
Window Join Approximation over Data Streams
with Importance Semantics*

Adegoke Ojewole
Dept. of Computer & Info. Science
University of Michigan – Dearborn

Dearborn, MI 48128, USA
ojewolea@umich.edu

Qiang Zhu
Dept. of Computer & Info. Science
University of Michigan – Dearborn

Dearborn, MI 48128, USA
qzhu@umich.edu

Wen-Chi Hou
Dept. of Computer Science
Southern Illinois University
Carbondale, IL 62901, USA

hou@cs.siu.edu

ABSTRACT
Load shedding techniques generate approximate sliding window
join results when memory constraints prevent exact computation.
The previously proposed random load shedding method drops
input tuples without consideration for the number of outputs
created, while the recently proposed semantic load shedding
technique aims to produce the largest possible result set. We
consider a new model in which data stream tuples contain
numerical importance values relevant to the query source and seek
to maximize the importance of the approximate join result. We
show that both random load shedding and semantic load shedding
are sub-optimal in this situation, while the techniques presented in
this paper satisfy the objective function by considering both tuple
importance and join attribute distributions. We extend the existing
offline semantic approximation technique to make it compatible
with our objective function and show that it is less space and time
efficient than our new optimal offline algorithm for small and
large join memory allotments. We also introduce four efficient
online algorithms, which are quite promising in maximizing the
importance of the approximate join result without foreknowledge
of input streams.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query Processing

General Terms
Algorithms, Management, Performance

Keywords
Data streams, importance semantics, sliding window join,
approximation algorithms, load shedding

1. INTRODUCTION
Research in data stream processing is motivated by the important
application domains in which data naturally occurs in the form
continuous streams. Examples of these applications include
weather monitoring via sensor networks [4], life signs monitoring
in hospitals, vehicle tracking via a global positioning system

(GPS) or through a digital radio service, internet traffic
monitoring [12], or transaction log analysis [7].

Data stream processing poses challenges which cannot be
overcome by directly applying traditional DBMS techniques.
Firstly, it is impossible to store unbounded streams in their
entirety. Secondly, recently arrived data stream elements may be
more relevant than older data. Thirdly, standard blocking
operators cannot be used, as they may indefinitely delay output
production. Further, data stream management systems (DSMSs)
are subject to real time processing constraints. To satisfy these
requirements, DSMSs may produce approximate results.
 We consider these problems in the context of the join
operator. The familiar blocking join operator must be adapted to
operate in a streaming environment because it would require
infinite time and storage to compute the join result over a pair of
unbounded streams.
 Data stream joins are computed incrementally and
continuously, with new result tuples being generated and streamed
away as matching input tuples arrive [17]. To bound a streaming
join’s memory requirement, the criterion of exactness is altered to
require that the join operates on a finite prefix of the input
streams. While several variations are possible, such as fixed and
landmark windows [13], we consider sliding windows (which we
refer to simply as windows), where both endpoints conceptually
move over the input stream, allowing in the newest element and
displacing the oldest. Sliding windows may be time (i.e. holding
tuples from the last 20 minutes) or count-based. We consider the
time-based windows in this paper.
 Although incremental computation and windowing unblock
the join operator and bound its processing and memory
requirements, operating conditions may still overwhelm a DSMS’
resources. In reality, stream arrival rates fluctuate over time and
may exceed the DSMS’ processing capability. In addition, the
DSMS’ resources may become constrained when it
simultaneously performs multiple continuous queries. In these
situations, there is no recourse to generating approximate query
results. In this paper, we consider approximation by load
shedding, where tuples are prematurely dropped either before or
after entry into a sliding window.

Our work is motivated by the following example. Consider a
network of battery-powered sensors monitoring environmental
conditions. Sensors, which have limited processing, storage, and
communications capabilities, transmit gathered data to proxies,
which are terminals to which users pose queries. Rather than
sending raw tuple data to proxies as in [8], sensors append
importance metadata before transmitting tuples. A tuple’s
importance metadata may be a function of its frequency, its
presence in a predetermined range, its degree of statistical
aberrance, or its distance to a cluster point [7], [18], for instance.
A proxy accepts input streams and streams output tuples to the
query source. The importance of an output tuple, which provides

*This work was partially supported by the NSF under grant # CNS-0521142
and The University of Michigan – Dearborn under a CEEP grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011...$5.00.

112

domain information to the query source beyond the raw tuple data,
is a function of the importance of the input tuples which compose
it.

In this paradigm, an approximation may occur at a sensor or
at a proxy, and the objective is to minimize the approximation
error to the greatest extent possible. In the former case, an
approximation arises if power constraints prevent the sensor from
transmitting all its tuples. In this event, the sensor aims to transmit
the most relevant tuples to the proxies. Approximations in the
latter case occur when the number of queries being posed or the
volumes of incoming data exceed a proxy’s computational
resources.

This paper addresses the problem of load shedding at a
sliding window join operator where such a system has sufficiently
fast CPUs but lacks enough memory to compute the exact join
result. Since all load shedding approximations are subsets of the
exact result [8], our techniques are aimed at producing the
approximation with the least error. Random load shedding
techniques [10], [5], [17], which drop tuples randomly with
respect to join attribute values, are known to produce sub-optimal
approximations because the join result is composed of pairs of
matching tuples from the input streams. In the extreme, a bad load
shedding strategy can produce few or no output tuples, even
though the largest possible approximate result is large. Semantic
load shedding [8] improves upon random load shedding by taking
into account join attribute value correlations between the two
input streams with the aim of maximizing the size of the
approximate join result under the memory constraint. However,
semantic approximation depends only upon join attribute
distributions and not importance semantics.

The presence of embedded per-tuple importance semantics
relevant to the query source differentiates our work from previous
load shedding techniques. Our objective is to compute the
approximate result having the largest aggregate importance, given
the memory constraint. Unlike those previously mentioned, our
techniques process data streams whose tuples have different
explicit importance values and evaluate these tuples on two
independent criteria: importance and the expected number of
matches.

Firstly, highly important output tuples provide more domain
information to the query source than output tuples with lower
importance. In this way, tuple importance semantics assist in QoS-
based approximation. Dropping an input tuple randomly or
because of its relatively low number of matches ignores the fact
that the tuple may provide valuable information to the query
source if it creates an output. For example, semantic
approximation techniques will likely drop a highly anomalous
tuple prematurely because its join attribute value occurs
infrequently. Yet, despite its infrequent occurrence, this
anomalous value might be actually be a “needle in the haystack”
that provides the application with valuable information whenever
it joins, especially in the case of an approximation. It may be
desirable to retain this tuple in the join memory for as long as
possible with the expectation that it will produce at least one
important output tuple.

