, a tuple’s priority is its estimated worth with 
respect to the objective function relative to the other tuples in the 
constrained join memory. The tuple priority is determined by 
importance, imp, the (expected) number of matches, m, and the 
arrival timestamp (i.e. age), ts. There is no explicit or implied 
correlation among these three parameters. Note that semantic 
approximation [8] does not factor importance into its priority 
formulation. In our case, tuple r(i) has priority 

P(r(i)) = f(r(i).imp, r(i).m, r(i).ts), 
for some function f. The priority of s(i) ∈ S is defined similarly. A 
tuple’s priority is either assigned once when it arrives or is 
updated at each re-evaluation interval. The following are some 
general possibilities for priority formulation. 
1. Additive: r(i)’s priority may be a linear combination of its 

importance, matches, and arrival time as follows: 
f(r(i).imp, r(i).m, r(i).ts) = α*r(i).imp + β*r(i).m + δ*r(i).ts, 

where α, β, δ > 0. 
2. Multiplicative: alternatively, P(r(i)) can be formulated 

multiplicatively as  
f(r(i).imp, r(i).m, r(i).ts) = (r(i).imp)α (r(i).m)β (r(i).ts)δ, 

where α, β, δ > 0. 
3. Cumulative: in this case, a r(i)’s priority is a function of its 

importance, matches, and arrival time as described in option 
1 or 2, in combination with its previous priority: 

P(r(i)) = g(P΄(r(i)), r(i).imp, r(i).m, r(i).ts), 
where g is some function and P΄(r(i)) is the priority 
previously assigned to r(i). When employing a cumulative 
scheme, the tuple’s priority is re-calculated during every time 
interval, similarly to a rolling average. 

We will evaluate special cases of all three priority formulations in 
our experiments. 

We next consider how to determine an output tuple’s 
importance from the importance of the input tuples that join to 
create it. Specifically, we consider how to formulate o(t).imp, 
created at time t, from joining r(i) and s(t) (or r(t) and s(i)). We 
must address the issue of output tuple importance because 
matching input tuples convey their importance to the monitoring 
application or query source through o(t).imp. Moreover, o(t) can 
conceivably be an input to another join operator, where its 
importance is once again used to determine its priority within that 
join memory. Intuitive ways to derive an output tuple’s 
importance from the inputs are additive (i.e. o(t).imp = r(i).imp + 
s(t).imp), multiplicative, maximal, minimal, and average. Without 
loss of generality, we use the “minimum” output importance 
formulation, where 

r(i)  s(t) ⇒ o(t).imp = min{r(i).imp, s(t).imp}. 
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Figure 1. Join memory state graph 

In practice, the output importance formulation is application-
dependent. Nevertheless, the real world meaning of importance 
semantics is irrelevant to our priority and output importance 
formulations beyond the ability to order priorities and to propagate 
importance values from input tuples to the outputs. 

4. APPROXIMATION ALGORITHMS 
We first introduce our offline approximation algorithm, which 
employs its foreknowledge of the input streams to generate an 
approximate join result with the maximum importance. This 
establishes the baseline against which we measure the efficacy of 
online algorithms, which have no knowledge of future inputs. 

4.1 Join Memory State Graph 
We formulate the offline window join approximation as a directed 
graph. Vertices correspond to snapshots of the join memory at 
different points in time, while edges, which model transitions 
between sequential memory states, represent choices to retain or 
drop tuples. The join memory state graph, which can be 
constructed for arbitrary combinations of tuple lifetime (w), join 
memory size (M), and input stream length (N),  models all 
possible ways to retain and evict tuples. Our goal is to determine 
the tuple eviction and retention strategy corresponding to the 
approximate join result with the largest importance. 

Figure 1 illustrates the semantics of the join memory state 
graph. In this example, both data streams have length N=6. From 
Subsection 3.1, data stream tuples are of the form <ts, sch, imp>. 
Stream R is <0,1,1>, <1,9,20>, <2,1,1>, <3,3,5>, <4,4,5>, 
<5,2,1>; stream S is <0,3,5>, <1,1,1>, <2,1,1>, <3,1,1>, <4,9,20>, 
<5,1,1>. Only the join attributes of sch are shown. 

The modeling of time is discrete, so the first tuple in each 
stream arrives at time t=0, the second tuple arrives at t=1, and so 
on. Tuples are identified by a combination of their stream and 
arrival time. For example, tuple <1,9,20> in stream R is referred 
to as r(1); it arrives in stream R at t=1, and its join attribute and 
importance values are 9 and 20, respectively. The importance of 
an output tuple is the minimum of those of the matching tuples 
that create it (see Subsection 3.2). For instance, r(2) and s(2) join 
at t=2 to create (r(2),s(2)), which has a join attribute value of 1 
and an importance of 1. 

In this problem, the tuple lifetime and window size are w=4. 
Assuming that each tuple occupies one unit of memory, 2w=8 
memory units are required to compute the exact result. The 
available join memory, M=4, is half of this amount. In this 
example, M is divided evenly between windows R and S. 

Events in the join approximation are modeled in three 
subgraphs: the R, S, and SA subgraphs. An output tuple in the SA 
subgraph is created when two matching tuples in opposite streams 
arrive at the same time. In subgraphs R and S, however, an output 
tuple is created when a tuple in a memory state joins with the new 
tuple arriving in the opposite stream. Because of symmetry, 
subgraphs R and S share the same properties. 