Secondly, assuming equal importance, an input tuple with
many matches creates more aggregate importance in the join
result than a tuple with fewer matches. Consequently, retaining
input tuples solely because of their high importance may run
counter to the objective function. Because it, in effect, regards all
input and output tuples as having equal explicit importance,
semantic load shedding deals with a special case of the problem
we consider. Indeed, domain importance together with join

semantics constitute a novel, non-trivial extension to the problem
of load shedding in sliding window join approximation.

In this paper, we consider a new model in which data stream
elements contain numerical importance values relevant to the
query source. We propose different strategies of incorporating
tuples’ importance attributes into the priority formulation of
online algorithms. In addition, we propose various methods of
formulating the importance of output tuples from matching inputs
and establish the objective function of maximizing the
approximate join result’s aggregate importance. We demonstrate
that this new objective function is a non-trivial extension of load
shedding by showing that random and semantic load shedding
solutions previously proposed in the literature yield sup-optimal
approximations. We extend the existing offline semantic load
shedding algorithm [8] to compute the maximum importance
under memory constraints and also present a new optimal offline
join approximation algorithm with superior space efficiency and
time efficiency at small and large join memory allotments.
Furthermore, we propose four efficient online join approximation
algorithms with superior efficacy to online random and semantic
load shedding techniques.

The remainder of this paper is organized as follows. We
review related work in Section 2. In Section 3, we formally state
our problem and describe different methods of formulating join
memory priorities and output tuple importance. We present our
offline and online algorithms in Section 4 and experimentally
evaluate them in Section 5. Finally, we conclude the paper and
outline directions for future work in Section 6.

2. RELATED WORK
Golab et al. [14] investigate the problem of join ordering in
queries with multiple sliding window joins and explore the
tradeoffs of eager and lazy re-evaluation and expiration. Data
stream summary structures [3] produce approximate results when
a sliding window is too large to fit in available memory or when a
streaming version of a blocking operator does not exist or is too
inefficient. These techniques also provide an efficient way to
maintain data stream statistics used in computing tuple priorities
for online join memory maintenance.

While the symmetric hash join [2] was the first algorithm to
process joins over unbounded streams, XJoin [10] was the first to
shed load when stream arrival rates exceed the available join
processing capacity. Processing two streams, XJoin randomly
sheds load by spilling tuples to disk and processes backlogged
inputs when the DSMS is once again able to cope with stream
arrival rates. Viglas et al. apply their optimization framework for
maximizing output production rate [17] to MJoin [5], which
extends XJoin by aggregating or decomposing query plans
containing multiple join operators. We consider the load shedding
scenario in which tuples are dropped permanently.

Given CPU or memory constraints, Kang et al. [16] study the
problem of optimal resource allocation with the aim of
maximizing window join processing efficiency or output size and
propose a per-unit-time cost model to evaluate their random load
shedding techniques. Das et al. [8] show that random load
shedding in general yields join approximations of sub-optimal
size. Their semantic load shedding techniques aim to compute the
join approximation of maximum size over input streams without
the importance semantics that we consider here.

Stream semantics, known as punctuations [9], have been
proposed in the literature. Punctuations provide information about
the remainder of an input stream which can be used to unblock an

113

operator. However, work in this area does not address load
shedding or sliding window join approximation.

Eddies [15] and NiagaraCQ [5] are adaptive continuous
query processing systems which deal with resource fluctuations by
dynamically re-ordering operators. Though promising for
providing reliable query performance in changing environments,
they do not address tuple importance semantics or join
approximation via load shedding.

The Aurora query processor [1] employs a different approach
to load shedding in continuous queries. Aurora continuously
monitors the frequency distribution of output tuples from
streaming operators and compares it to the distributions of tuples
in the input streams. It augments input tuples with QoS values
from its monitoring statistics to ensure that load shedding
reasonably preserves the distributions of the input tuples in the
outputs. However, its techniques do not consider optimizations
taking into account importance semantics embedded within data
stream tuples at their source. To our knowledge, our work is the
first to consider offline and online optimization of window join
approximation in this context.

3. PROCESSING TUPLE IMPORTANCE
In this section, we define the problem space and discuss the
formulation of join memory priorities in online approximation
algorithms and the importance of output tuples.

3.1 Problem Definition
We process a sliding window equi-join between two data streams,
R and S. Tuples in a stream are identified as <ts, sch, imp>, where
ts ∈ N, the set of natural numbers, is the tuple’s arrival timestamp;
sch is the conventional schema of the stream; imp ∈ {x | x ∈ R
and 0 < x < U} is the tuple’s importance, where R is the set of real
numbers and U is an upper bound for numerical importance. We
employ time-based windows where one tuple arrives in each input
stream per time instant, though our discussion extends to count-
based windows or asynchronous tuple arrival.

We adopt the notation in [8]. Let R be a sliding window of
size w over stream R, where w is also the lifetime of tuples in
window R. Let r(i) be a tuple that arrives in stream R at time i. For
convenience, this tuple’s join attribute also has a value r(i). At the
end of time t, window R contains tuples r(i) such that 0 < t–w+1 <
i < t. The description of tuple s(i) arriving in window S over
stream S is analogous.

We employ the Fast CPU approximation model [8], where
tuples are not dropped before reaching the join operator, with
eager re-evaluation and expiration [14]. The join memory, M,
which is fixed, is bounded above by 2w, the amount required for
exact computation. When input tuples r(t) and s(i) join at time t to
create output tuple o(t), the importance of o(t) is a function of
r(t).imp and s(i).imp. Given that streams R and S begin at t=0 and
end at t=N, the result multiset of the sliding window join is

U
Nt

t

=

= 0
U
t

wti 01≥+−=
{(r(t) s(i))} U {(s(t) r(i))}

and has importance

∑∑
∈

=

=)(
,.y

0 tYy
imp

Nt

t

where the inner summation is the total importance of the set of
output tuples, Y(t) = {o(t)}, created at time t. Any load shedding

strategy produces a subset of the tuples in the exact answer whose
importance is, consequently, no larger than that of the exact result.
Because memory is constrained (i.e. 0 < M < 2w), exact
computation is not possible. We seek to compute the approximate
result with the maximum importance.