Memory states (i.e. vertices) are represented by the set of 
tuples they contain. The start vertex represents the join memory 
before any data stream tuple arrives, while the stop vertex 
represents the time instant after the final tuple has arrived. An 
edge’s vertex of origin represents the join memory state at the 
instant when a new tuple arrives. When it arrives, the tuple is 
either (1) admitted into the join memory which is not full, or (2) 
admitted at the expense of an expired tuple, or (3) admitted at the 
expense of an active tuple in the join memory, or (4) dropped 
before entering the join memory. An edge is created from the 
current memory state to a subsequent state in the next time instant 
for each of these events. For example, r(0) and r(1) are admitted 
into the join memory which is not yet full. When r(2) arrives, to a 
full join memory (M/2 tuples in this example), since neither r(0) 
nor r(1) has expired, new memory states must be created from 
vertex {r(0),r(1)} at t=2, each representing a decision to drop r(0), 
r(1) or r(2) prematurely. 

An edge’s weight is the importance of the output tuples 
resulting from the decision to admit, expire, retain, or drop tuples. 
For example, if r(0) is in memory at t=2, it joins with s(2) to 
create output tuple (r(0),s(2)) which has importance 1.  Thus, the 
two memory states at t=2 in which r(0) survive have incident 
edges with weight 1. On the other hand, edge 
{r(0),r(1)}→{r(1),r(2)} represents the decision to drop r(0) for 
r(2) at t=2, so its weight is 0. (For clarity, edge weights of 0 are 
not shown.) Note that an edge’s weight represents the total 
importance from the output tuples from the originating vertex. If 
multiple tuples in the join memory state match the new tuple in S, 
the edge weight is the sum of the importance of the created output 
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tuples. For instance, edge {r(0),r(2)}→{r(0),r(2)} at t=3 has a 
weight of 2 because both r(0) and r(2) match with s(3) to create 
two output tuples of importance 1. 

A sequence of vertices from the start vertex to the stop vertex 
represents a complete path. Each path represents a set of decisions 
to retain or evict tuples and the states resulting from those 
decisions. Paths respect correct temporal modeling because they 
represent a set of transitions from one time instant to the next. In 
addition, paths in a subgraph respect the memory constraint 
because vertices within all paths do not accommodate more than 
the allotted number of tuples. For example, each vertex in the R 
and S subgraphs of Figure 1 does not accommodate more than 
M/2 tuples. Moreover, paths only contain valid transitions 
between memory states, meaning that a tuple that is dropped 
within a path cannot re-enter a join memory state. For example, no 
path in Figure 1 contains the edge {r(0),r(1)}→{r(1),r(2)} at t=4. 
For any path, r(2) can enter a join memory state only at t=2 and, 
once dropped, cannot possibly re-enter a join memory state at a 
future time. Thus, each path from the start vertex to the stop 
vertex represents a valid sequence of join memory states adhering 
to the memory constraint. In other words, each complete path 
from the start vertex to the stop vertex represents a join 
approximation. The optimization goal is to find a path from the 
start vertex to the stop vertex such that the sum of the edge 
weights is maximal. 

States and transitions in the R subgraph are independent of 
those in the S subgraph because join memory states in R are 
determined solely by tuples arriving in R. Furthermore, edge 
weights in the R subgraph depend on the arrival of tuples in 
stream S and not on the contents of window S’s join memory. The 
same is true of the corresponding structures in the S subgraph in 
relation to those in the R subgraph. Subgraph SA is independent of 
both R and S because it alone captures output tuples from 
matching input tuples that arrive at the same time. Because 
subgraphs R, S, and SA are independent, the optimal 
approximation consists of the output tuples in the SA subgraph in 
union with the optimal paths in subgraphs R and S. 
 For our example, the exact join result (i.e. M=8, see Figure 1) 
contains nine output tuples and has an importance of 32. For 
clarity, the only non-zero edge weights shown are those of paths 0 
(bold) and 1 (‘x’). Path 0 corresponds to the join approximation 
for M=4 with the maximum importance. This approximation 
contains seven output tuples and has an importance of 30. For 
comparison, the largest approximate join result for M=4 (i.e. the 
optimal semantic load shedding approximation [8]), represented 
by Path 1, contains eight output tuples but has an importance of 
only 12. 
 The join memory state graph has two more useful properties. 
First, different paths have overlapping subpaths. For example, 
three different subpaths starting at t=4 contain subpath 
{r(1),r(4)}→{r(4),r(5)}→stop, which begins at t=5. Second, the 
path corresponding to the optimal approximate join result 
necessarily contains within it optimal subpaths, which means that 
the graph formulation possesses optimal substructure. The 
presence of both properties, which will be discussed in more detail 
in Subsection 4.2.2, leads us to a dynamic programming optimal 
offline algorithm, which we present next. 

4.2 Optimal Offline Approximation 
Our optimal offline approximation algorithm consists of several 
procedures, which are described in the following subsection. 