3.2 Priorities and Output Tuple Importance
We first consider the formulation of tuple priorities, the basis of
join memory retention and eviction in online algorithms. Assigned
by the join algorithm, a tuple’s priority is its estimated worth with
respect to the objective function relative to the other tuples in the
constrained join memory. The tuple priority is determined by
importance, imp, the (expected) number of matches, m, and the
arrival timestamp (i.e. age), ts. There is no explicit or implied
correlation among these three parameters. Note that semantic
approximation [8] does not factor importance into its priority
formulation. In our case, tuple r(i) has priority

P(r(i)) = f(r(i).imp, r(i).m, r(i).ts),
for some function f. The priority of s(i) ∈ S is defined similarly. A
tuple’s priority is either assigned once when it arrives or is
updated at each re-evaluation interval. The following are some
general possibilities for priority formulation.
1. Additive: r(i)’s priority may be a linear combination of its

importance, matches, and arrival time as follows:
f(r(i).imp, r(i).m, r(i).ts) = α*r(i).imp + β*r(i).m + δ*r(i).ts,

where α, β, δ > 0.
2. Multiplicative: alternatively, P(r(i)) can be formulated

multiplicatively as
f(r(i).imp, r(i).m, r(i).ts) = (r(i).imp)α (r(i).m)β (r(i).ts)δ,

where α, β, δ > 0.
3. Cumulative: in this case, a r(i)’s priority is a function of its

importance, matches, and arrival time as described in option
1 or 2, in combination with its previous priority:

P(r(i)) = g(P΄(r(i)), r(i).imp, r(i).m, r(i).ts),
where g is some function and P΄(r(i)) is the priority
previously assigned to r(i). When employing a cumulative
scheme, the tuple’s priority is re-calculated during every time
interval, similarly to a rolling average.

We will evaluate special cases of all three priority formulations in
our experiments.

We next consider how to determine an output tuple’s
importance from the importance of the input tuples that join to
create it. Specifically, we consider how to formulate o(t).imp,
created at time t, from joining r(i) and s(t) (or r(t) and s(i)). We
must address the issue of output tuple importance because
matching input tuples convey their importance to the monitoring
application or query source through o(t).imp. Moreover, o(t) can
conceivably be an input to another join operator, where its
importance is once again used to determine its priority within that
join memory. Intuitive ways to derive an output tuple’s
importance from the inputs are additive (i.e. o(t).imp = r(i).imp +
s(t).imp), multiplicative, maximal, minimal, and average. Without
loss of generality, we use the “minimum” output importance
formulation, where

r(i) s(t) ⇒ o(t).imp = min{r(i).imp, s(t).imp}.

114

r(0) r(0)
r(1)

r(0)
r(1)

r(0)
r(2)

r(1)
r(2)

r(0)
r(1)

r(0)
r(2)

r(0)
r(3)

r(1)
r(2)

r(1)
r(3)

r(2)
r(3)

r(1)
r(2)

r(1)
r(3)

r(1)
r(4)

r(2)
r(3)

r(2)
r(4)

r(3)
r(4)

r(2)
r(3)

r(2)
r(4)

r(2)
r(5)

r(3)
r(4)

r(3)
r(5)

r(4)
r(5)

x

stop

x

t=0 begin t=0 end

t=1 begin t=1 end

t=2 begin t=2 end

t=3 begin t=3 end

t=4 begin t=4 end

t=5 begin t=5 end

Window R subgraph

x
x

x x x

1 1

1

1

2
20

start

t=2:
(r(2),s(2))

SA subgraph 1

s(0) s(0)
s(1)

s(0)
s(1)

s(0)
s(2)

s(1)
s(2)

s(0)
s(1)

s(0)
s(2)

s(0)
s(3)

s(1)
s(2)

s(1)
s(3)

s(2)
s(3)

s(1)
s(2)

s(1)
s(3)

s(1)
s(4)

s(2)
s(3)

s(2)
s(4)

s(3)
s(4)

s(2)
s(3)

s(2)
s(4)

s(2)
s(5)

s(3)
s(4)

s(3)
s(5)

s(4)
s(5)

x

stop

x

t=0 begin t=0 end

t=1 begin t=1 end

t=2 begin t=2 end

t=3 begin t=3 end

t=4 begin t=4 end

t=5 begin t=5 end

Window S subgraph

x

x
x

1 1

start

x x
5

Exact Result: R subgraph

Output tuple
(r(0),s(1))=<1,1,1>
(r(0),s(2))=<2,1,1>
(r(0),s(3))=<3,1,1>
(r(2),s(3))=<3,1,1>
(r(1),s(4))=<4,9,20>
(r(2),s(5))=<5,1,1>

Exact Result: S subgraph

Output tuple
(r(2),s(1))=<2,1,1>
(r(3),s(0))=<3,3,5>

SA subgraph

Output tuple
(r(2),s(2))=<2,1,1>

Optimal approximation for M=4:
7 output tuples, importance = 30

Output tuple Output tuple
(r(0),s(1))=<1,1,1> (r(0),s(3))=<3,1,1>

(r(3),s(0))=<3,3,5>
(r(0),s(2))=<2,1,1>
(r(2),s(1))=<2,1,1>
(r(2),s(2))=<2,1,1>

 (r(1),s(4))=<4,9,20>

Figure 1. Join memory state graph

In practice, the output importance formulation is application-
dependent. Nevertheless, the real world meaning of importance
semantics is irrelevant to our priority and output importance
formulations beyond the ability to order priorities and to propagate
importance values from input tuples to the outputs.

4. APPROXIMATION ALGORITHMS
We first introduce our offline approximation algorithm, which
employs its foreknowledge of the input streams to generate an
approximate join result with the maximum importance. This
establishes the baseline against which we measure the efficacy of
online algorithms, which have no knowledge of future inputs.

4.1 Join Memory State Graph
We formulate the offline window join approximation as a directed
graph. Vertices correspond to snapshots of the join memory at
different points in time, while edges, which model transitions
between sequential memory states, represent choices to retain or
drop tuples. The join memory state graph, which can be
constructed for arbitrary combinations of tuple lifetime (w), join
memory size (M), and input stream length (N), models all
possible ways to retain and evict tuples. Our goal is to determine
the tuple eviction and retention strategy corresponding to the
approximate join result with the largest importance.

Figure 1 illustrates the semantics of the join memory state
graph. In this example, both data streams have length N=6. From
Subsection 3.1, data stream tuples are of the form <ts, sch, imp>.
Stream R is <0,1,1>, <1,9,20>, <2,1,1>, <3,3,5>, <4,4,5>,
<5,2,1>; stream S is <0,3,5>, <1,1,1>, <2,1,1>, <3,1,1>, <4,9,20>,
<5,1,1>. Only the join attributes of sch are shown.

The modeling of time is discrete, so the first tuple in each
stream arrives at time t=0, the second tuple arrives at t=1, and so
on. Tuples are identified by a combination of their stream and
arrival time. For example, tuple <1,9,20> in stream R is referred
to as r(1); it arrives in stream R at t=1, and its join attribute and
importance values are 9 and 20, respectively. The importance of
an output tuple is the minimum of those of the matching tuples
that create it (see Subsection 3.2). For instance, r(2) and s(2) join
at t=2 to create (r(2),s(2)), which has a join attribute value of 1
and an importance of 1.

In this problem, the tuple lifetime and window size are w=4.
Assuming that each tuple occupies one unit of memory, 2w=8
memory units are required to compute the exact result. The
available join memory, M=4, is half of this amount. In this
example, M is divided evenly between windows R and S.

Events in the join approximation are modeled in three
subgraphs: the R, S, and SA subgraphs. An output tuple in the SA
subgraph is created when two matching tuples in opposite streams
arrive at the same time. In subgraphs R and S, however, an output
tuple is created when a tuple in a memory state joins with the new
tuple arriving in the opposite stream. Because of symmetry,
subgraphs R and S share the same properties.

Memory states (i.e. vertices) are represented by the set of
tuples they contain. The start vertex represents the join memory
before any data stream tuple arrives, while the stop vertex
represents the time instant after the final tuple has arrived. An
edge’s vertex of origin represents the join memory state at the
instant when a new tuple arrives. When it arrives, the tuple is
either (1) admitted into the join memory which is not full, or (2)
admitted at the expense of an expired tuple, or (3) admitted at the
expense of an active tuple in the join memory, or (4) dropped
before entering the join memory. An edge is created from the
current memory state to a subsequent state in the next time instant
for each of these events. For example, r(0) and r(1) are admitted
into the join memory which is not yet full. When r(2) arrives, to a
full join memory (M/2 tuples in this example), since neither r(0)
nor r(1) has expired, new memory states must be created from
vertex {r(0),r(1)} at t=2, each representing a decision to drop r(0),
r(1) or r(2) prematurely.

An edge’s weight is the importance of the output tuples
resulting from the decision to admit, expire, retain, or drop tuples.
For example, if r(0) is in memory at t=2, it joins with s(2) to
create output tuple (r(0),s(2)) which has importance 1. Thus, the
two memory states at t=2 in which r(0) survive have incident
edges with weight 1. On the other hand, edge
{r(0),r(1)}→{r(1),r(2)} represents the decision to drop r(0) for
r(2) at t=2, so its weight is 0. (For clarity, edge weights of 0 are
not shown.) Note that an edge’s weight represents the total
importance from the output tuples from the originating vertex. If
multiple tuples in the join memory state match the new tuple in S,
the edge weight is the sum of the importance of the created output

115

tuples. For instance, edge {r(0),r(2)}→{r(0),r(2)} at t=3 has a
weight of 2 because both r(0) and r(2) match with s(3) to create
two output tuples of importance 1.

A sequence of vertices from the start vertex to the stop vertex
represents a complete path. Each path represents a set of decisions
to retain or evict tuples and the states resulting from those
decisions. Paths respect correct temporal modeling because they
represent a set of transitions from one time instant to the next. In
addition, paths in a subgraph respect the memory constraint
because vertices within all paths do not accommodate more than
the allotted number of tuples. For example, each vertex in the R
and S subgraphs of Figure 1 does not accommodate more than
M/2 tuples. Moreover, paths only contain valid transitions
between memory states, meaning that a tuple that is dropped
within a path cannot re-enter a join memory state. For example, no
path in Figure 1 contains the edge {r(0),r(1)}→{r(1),r(2)} at t=4.
For any path, r(2) can enter a join memory state only at t=2 and,
once dropped, cannot possibly re-enter a join memory state at a
future time. Thus, each path from the start vertex to the stop
vertex represents a valid sequence of join memory states adhering
to the memory constraint. In other words, each complete path
from the start vertex to the stop vertex represents a join
approximation. The optimization goal is to find a path from the
start vertex to the stop vertex such that the sum of the edge
weights is maximal.

States and transitions in the R subgraph are independent of
those in the S subgraph because join memory states in R are
determined solely by tuples arriving in R. Furthermore, edge
weights in the R subgraph depend on the arrival of tuples in
stream S and not on the contents of window S’s join memory. The
same is true of the corresponding structures in the S subgraph in
relation to those in the R subgraph. Subgraph SA is independent of
both R and S because it alone captures output tuples from
matching input tuples that arrive at the same time. Because
subgraphs R, S, and SA are independent, the optimal
approximation consists of the output tuples in the SA subgraph in
union with the optimal paths in subgraphs R and S.
 For our example, the exact join result (i.e. M=8, see Figure 1)
contains nine output tuples and has an importance of 32. For
clarity, the only non-zero edge weights shown are those of paths 0
(bold) and 1 (‘x’). Path 0 corresponds to the join approximation
for M=4 with the maximum importance. This approximation
contains seven output tuples and has an importance of 30. For
comparison, the largest approximate join result for M=4 (i.e. the
optimal semantic load shedding approximation [8]), represented
by Path 1, contains eight output tuples but has an importance of
only 12.
 The join memory state graph has two more useful properties.
First, different paths have overlapping subpaths. For example,
three different subpaths starting at t=4 contain subpath
{r(1),r(4)}→{r(4),r(5)}→stop, which begins at t=5. Second, the
path corresponding to the optimal approximate join result
necessarily contains within it optimal subpaths, which means that
the graph formulation possesses optimal substructure. The
presence of both properties, which will be discussed in more detail
in Subsection 4.2.2, leads us to a dynamic programming optimal
offline algorithm, which we present next.

4.2 Optimal Offline Approximation
Our optimal offline approximation algorithm consists of several
procedures, which are described in the following subsection.

4.2.1 Optimal Approximation Construction
In the following procedures for constructing the join memory state
graph and determining the optimal approximation, variable OJI
represents the importance of the optimal join approximation.
Variable MS[t] contains all the join memory states (i.e. vertices) at
time t. A memory state’s MI field represents the maximum
importance of all paths from the start vertex to that memory state,
and a state’s prev field is the immediate predecessor vertex in this
optimal path. Both are initialized to zero for new vertices.
Function Importance() returns the sum of the importance of the
output tuples produced by the joined inputs for a given memory
state at a time instant.