4.2.1 Optimal Approximation Construction 
In the following procedures for constructing the join memory state 
graph and determining the optimal approximation, variable OJI 
represents the importance of the optimal join approximation. 
Variable MS[t] contains all the join memory states (i.e. vertices) at 
time t. A memory state’s MI field represents the maximum 
importance of all paths from the start vertex to that memory state, 
and a state’s prev field is the immediate predecessor vertex in this 
optimal path. Both are initialized to zero for new vertices. 
Function Importance() returns the sum of the importance of the 
output tuples produced by the joined inputs for a given memory 
state at a time instant. 

// Construct subgraph R, compute optimal path and importance 
// Repeat this procedure for subgraph S 
Procedure ComputeMaxImportance( stream R, stream S, N ) 
    OJI = 0, t = 0 
    MS[t] = ∅, initialize and insert StartVertex into MS[t] 
    do 
        MS[t+1] = ∅ 
        ∀ memory state x ∈ MS[t] 
            // Generate memory states for MS[t+1] using r(t) 
            ∀ memory state y from x 
                if( y ∉ MS[t+1] ) 
                   Insert y into MS[t+1] 
                    EdgeWeight( x → y ) = Importance( y, s(t+1) ) 
                    if( x.MI + EdgeWeight( x → y ) > y.MI ) 
                        y.MI = x.MI + EdgeWeight( x → y ) 
                        y.prev = x 
        t = t+1 
    while( t < N ) 
    MS[t] = ∅, initialize and insert StopVertex into MS[t] 
    ∀ memory state x ∈ MS[t–1] 
        if( x.MI > StopVertex.MI ) 
            StopVertex.MI = x.MI 
            StopVertex.prev = x 
    OJI =  OJI + StopVertex.MI. 
// Construct SA subgraph, compute importance 
Procedure ComputeSAImportance( stream R, stream S, N ) 
    vertex x = StartVertex 
    for( t = 0 to N–1 ) 
        if( Importance( r(t), s(t) ) > 0 ) 
            Create vertex y = ( r(t), s(t) ) for SA subgraph 
            EdgeWeight( x → y ) = Importance( r(t), s(t) ) 
            x = y 
            OJI = OJI + Importance( r(t), s(t) ) 
    EdgeWeight( x → StopVertex ) = 0. 

Using the join memory state graph and the information 
produced by the above procedures, we can print the input tuples in 
the states corresponding to the optimal join approximation in the 
reverse order of time. The procedure starts from the stop vertex 
and iteratively uses the prev field to traverse the predecessor in the 
optimal path. 

// Print the tuples of optimal subgraph R approximation 
// Repeat the procedure for subgraph S 
Procedue ReconstructContents( subgraph R ) 
     vertex x = StopVertex 
     do 
          x = Locate( x.prev ) 
          printVertex( x ) 
     while( x ≠ StartVertex ) 

Through simple modifications, the algorithm can satisfy 
different objective functions. For example, modifying 
Importance() to return the number of output tuples from a 
memory state would cause the algorithm to produce the optimal 
semantic approximation [8]. In addition, changing the procedure 
so that the vertices’ MI fields store the smallest importance of all 
the paths leading to them allows the algorithm to compute the 
approximation with the lowest importance. Alternatively, the 
algorithm can support a combination of positive and negative edge 
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weights, where desirable output tuples have positive importance 
and undesirable outputs tuples have negative importance. 

4.2.2 Correctness and Complexity Analysis 
The correctness of the algorithm follows from the preservation of 
the following invariant: at the end of each time step, every vertex 
contains information to determine the maximum importance from 
the start vertex to itself. Thus, the stop vertex in the R and S 
subgraphs contains the maximum importance from the start vertex 
to itself. The optimal substructure and overlapping subpath 
properties present in the join memory state graph formulation 
allow for the preservation of this invariant. 

We first show that the problem exhibits optimal substructure. 
Let G(V,E) represent a join memory state graph. Importance: 
E→R is the weight function for edges as described in Subsection 
4.1. Let P be a path in the join memory state graph from the start 
vertex to the stop vertex which yields the join result with the 
greatest importance. P consists of vertices {v0,v1,…,vN} and edges 
{e0,1,e1,2,…,eN-1,N}, where edge ei,j connects vertices vi and vj for 0 
< i < j < N.  If Pi,j is a subpath in P starting at vertex vi and ending 
at vertex vj, then Pi,j yields the greatest importance between vi and 
vj. If not, then decompose P as P0,i → Pi,j → Pj,N, which has 
importance Importance(P) = Importance(P0,i) + Importance(Pi,j) + 
Importance(Pj,N). Since there is an alternate path P’i,j ∈ G(V,E) 
such that Importance(P’i,j) > Importance(Pi,j), we substitute this 
path into P in place of Pi,j to form path P’, whose importance, 
Importance(P0,i) + Importance(P’i,j) + Importance(Pj,N), is greater 
than Importance(P). This contradicts the assumption that P has the 
greatest importance from the start to the stop vertex. 