// Construct subgraph R, compute optimal path and importance
// Repeat this procedure for subgraph S
Procedure ComputeMaxImportance(stream R, stream S, N)
 OJI = 0, t = 0
 MS[t] = ∅, initialize and insert StartVertex into MS[t]
 do
 MS[t+1] = ∅
 ∀ memory state x ∈ MS[t]
 // Generate memory states for MS[t+1] using r(t)
 ∀ memory state y from x
 if(y ∉ MS[t+1])
 Insert y into MS[t+1]
 EdgeWeight(x → y) = Importance(y, s(t+1))
 if(x.MI + EdgeWeight(x → y) > y.MI)
 y.MI = x.MI + EdgeWeight(x → y)
 y.prev = x
 t = t+1
 while(t < N)
 MS[t] = ∅, initialize and insert StopVertex into MS[t]
 ∀ memory state x ∈ MS[t–1]
 if(x.MI > StopVertex.MI)
 StopVertex.MI = x.MI
 StopVertex.prev = x
 OJI = OJI + StopVertex.MI.
// Construct SA subgraph, compute importance
Procedure ComputeSAImportance(stream R, stream S, N)
 vertex x = StartVertex
 for(t = 0 to N–1)
 if(Importance(r(t), s(t)) > 0)
 Create vertex y = (r(t), s(t)) for SA subgraph
 EdgeWeight(x → y) = Importance(r(t), s(t))
 x = y
 OJI = OJI + Importance(r(t), s(t))
 EdgeWeight(x → StopVertex) = 0.

Using the join memory state graph and the information
produced by the above procedures, we can print the input tuples in
the states corresponding to the optimal join approximation in the
reverse order of time. The procedure starts from the stop vertex
and iteratively uses the prev field to traverse the predecessor in the
optimal path.

// Print the tuples of optimal subgraph R approximation
// Repeat the procedure for subgraph S
Procedue ReconstructContents(subgraph R)
 vertex x = StopVertex
 do
 x = Locate(x.prev)
 printVertex(x)
 while(x ≠ StartVertex)

Through simple modifications, the algorithm can satisfy
different objective functions. For example, modifying
Importance() to return the number of output tuples from a
memory state would cause the algorithm to produce the optimal
semantic approximation [8]. In addition, changing the procedure
so that the vertices’ MI fields store the smallest importance of all
the paths leading to them allows the algorithm to compute the
approximation with the lowest importance. Alternatively, the
algorithm can support a combination of positive and negative edge

116

weights, where desirable output tuples have positive importance
and undesirable outputs tuples have negative importance.

4.2.2 Correctness and Complexity Analysis
The correctness of the algorithm follows from the preservation of
the following invariant: at the end of each time step, every vertex
contains information to determine the maximum importance from
the start vertex to itself. Thus, the stop vertex in the R and S
subgraphs contains the maximum importance from the start vertex
to itself. The optimal substructure and overlapping subpath
properties present in the join memory state graph formulation
allow for the preservation of this invariant.

We first show that the problem exhibits optimal substructure.
Let G(V,E) represent a join memory state graph. Importance:
E→R is the weight function for edges as described in Subsection
4.1. Let P be a path in the join memory state graph from the start
vertex to the stop vertex which yields the join result with the
greatest importance. P consists of vertices {v0,v1,…,vN} and edges
{e0,1,e1,2,…,eN-1,N}, where edge ei,j connects vertices vi and vj for 0
< i < j < N. If Pi,j is a subpath in P starting at vertex vi and ending
at vertex vj, then Pi,j yields the greatest importance between vi and
vj. If not, then decompose P as P0,i → Pi,j → Pj,N, which has
importance Importance(P) = Importance(P0,i) + Importance(Pi,j) +
Importance(Pj,N). Since there is an alternate path P’i,j ∈ G(V,E)
such that Importance(P’i,j) > Importance(Pi,j), we substitute this
path into P in place of Pi,j to form path P’, whose importance,
Importance(P0,i) + Importance(P’i,j) + Importance(Pj,N), is greater
than Importance(P). This contradicts the assumption that P has the
greatest importance from the start to the stop vertex.

Next, we explain why the graph formulation possesses
property of overlapping subpaths and how the algorithm uses the
property to generate the optimal approximation. Let vi be a
memory state in MS[t]. As a result of r(t)’s arrival, vi generates
between one and M/2+1 subsequent states (inclusive) in MS[t+1]
corresponding to each of the following events:
• Join memory is not full. r(t) is admitted.
• Join memory is full. r(t) displaces the expired tuple in vi.
• Join memory is full. r(t) displaces any active tuple in vi.
• Join memory is full. r(t) is dropped.
Let vi+1 be a subsequent state of vi. vi+1 may also be reached
independently through memory state vh in MS[t]. Updating vi+1’s
MI and prev fields enables the algorithm to select which of the
paths from the start vertex ending at vi+1 maximizes the
importance measure, while storing only one copy of vi+1. In Figure
1, for example, vertex {r(1),r(4)} at t=4 can be reached from
{r(0),r(1)}, {r(1),r(2)}, or {r(1),r(3)} at t=3. By maintaining non-
duplicate vertices, the algorithm allows these paths to share
subpath {r(1),r(4)}→{r(4),r(5)}→stop and decides which of them
maximizes the importance measure without the need to store a
separate copy of the subpath for each.

While our methods also work for uneven memory
allocations, the following time complexity analysis assumes that
each window holds at most M/2 tuples. Each subgraph contains N

time instants, and there are at most memory states in a
time instant. Each state generates at most M/2+1 new states of size
M/2. Each new memory state is generated in O(M/2) [19]. The
calculation of Importance() for each output tuple is absorbed into
this step. The algorithm uses the overlapping subpaths property by
maintaining non-duplicate memory states in a time instant.

Duplicate avoidance is performed in O(M/2). Each MI and prev
update is performed in O(1). Thus, the algorithm determines the
sliding window join approximation of maximum importance in

O . The time complexity approaches O(Nw) as
M/2→1 and approaches O(Nw4) as M/2→w–1. The printing
procedure runs in θ(N), since there are N time instants and the
Locate() step takes constant time.

The algorithm requires MS[t] and MS[t+1] of the join
memory graph to produce an optimal approximation. Thus, its

space complexity, θ , is independent of N. The printing
procedure only requires O(1) space since only vertex v is stored.