Next, we explain why the graph formulation possesses 
property of overlapping subpaths and how the algorithm uses the 
property to generate the optimal approximation. Let vi be a 
memory state in MS[t]. As a result of r(t)’s arrival, vi generates 
between one and M/2+1 subsequent states (inclusive) in MS[t+1] 
corresponding to each of the following events: 
• Join memory is not full. r(t) is admitted. 
• Join memory is full. r(t) displaces the expired tuple in vi. 
• Join memory is full. r(t) displaces any active tuple in vi. 
• Join memory is full. r(t) is dropped. 
Let vi+1 be a subsequent state of vi. vi+1 may also be reached 
independently through memory state vh in MS[t]. Updating vi+1’s 
MI and prev fields enables the algorithm to select which of the 
paths from the start vertex ending at vi+1 maximizes the 
importance measure, while storing only one copy of vi+1. In Figure 
1, for example, vertex {r(1),r(4)} at t=4 can be reached from 
{r(0),r(1)}, {r(1),r(2)}, or {r(1),r(3)} at t=3. By maintaining non-
duplicate vertices, the algorithm allows these paths to share 
subpath {r(1),r(4)}→{r(4),r(5)}→stop and decides which of them 
maximizes the importance measure without the need to store a 
separate copy of the subpath for each. 

While our methods also work for uneven memory 
allocations, the following time complexity analysis assumes that 
each window holds at most M/2 tuples. Each subgraph contains N 

time instants, and there are at most  memory states in a 
time instant. Each state generates at most M/2+1 new states of size 
M/2. Each new memory state is generated in O(M/2) [19]. The 
calculation of Importance() for each output tuple is absorbed into 
this step. The algorithm uses the overlapping subpaths property by 
maintaining non-duplicate memory states in a time instant. 

Duplicate avoidance is performed in O(M/2). Each MI and prev 
update is performed in O(1). Thus, the algorithm determines the 
sliding window join approximation of maximum importance in 

O . The time complexity approaches O(Nw) as 
M/2→1 and approaches O(Nw4) as M/2→w–1. The printing 
procedure runs in θ(N), since there are N time instants and the 
Locate() step takes constant time. 

The algorithm requires MS[t] and MS[t+1] of the join 
memory graph to produce an optimal approximation. Thus, its 

space complexity, θ , is independent of N. The printing 
procedure only requires O(1) space since only vertex v is stored. 

4.2.3 Extending the Linear Flow Solution 
Semantic approximation [8] is sub-optimal for maximizing the 
importance measure because it only computes the largest 
approximate join result. We extend the original semantic 
approximation technique to make it compatible with our objective 
function (omitted due to space constraints). We modify the flow 
graph creation algorithm to accept tuple importance semantics by 
allowing arc weights of arbitrary (absolute) magnitude and 
employ an efficient implementation of the minimum cost linear 
flow algorithm [11] to calculate the optimal join approximation’s 
numerical importance in O((wN)2(wN+M)log(wN)). Unlike our 
offline algorithm, the space efficiency of this algorithm, 
O(wN+M), is a function of M, w, and N. The extended semantic 
approximation technique and our optimal offline algorithm will be 
evaluated empirically in Section 5. 

4.3 Online Approximation 
Unlike the optimal offline algorithm, online approximation 
algorithms have no knowledge of future input tuples. Therefore, 
they have no recourse but to greedily hold on to tuples they 
consider valuable for the objective function according to pre-
determined heuristics, which include: 
1. Using past usefulness (i.e the importance of the outputs 

generated by the tuple) to estimate future worth. 
2. Using current or past join attribute distributions to estimate 

future match probabilities. 
Such statistical and historical information is maintained 
automatically by DSMSs as histograms and sketches [3]. Our 
techniques employ these general guidelines while also 
incorporating tuple importance. We present four efficient online 
algorithms in the Fast CPU framework [8] with either static or 
dynamic priorities. 

4.3.1 SIMP Heuristic 
The Static IMPortance heuristic (SIMP) fixes the priority of each 
tuple as its importance. This is a special case of the additive (or 
multiplicative) priority formulation in Subsection 3.2. SIMP 
prefers high importance tuples over those with lower importance, 
regardless of estimated match probabilities or the relative ages. 
The tuple of lowest priority (including the new tuple) is dropped 
whenever a tuple arrives at a full window. If a tie in priorities 
occurs, the oldest tuple is dropped. For simplicity, suppose that the 
join memory is maintained as two priority queues, each holding 
M/2 tuples. Using the cost model in [17], SIMP’s per-tuple 
processing cost is evaluated as 

M/2(probe + invalidate) + 1(insert). 
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Result Set Importance Vs. Join Memory Size, w  = 10, N  = 5600
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Figure 2. Importance vs. memory size 
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Figure 3. Running times for M/2 = 1 
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Figure 4. Running times for increasing w 

4.3.2 SIMPPROB Heuristic 
When a new tuple arrives, the Static IMPortance PROBability 
heuristic (SIMPPROB) fixes its priority as the product of its 
importance and the number of matches in the opposite window, 
the latter number being the new tuple’s estimated match 
probability. This is a special case of the multiplicative priority 
formulation. Since a new tuple may have no matches, any tuple 
can be prioritized to zero, regardless of its importance. Ties are 
resolved by dropping the tuple with the lowest importance, then 
the tuple with the fewest number of matches, followed by the 
oldest tuple. Because priorities are assigned once, SIMPPROB’s 
per-tuple processing cost is the same as that of SIMP. Note that 
the online semantic approximation heuristic [8] also has the same 
per-tuple processing cost. 