4.2.3 Extending the Linear Flow Solution
Semantic approximation [8] is sub-optimal for maximizing the
importance measure because it only computes the largest
approximate join result. We extend the original semantic
approximation technique to make it compatible with our objective
function (omitted due to space constraints). We modify the flow
graph creation algorithm to accept tuple importance semantics by
allowing arc weights of arbitrary (absolute) magnitude and
employ an efficient implementation of the minimum cost linear
flow algorithm [11] to calculate the optimal join approximation’s
numerical importance in O((wN)2(wN+M)log(wN)). Unlike our
offline algorithm, the space efficiency of this algorithm,
O(wN+M), is a function of M, w, and N. The extended semantic
approximation technique and our optimal offline algorithm will be
evaluated empirically in Section 5.

4.3 Online Approximation
Unlike the optimal offline algorithm, online approximation
algorithms have no knowledge of future input tuples. Therefore,
they have no recourse but to greedily hold on to tuples they
consider valuable for the objective function according to pre-
determined heuristics, which include:
1. Using past usefulness (i.e the importance of the outputs

generated by the tuple) to estimate future worth.
2. Using current or past join attribute distributions to estimate

future match probabilities.
Such statistical and historical information is maintained
automatically by DSMSs as histograms and sketches [3]. Our
techniques employ these general guidelines while also
incorporating tuple importance. We present four efficient online
algorithms in the Fast CPU framework [8] with either static or
dynamic priorities.

4.3.1 SIMP Heuristic
The Static IMPortance heuristic (SIMP) fixes the priority of each
tuple as its importance. This is a special case of the additive (or
multiplicative) priority formulation in Subsection 3.2. SIMP
prefers high importance tuples over those with lower importance,
regardless of estimated match probabilities or the relative ages.
The tuple of lowest priority (including the new tuple) is dropped
whenever a tuple arrives at a full window. If a tie in priorities
occurs, the oldest tuple is dropped. For simplicity, suppose that the
join memory is maintained as two priority queues, each holding
M/2 tuples. Using the cost model in [17], SIMP’s per-tuple
processing cost is evaluated as

M/2(probe + invalidate) + 1(insert).

117

Result Set Importance Vs. Join Memory Size, w = 10, N = 5600

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

2 4 6 8 10
Join Memory Size (M)

R
es

ul
t S

et
 Im

po
rt

an
ce

ESJA
EXACT
ODJA
RAND
SJA

Figure 2. Importance vs. memory size

Input Stream Length Vs. Running Time for w = 400, M/2 = 1

0

20

40

60

80

100

120

140

160

180

200

800 1600 2400 3200 4000 4800 5600

Input Stream Length (N)

R
un

ni
ng

 T
m

e
(s

ec
)

ODJA
ESJA

Figure 3. Running times for M/2 = 1

Running Time Vs. Tuple Lifetime for N = 5600, M/2 = 1

0

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700 800
Tuple Lifetime (w)

R
un

ni
ng

 T
im

e
(s

ec
)

ODJA
ESJA

Figure 4. Running times for increasing w

4.3.2 SIMPPROB Heuristic
When a new tuple arrives, the Static IMPortance PROBability
heuristic (SIMPPROB) fixes its priority as the product of its
importance and the number of matches in the opposite window,
the latter number being the new tuple’s estimated match
probability. This is a special case of the multiplicative priority
formulation. Since a new tuple may have no matches, any tuple
can be prioritized to zero, regardless of its importance. Ties are
resolved by dropping the tuple with the lowest importance, then
the tuple with the fewest number of matches, followed by the
oldest tuple. Because priorities are assigned once, SIMPPROB’s
per-tuple processing cost is the same as that of SIMP. Note that
the online semantic approximation heuristic [8] also has the same
per-tuple processing cost.

4.3.3 DIMPPROB Heuristic
The Dynamic IMPortance PROBability (DIMPPROB) heuristic
also calculates a new tuple’s priority as the product of its
importance and the number of matches. However, expected match
probabilities are updated at each time step. Ties are resolved
exactly as they are in SIMPPROB. Assuming M/2 tuples per
window, the per-tuple processing cost,

M/2(probe + invalidate + priority_uddate) + 1(insert),
is greater than SIMPPROB’s, where match probability estimates
become inaccurate over time as the opposite window changes.

4.3.4 DGL Heuristic
The Dynamic Gain Loss heuristic (DGL) employs the cumulative
priority formulation. At arrival, a tuple’s priority is its importance.
If it produces an output during a time instant, the tuple’s priority is
increased by an amount proportional to the product of its
importance, its current expected number of matches, and its
remaining lifetime. A tuple’s priority is decreased by a constant
factor during time instants when it does not produce an output.
Thus, high importance tuples generally make priority gains more
quickly with each matching partner than low importance tuples,
though gains are reduced as tuples age. DGL’s analytical per-tuple
processing cost is the same as DIMPPROB’s, as all priorities are
modified at every time step.

5. EXPERIMENTS
We verify the feasibility of tuple importance semantics in window
join approximation and evaluate the efficacy and efficiency of our
techniques under different conditions using independently
generated synthetic input streams. Normal importance tuples
dominate the input streams, while tuples with high importance,
which correspond to aberrant or special values, occur infrequently.
M is divided evenly between windows R and S, though our
techniques work for uneven allocations. Experiments comparing

approximation quality begin counting outputs at t=2w, since all
algorithms accept the first M/2 input tuples from each input
stream, the last of which may still be in memory at t=M/2+w. The
starting time for counting is adjusted to reflect the maximum w or
M/2 in experiments where these parameters are varied. The
platform is a 2.0 GHz AthlonXP machine with 1.0 GB of RAM
running SUSE Linux 9.3. Each reported running time is the
average of three trials.

5.1 Offline Join Approximation
We compare our offline algorithms to semantic and random load
shedding with respect to efficacy, and time and space efficiency.

5.1.1 Approximation Quality
Figure 2 depicts the approximation qualities of the aforementioned
load shedding strategies as a function of increasing join memory
size (M) given a fixed tuple lifetime, w=10, and input stream
length, N=5600. Henceforth, EXACT is the exact result, RAND is
random load shedding, and SJA and ESJA, respectively, represent
the semantic and extended semantic (see Subsection 4.2.3) load
shedding techniques. ODJA is our dynamic programming
approximation technique.

All techniques show improved approximation quality relative
to the exact result (EXACT) as join memory increases. For
example, at M/2=1, SJA produces a 75.3% approximation error,
while ODJA/ESJA’s error is 29.7%. At M/2=5, the respective
approximation errors shrink to 28% and 1%. RAND’s
approximation error decreases from 98% at M/2=1 to 80.4% at
M/2=5. RAND is least effective because it drops input tuples
without regard for importance or the number of output tuples
produced. ODJA and ESJA produce the maximum possible
importance under the memory constraint and converge upon
EXACT more quickly than other methods. This result is expected
because both methods recognize important input tuples and those
which produce many outputs. SJA generates the largest result set
but is consistently sub-optimal because it only favors input tuples
for their ability to produce many output tuples. At M/2=1 and
M/2=2, for example, SJA generates 164 and 97 more output tuples
than ODJA/ESJA.

5.1.2 Running Times at M/2 = 1
Since ODJA and ESJA always yield the same (optimal)
approximation quality, we examine the running times of the two
techniques in the first special case discussed in Subsection 4.2.2,
namely M/2=1.

In Figure 3, w is fixed at 400 time units, and N is increased
from 800 to 5600. ODJA is 481% more efficient at N=800 and
becomes 700% more efficient at N=5600. In Figure 4, where N

118

Running Time Vs. Input Stream Length for w = 150, M/2 = 149

0

10

20

30

40

50

60

800 1600 2400 3200 4000 4800 5600
Input Stream Length (N)

R
un

ni
ng

 T
im

e
(s

ec
)

ODJA
ESJA

Figure 5. Running times for M/2 = w–1

Running Time Vs. Tuple Lifetime for N = 5600, M/2 = w -1

0.5

1

1.5

2

2.5

3

150 140 130 120 110 100 90 80 70 60 50

Tuple Lifetime (w)

R
un

ni
ng

 T
im

e
R

el
at

iv
e

to
 O

D
JA

ODJA
ESJA

Figure 6. Running times for decreasing w

Memory Use Vs. Input Strean Length for w = 400, M/2 = 1

0

100000

200000

300000

400000

500000

800 1600 2400 3200 4000 4800 5600

Input Stream Length (N)

M
em

or
y

U
se

 (K
B

)

ODJA
ESJA

Figure 7. Memory use

is fixed at 5600 tuples and w varies from 100 to 800, ODJA’s time
efficiency advantage over ESJA progressively increases from
596% to 689%. ODJA’s running time increases less rapidly with
N and w because ODJA’s running time approaches O(Nw) as
M/2→1, while ESJA’s is in O((wN)3(log(wN))) (see Subsections
4.2.2 and 4.2.3).

5.1.3 Running Times at M/2 = w–1
We now consider ODJA and ESJA’s relative running times in the
second case described in Subsection 4.2.2, M/2=w–1. As Figure 5
shows, ODJA and ESJA require almost the same amount of time
to compute the optimal approximation at N=800, but OJDA
becomes increasingly more efficient as N alone is increased to
5600. This is because ODJA’s running time, which is in O(Nw4)
when M/2=w–1, grows more slowly with increasing input stream
length than ESJA’s, whose running time is in O((wN)3(log(wN))).
 Figure 6 shows the effects of decreasing tuple lifetime on the
relative running times of the two offline algorithms at M/2=w–1,
given a fixed input stream length of N=5600. ODJA becomes
more efficient relative to ESJA as w is reduced. Even though
ODJA’s running time increases more rapidly with increasing tuple
lifetime than ESJA’s (i.e. quadric vs. cubic), ODJA outperforms
ESJA when N is sufficiently large because ESJA’s running time is
influenced more by the size of the input streams. Note that the
when join memory is neither small nor large (i.e. M/2 is not close
to 1 or w–1, respectively), ESJA is more efficient (results are
omitted due to space constraints).

5.1.4 Memory Requirement
We investigate the effect of increasing input stream length on the
memory requirement of ODJA and ESJA. Memory use, in
kilobytes, is reported by top, the resource usage tool available in
UNIX and LINUX operating systems. Figure 7, where w=400 and
M/2=1, shows that ODJA’s memory usage increases very slightly
as N increases, whereas ESJA’s memory use increases at a higher
rate. ODJA should have a constant space requirement, regardless
of the size of the input stream (see Subsection 4.2.2), yet our
results show an increase from 1944 KB to 9704 KB as N is
increased from 800 to 5600. This discrepancy arises because
measurements of memory use include the input stream tuples and
the algorithm state. Consequently, we conclude that ODJA’s
space requirement is constant, regardless input stream length.
ESJA’s memory requirement increases from 25.3 times ODJA’s
at N=800 to 45.3 times ODJA’s at N=5600. This difference in
memory utilization arises because ESJA must store all state (i.e.
vertices and edges) in memory for all time instants, whereas
ODJA only stores memory states for two time instants. A similar
result (not shown) is obtained when M/2 is fixed at w–1 and the
input stream length is increased from N=800 to N=5600. OSJA’s

memory requirement is invariably independent of N, so its space
efficiency will be superior whenever N is sufficiently large.

5.2 Online Join Approximation
Before evaluating our online heuristics, we note that the online
semantic approximation heuristic in [8], PROB, estimates match
probabilities using the join attribute value distributions of the
entire input streams. We maintain that no online heuristic can have
knowledge of future tuples and, as a result, estimate match
probabilities solely from the sliding windows.

5.2.1 Effect of Tuple Lifetime
We determine the effect of increasing tuple lifetime (w) on the
relative approximation qualities of the online algorithms. Figure 8
shows the result set importance as a function of w, where M=200
(divided evenly between the windows) and N=5600. The two
input streams have Zipf distributions of 1.0 and 0.0, respectively,
and have a domain size of 100. The algorithms’ relative efficacy is
unaffected by increasing tuple lifetime. As expected, the
maximum possible importance under the memory constraint, OPT
(generated by either ESJA or ODJA), grows as tuple lifetime
increases. This is because tuples that produce outputs can be
retained longer, which increases their chances of finding matches
in the opposite stream. For example, OPT’s importance is 3.21
times greater at w=800 than at w=200. Among the online
algorithms, DGL degrades most gracefully and yields the best
approximation quality, followed by DIMPPROB and
SIMPPROB. PROB’s quality does not improve consistently
because it pursues frequently occurring join attributes and ignores
tuple importance. SIMP’s quality improves little because it retains
high importance tuples longer, without regard to whether they
produce any output tuples. RAND’s quality is, constant and
poorest of all, since its eviction policy does not consider
importance or match probability.