4.3.3 DIMPPROB Heuristic 
The Dynamic IMPortance PROBability (DIMPPROB) heuristic 
also calculates a new tuple’s priority as the product of its 
importance and the number of matches. However, expected match 
probabilities are updated at each time step. Ties are resolved 
exactly as they are in SIMPPROB. Assuming M/2 tuples per 
window, the per-tuple processing cost, 

M/2(probe + invalidate + priority_uddate) + 1(insert), 
is greater than SIMPPROB’s, where match probability estimates 
become inaccurate over time as the opposite window changes. 

4.3.4 DGL Heuristic 
The Dynamic Gain Loss heuristic (DGL) employs the cumulative 
priority formulation. At arrival, a tuple’s priority is its importance. 
If it produces an output during a time instant, the tuple’s priority is 
increased by an amount proportional to the product of its 
importance, its current expected number of matches, and its 
remaining lifetime. A tuple’s priority is decreased by a constant 
factor during time instants when it does not produce an output. 
Thus, high importance tuples generally make priority gains more 
quickly with each matching partner than low importance tuples, 
though gains are reduced as tuples age. DGL’s analytical per-tuple 
processing cost is the same as DIMPPROB’s, as all priorities are 
modified at every time step. 

5. EXPERIMENTS 
We verify the feasibility of tuple importance semantics in window 
join approximation and evaluate the efficacy and efficiency of our 
techniques under different conditions using independently 
generated synthetic input streams. Normal importance tuples 
dominate the input streams, while tuples with high importance, 
which correspond to aberrant or special values, occur infrequently. 
M is divided evenly between windows R and S, though our 
techniques work for uneven allocations. Experiments comparing 

approximation quality begin counting outputs at t=2w, since all 
algorithms accept the first M/2 input tuples from each input 
stream, the last of which may still be in memory at t=M/2+w. The 
starting time for counting is adjusted to reflect the maximum w or 
M/2 in experiments where these parameters are varied. The 
platform is a 2.0 GHz AthlonXP machine with 1.0 GB of RAM 
running SUSE Linux 9.3. Each reported running time is the 
average of three trials. 

5.1 Offline Join Approximation 
We compare our offline algorithms to semantic and random load 
shedding with respect to efficacy, and time and space efficiency. 

5.1.1 Approximation Quality 
Figure 2 depicts the approximation qualities of the aforementioned 
load shedding strategies as a function of increasing join memory 
size (M) given a fixed tuple lifetime, w=10, and input stream 
length, N=5600. Henceforth, EXACT is the exact result, RAND is 
random load shedding, and SJA and ESJA, respectively, represent 
the semantic and extended semantic (see Subsection 4.2.3) load 
shedding techniques. ODJA is our dynamic programming 
approximation technique. 

All techniques show improved approximation quality relative 
to the exact result (EXACT) as join memory increases. For 
example, at M/2=1, SJA produces a 75.3% approximation error, 
while ODJA/ESJA’s error is 29.7%. At M/2=5, the respective 
approximation errors shrink to 28% and 1%. RAND’s 
approximation error decreases from 98% at M/2=1 to 80.4% at 
M/2=5. RAND is least effective because it drops input tuples 
without regard for importance or the number of output tuples 
produced. ODJA and ESJA produce the maximum possible 
importance under the memory constraint and converge upon 
EXACT more quickly than other methods. This result is expected 
because both methods recognize important input tuples and those 
which produce many outputs. SJA generates the largest result set 
but is consistently sub-optimal because it only favors input tuples 
for their ability to produce many output tuples. At M/2=1 and 
M/2=2, for example, SJA generates 164 and 97 more output tuples 
than ODJA/ESJA. 

5.1.2 Running Times at M/2 = 1 
Since ODJA and ESJA always yield the same (optimal) 
approximation quality, we examine the running times of the two 
techniques in the first special case discussed in Subsection 4.2.2, 
namely M/2=1.  

In Figure 3, w is fixed at 400 time units, and N is increased 
from 800 to 5600. ODJA is 481% more efficient at N=800 and 
becomes 700% more efficient at N=5600. In Figure 4, where N 
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Figure 5. Running times for M/2 = w–1 
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Figure 6. Running times for decreasing w 
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Figure 7. Memory use 

is fixed at 5600 tuples and w varies from 100 to 800, ODJA’s time 
efficiency advantage over ESJA progressively increases from 
596% to 689%. ODJA’s running time increases less rapidly with 
N and w because ODJA’s running time approaches O(Nw) as 
M/2→1, while ESJA’s is in O((wN)3(log(wN))) (see Subsections 
4.2.2 and 4.2.3). 

5.1.3 Running Times at M/2 = w–1 
We now consider ODJA and ESJA’s relative running times in the 
second case described in Subsection 4.2.2, M/2=w–1. As Figure 5 
shows, ODJA and ESJA require almost the same amount of time 
to compute the optimal approximation at N=800, but OJDA 
becomes increasingly more efficient as N alone is increased to 
5600. This is because ODJA’s running time, which is in O(Nw4) 
when M/2=w–1, grows more slowly with increasing input stream 
length than ESJA’s, whose running time is in O((wN)3(log(wN))). 
 Figure 6 shows the effects of decreasing tuple lifetime on the 
relative running times of the two offline algorithms at M/2=w–1, 
given a fixed input stream length of N=5600. ODJA becomes 
more efficient relative to ESJA as w is reduced. Even though 
ODJA’s running time increases more rapidly with increasing tuple 
lifetime than ESJA’s (i.e. quadric vs. cubic), ODJA outperforms 
ESJA when N is sufficiently large because ESJA’s running time is 
influenced more by the size of the input streams. Note that the 
when join memory is neither small nor large (i.e. M/2 is not close 
to 1 or w–1, respectively), ESJA is more efficient (results are 
omitted due to space constraints). 

5.1.4 Memory Requirement 
We investigate the effect of increasing input stream length on the 
memory requirement of ODJA and ESJA. Memory use, in 
kilobytes, is reported by top, the resource usage tool available in 
UNIX and LINUX operating systems. Figure 7, where w=400 and 
M/2=1, shows that ODJA’s memory usage increases very slightly 
as N increases, whereas ESJA’s memory use increases at a higher 
rate. ODJA should have a constant space requirement, regardless 
of the size of the input stream (see Subsection 4.2.2), yet our 
results show an increase from 1944 KB to 9704 KB as N is 
increased from 800 to 5600. This discrepancy arises because 
measurements of memory use include the input stream tuples and 
the algorithm state. Consequently, we conclude that ODJA’s 
space requirement is constant, regardless input stream length. 
ESJA’s memory requirement increases from 25.3 times ODJA’s 
at N=800 to 45.3 times ODJA’s at N=5600. This difference in 
memory utilization arises because ESJA must store all state (i.e. 
vertices and edges) in memory for all time instants, whereas 
ODJA only stores memory states for two time instants. A similar 
result (not shown) is obtained when M/2 is fixed at w–1 and the 
input stream length is increased from N=800 to N=5600. OSJA’s 

memory requirement is invariably independent of N, so its space 
efficiency will be superior whenever N is sufficiently large. 

5.2 Online Join Approximation 
Before evaluating our online heuristics, we note that the online 
semantic approximation heuristic in [8], PROB, estimates match 
probabilities using the join attribute value distributions of the 
entire input streams. We maintain that no online heuristic can have 
knowledge of future tuples and, as a result, estimate match 
probabilities solely from the sliding windows. 

5.2.1 Effect of Tuple Lifetime 
We determine the effect of increasing tuple lifetime (w) on the 
relative approximation qualities of the online algorithms. Figure 8 
shows the result set importance as a function of w, where M=200 
(divided evenly between the windows) and N=5600. The two 
input streams have Zipf distributions of 1.0 and 0.0, respectively, 
and have a domain size of 100. The algorithms’ relative efficacy is 
unaffected by increasing tuple lifetime. As expected, the 
maximum possible importance under the memory constraint, OPT 
(generated by either ESJA or ODJA), grows as tuple lifetime 
increases. This is because tuples that produce outputs can be 
retained longer, which increases their chances of finding matches 
in the opposite stream. For example, OPT’s importance is 3.21 
times greater at w=800 than at w=200. Among the online 
algorithms, DGL degrades most gracefully and yields the best 
approximation quality, followed by DIMPPROB and 
SIMPPROB. PROB’s quality does not improve consistently 
because it pursues frequently occurring join attributes and ignores 
tuple importance. SIMP’s quality improves little because it retains 
high importance tuples longer, without regard to whether they 
produce any output tuples. RAND’s quality is, constant and 
poorest of all, since its eviction policy does not consider 
importance or match probability. 

5.2.2 Effect of Memory Size 
We consider the effect of increasing join memory size on the 
algorithms’ approximation quality. In this experiment, N=5600, 
and the domain size is set to 100. w is fixed at 400, as it does not 
alter the algorithms’ relative efficacy (see Subsection 5.2.1). The 
input streams have Zipf distributions of 1.0 and 0.0 as in 
Subsection 5.2.1. The results, shown in Figure 9, indicate that, all 
the heuristics approach EXACT as the join memory size 
increases. DGL produces the best approximations and degrades 
most gracefully. For instance, at M=100, the lowest memory 
setting in the experiment, DGL is 3.2% more efficacious than 
DIMPPROB, 20.6% more efficacious than SIMPPROB, 47.6% 
more efficacious than PROB, 52.9% more efficacious than 

119



Result Set Importance Vs. Tuple Lifetime for M  = 200, Zipf 1.0 
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Figure 8. Effect of tuple lifetime 
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Figure 9. Effect of join memory size 
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Figure 10. Effect of domain size 

SIMP, and 77.8% more efficacious than RAND. Predictably, 
RAND performs most poorly. Its approximation quality scales 
linearly with M because its join memory can hold an increasing 
number of tuples. PROB’s quality also increases linearly, though 
at a higher rate than does RAND’s. PROB does not quickly 
converge upon OPT, since it ignores the importance attribute. In 
general, SIMP is a poor heuristic because it completely ignores 
match probabilities. It performs well only when the allotted join 
memory is close to the exact amount. SIMPPROB and 
DIMPPROB perform well, converging quickly upon EXACT. 
DIMPPROB’s error remains somewhat less than SIMPPROB’s 
because its match probability estimates are always updated. DGL 
outperforms DIMPPROB because skewness in the Zipf 1.0 input 
stream implies that some tuples occur with greater frequency than 
others. By inflating their priorities, DGL retains these tuples 
longer than DIMPPROB, giving them a better opportunity to find 
matches in the opposite stream. 

5.2.3 Effect of Domain Size 
Figure 10 shows the effect of increasing the join attributes’ 
domain sizes on approximation quality. M is fixed at 200 tuples, 
w=400, N=5600, and the Zipf parameters are 1.0 and 0.0. Figure 
10 shows that the result set importance varies inversely with the 
domain size. The online algorithms perform worse relative to 
EXACT as the domain size increases, while OPT very quickly 
converges upon exact. These results are explained as follows. 
Increasing the domain size in the Zipf 1.0 stream effectively 
reduces the number of join attribute values occurring with a high 
frequency and, simultaneously, increases the number of join 
attribute values occurring with a low frequency. Increasing the 
domain size in the stream with uniformly distributed join attribute 
values reduces the frequency of all join attributes values by an 
equal amount. One consequence of increasing “sparseness” in the 
distribution of the join attribute values of both streams is that 
tuples are increasingly unlikely to find matches. This lowers the 
importance of EXACT. Another result of increasing domain size 
is that, on average, tuples spend more time in the join memory 
before encountering matches, which explains the online 
algorithms’ progressively worse performance relative to OPT, 
which relies on its foreknowledge to find a good retention 
strategy. The online algorithms’ relative efficacy is the same as 
that obtained in Subsection 5.2.2: DGL yields the best 
approximation quality and degrades the least, followed by 
DIMPPROB, SIPPROB, PROB, SIMP, and RAND. Previous 
arguments account for their relative efficacies. 

5.2.4 Effect of Skewness 
In this experiment, the join attribute values of both streams are 
increased from Zipf 0.0 to Zipf 1.0 in a correlated fashion, while 
w=400, M=200, and the streams’ domain size is fixed at 100. As 
Figure 11 shows, result set importance becomes progressively 

larger with increasing skewness, approaching OPT. Because the 
frequently and infrequently occurring join attribute values in both 
streams are correlated, input tuples, on average, have a greater 
expected number of matches and a reduced amount of time 
between matches as the skew parameter increases. Unlike 
previous scenarios, DIMPPROB and SIMPPROB are, on average, 
2.1% more efficacious than DGL. This interesting result is due to 
the effects of correlation and skewness. The large number of 
matches causes priorities in DGL become inflated so that 
subsequently arriving tuples are less likely to be admitted into the 
join memory as compared to DIMPPROB. DIMPPROB more 
readily replaces old tuples that don’t match with new tuples that 
do. DGL’s favoritism of old high priority tuples over new tuples 
also causes it to perform worse than SIMPPROB, whose static 
match estimates prove accurate in this situation because of the 
large number of matches and the relatively small amount of time 
between matches. 

Result Set Importance Vs. Zipfian Skewness for w  = 400, M = 
200, domain size = 100
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Figure 11. Effect of increasing skewness 

5.2.5 Running Times of Online Algorithms 
Table 1. Approximation quality and running time 

 DIMPPROB DGL SIMPPROB SIMP PROB 

Importance 5783148 6929937 5993464 4592168 5992694 

Time 33.990 34.885 25.484 25.536 25.547 

We compare the running times of the online algorithms using 
large, uncorrelated (Zipf 1.0 and 0.0) input streams of N=56,000 
tuples, with w=2000, M=800, and a domain size of 2000. The 
results, shown in Table 1, confirm our previous approximation 
quality results. DGL provides the best approximation, followed 
DIMPPROB, SIMPPROB, and PROB, whose relative quality is 
not as low as in previous experiments because of the large domain 
size. Once again, the strategy of retaining high importance input 
tuples (i.e. SIMP) proves ineffective. The relative running times 
corroborate the cost modeling in Subsection 4.3, with 
DIMPPROB and DGL requiring more time than the static priority 
heuristics, including PROB. DGL’s greater running time, offset by 
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its superior efficacy, is attributed to its more complex tuple 
priority formulation. 

5.3 Discussion of Experimental Results 
We compared our sliding window join approximation algorithms 
to semantic and random load shedding techniques in memory-
constrained situations. Input data consisted of synthetic data 
streams with tuple level importance semantics. Offline and online 
semantic and random load shedding produce poor join 
approximations when dealing with importance semantics, 
especially when very little join memory is available. However, our 
optimal offline algorithm, ODJA, and our extension to semantic 
load shedding, ESJA, compute an optimal join result and quickly 
converge upon the exact result as the amount of join memory is 
increased. ODJA is up to seven times more time efficient than 
ESJA at small and large join memory allotments. In addition, 
ODJA’s memory requirement is independent of the input streams’ 
size. It is 45.3 times more space efficient than ESJA for w=400 
and M/2=1. Similar results hold for join memory allotments 
nearing EXACT. ESJA has superior space and time efficiency 
when M is neither very small nor large. On the other hand, our 
online algorithms are consistently superior to PROB, the online 
semantic load shedding heuristic, in situations where we vary 
tuple lifetime, memory size, domain size, and skewness. By 
properly detecting important tuples and those with high match 
probabilities, our online algorithms produce high quality 
approximations and quickly converge upon the exact result. DGL 
degrades most gracefully with decreasing join memory size in 
uncorrelated data streams and is most efficacious for joins over 
streams with large domain sizes and long tuple lifetimes, while 
DIMPPROB and SIMPPROB are most efficacious for correlated 
streams. The ineffectiveness of the SIMP heuristic and the 
consistency of our results on a large dataset give us confidence 
that the data sets do not inherently favor our techniques and, 
respectively, that that the efficacy of our methods is unaffected by 
specific choices of input stream size, domain size, tuple lifetime, 
and join memory size. Overall, we discovered that join 
approximation error diminishes with increasing memory size. The 
greatest optimization opportunity exists for small join memory 
sizes, and it is in this situation that our methods show the largest 
gains over the previous state of the art in terms of efficacy, space 
efficiency, and time efficiency. 

6. CONCLUSIONS AND FUTURE WORK 
This paper examined the problem of computing memory-
constrained sliding window join approximations over data 
streams. We motivated the inclusion of importance semantics 
within input tuples and the objective function of maximizing the 
importance of the approximate join result. We introduced efficient 
optimal offline and effective, lightweight online algorithms and 
showed that previous load shedding techniques are insufficient for 
the objective function. Avenues of future work include exploring 
other useful QoS-based objective functions for window join 
approximation and incorporating our methods into complex 
continuous query processing frameworks.  

7. REFERENCES 
[1] Abadi, D. J., Carney D., Centintemel, U., Cherniack, M., 

Convey, C., Lee, S., Stonebraker, M., Tatbul, N., and 
Zdonik, S. Aurora: A New Model and Architecture for Data 
Stream Management. In VLDB Journal, 12(2), 2003, 120–
139. 

[2] Apers, P. and Wilschut, A. Dataflow query execution in a 
parallel main-memory environment. In Proc. 1st Int. Conf. 
on Parallel and Distributed Information Syst., 1991, 68–77. 

[3] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, 
J. Models and issues in data stream systems. In Proc. ACM 
PODS, 2002, 1–16. 

[4] Bonnet, P., Gherke, J., and Seshadri, P. Towards Sensor 
Database Systems. In Proc. 2nd Int. Conf. On Mobile Data 
Management, 2001, 3–14. 

[5] Burger, J., Naughton, J., and Viglas, S. Maximizing the 
Output Rate of Multi-Way Join Queries over Streaming 
Information Sources. In Proc. VLDB Conf., 2003, 285–296. 

[6] Chen, J., DeWitt, D. J., Tian, F., and Wang, Y. NiagaraCQ: 
A Scalable Continuous Query System for Internet Databases. 
In Proc. ACM SIGMOD Conf., 2000, 379–390. 

[7] Cortes, C., Fisher, K., Pregibon, D., Rogers, A., and Smith, 
F. Hancock: A Language for Extracting Signatures from 
Data Streams. In Proc. ACM SIGKDD Conf., 2000, 9–17. 

[8] Das, A., Gerkhe, J., and Riedewald, M. Semantic 
Approximation of Data Stream Joins. In IEEE TKDE, 17(1), 
2005, 44–59. 

[9] Fegaras, L., Maier, D., Sheard, T., and Tucker, P. Exploiting 
Punctuation Semantics in Continuous Data Streams. In IEEE 
TKDE, 15(3), 2003, 555–568. 

[10] Franklin, M. J. and Urhan, T. XJoin: A Reactively-Scheduled 
Pipelined Join Operator. In IEEE Data Engineering Bulletin, 
23(2), 2000, 27–33. 

[11] Goldberg, A. V. An Efficient Implementation of a Scaling 
Minimum-Cost Flow Algorithm. In J. Algorithms, 22(1), 
1997, 1–29. 

[12] Guha, S., Indyk, P., Muthukrishnan, S., and Strauss, M. 
Histogramming Data Streams with Fast Per-Item Processing. 
In Proc. 29th Int. Colloquium on Automata, Languages, and 
Programming, 2002, 681–692. 

[13] Golab, L. and Ozsu, M. T. Issues in Data Stream 
Management. In ACM SIGMOID Record, 32(2), 2003, 5–14. 

[14] Golab, L. and Ozsu, M. T. Processing Sliding Window 
Multi-Joins in Continuous Queries over Data Streams. In 
Proc. VLDB Conf., 2003, 500–511. 

[15] Hellerstein, J., Madden, S., Raman, V., and Shah, M. 
Continuously Adaptive Continuous Queries Over Streams. In 
Proc. ACM SIGMOID Conf., 2002, 49–60. 

[16] Kang, J., Naughton, J., and Viglas, S. D.  Evaluating 
Window Joins over Unbounded Streams. In Proc. ICDE 
Conf., 2003, 341–352. 

[17] Naughton, J. and Viglas, S. Rate-Based Optimization for 
Streaming Information Sources. In Proc. ACM SIGMOD 
Conf., 2002, 37–48. 

[18] O’Callaghan L., Mishra N., Meyerson A., Guha S., and 
Motwani R. Streaming-data algorithms for high quality 
clustering. In Proc. ICDE Conf., 2002, 685. 

[19] Takaoka, T. O(1) Time Algorithms for Combinatorial 
Generation by Tree Traversal. In Computer Journal, 42(5), 
1999, 400–408. 

121



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