5.2.2 Effect of Memory Size
We consider the effect of increasing join memory size on the
algorithms’ approximation quality. In this experiment, N=5600,
and the domain size is set to 100. w is fixed at 400, as it does not
alter the algorithms’ relative efficacy (see Subsection 5.2.1). The
input streams have Zipf distributions of 1.0 and 0.0 as in
Subsection 5.2.1. The results, shown in Figure 9, indicate that, all
the heuristics approach EXACT as the join memory size
increases. DGL produces the best approximations and degrades
most gracefully. For instance, at M=100, the lowest memory
setting in the experiment, DGL is 3.2% more efficacious than
DIMPPROB, 20.6% more efficacious than SIMPPROB, 47.6%
more efficacious than PROB, 52.9% more efficacious than

119

Result Set Importance Vs. Tuple Lifetime for M = 200, Zipf 1.0
unc, domain size = 100

500000

1500000

2500000

3500000

4500000

5500000

200 300 400 500 600 700 800
Tuple Lifetime (w)

R
es

ul
t S

et
 Im

po
rt

an
ce

EXACT
DIMPPROB
DGL
SIMPPROB
SIMP
PROB
RAND
OPT

Figure 8. Effect of tuple lifetime

Result Set Importance Vs. Join Memory Size for w = 400, Zipf
1.0 unc, domain size = 100

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

100 200 300 400 500 600
Join Memory Size (M)

R
es

ul
t S

et
 Im

po
rt

an
ce

EXACT
DIMPPROB
DGL
SIMPPROB
SIMP
PROB
RAND
OPT

Figure 9. Effect of join memory size

Result Set Importance Vs. Domain Size for w = 400, M = 200,
Zipf 1.0 unc

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

100 200 300 400 500
Domain Size

R
es

ul
t S

et
 Im

po
rt

an
ce

DIMPPROB
DGL
SIMPPROB
SIMP
PROB
RAND
OPT
EXACT

Figure 10. Effect of domain size

SIMP, and 77.8% more efficacious than RAND. Predictably,
RAND performs most poorly. Its approximation quality scales
linearly with M because its join memory can hold an increasing
number of tuples. PROB’s quality also increases linearly, though
at a higher rate than does RAND’s. PROB does not quickly
converge upon OPT, since it ignores the importance attribute. In
general, SIMP is a poor heuristic because it completely ignores
match probabilities. It performs well only when the allotted join
memory is close to the exact amount. SIMPPROB and
DIMPPROB perform well, converging quickly upon EXACT.
DIMPPROB’s error remains somewhat less than SIMPPROB’s
because its match probability estimates are always updated. DGL
outperforms DIMPPROB because skewness in the Zipf 1.0 input
stream implies that some tuples occur with greater frequency than
others. By inflating their priorities, DGL retains these tuples
longer than DIMPPROB, giving them a better opportunity to find
matches in the opposite stream.

5.2.3 Effect of Domain Size
Figure 10 shows the effect of increasing the join attributes’
domain sizes on approximation quality. M is fixed at 200 tuples,
w=400, N=5600, and the Zipf parameters are 1.0 and 0.0. Figure
10 shows that the result set importance varies inversely with the
domain size. The online algorithms perform worse relative to
EXACT as the domain size increases, while OPT very quickly
converges upon exact. These results are explained as follows.
Increasing the domain size in the Zipf 1.0 stream effectively
reduces the number of join attribute values occurring with a high
frequency and, simultaneously, increases the number of join
attribute values occurring with a low frequency. Increasing the
domain size in the stream with uniformly distributed join attribute
values reduces the frequency of all join attributes values by an
equal amount. One consequence of increasing “sparseness” in the
distribution of the join attribute values of both streams is that
tuples are increasingly unlikely to find matches. This lowers the
importance of EXACT. Another result of increasing domain size
is that, on average, tuples spend more time in the join memory
before encountering matches, which explains the online
algorithms’ progressively worse performance relative to OPT,
which relies on its foreknowledge to find a good retention
strategy. The online algorithms’ relative efficacy is the same as
that obtained in Subsection 5.2.2: DGL yields the best
approximation quality and degrades the least, followed by
DIMPPROB, SIPPROB, PROB, SIMP, and RAND. Previous
arguments account for their relative efficacies.

5.2.4 Effect of Skewness
In this experiment, the join attribute values of both streams are
increased from Zipf 0.0 to Zipf 1.0 in a correlated fashion, while
w=400, M=200, and the streams’ domain size is fixed at 100. As
Figure 11 shows, result set importance becomes progressively

larger with increasing skewness, approaching OPT. Because the
frequently and infrequently occurring join attribute values in both
streams are correlated, input tuples, on average, have a greater
expected number of matches and a reduced amount of time
between matches as the skew parameter increases. Unlike
previous scenarios, DIMPPROB and SIMPPROB are, on average,
2.1% more efficacious than DGL. This interesting result is due to
the effects of correlation and skewness. The large number of
matches causes priorities in DGL become inflated so that
subsequently arriving tuples are less likely to be admitted into the
join memory as compared to DIMPPROB. DIMPPROB more
readily replaces old tuples that don’t match with new tuples that
do. DGL’s favoritism of old high priority tuples over new tuples
also causes it to perform worse than SIMPPROB, whose static
match estimates prove accurate in this situation because of the
large number of matches and the relatively small amount of time
between matches.

Result Set Importance Vs. Zipfian Skewness for w = 400, M =
200, domain size = 100

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0.0 0.2 0.4 0.6 0.8 1.0

Zipfian Skewness Parameter (perfectly correlated)

R
es

ul
t S

et
 Im

po
rt

an
ce

DIMPPROB
DGL
SIMPPROB
SIMP
PROB
RAND
OPT
EXACT

Figure 11. Effect of increasing skewness

5.2.5 Running Times of Online Algorithms
Table 1. Approximation quality and running time

 DIMPPROB DGL SIMPPROB SIMP PROB

Importance 5783148 6929937 5993464 4592168 5992694

Time 33.990 34.885 25.484 25.536 25.547

We compare the running times of the online algorithms using
large, uncorrelated (Zipf 1.0 and 0.0) input streams of N=56,000
tuples, with w=2000, M=800, and a domain size of 2000. The
results, shown in Table 1, confirm our previous approximation
quality results. DGL provides the best approximation, followed
DIMPPROB, SIMPPROB, and PROB, whose relative quality is
not as low as in previous experiments because of the large domain
size. Once again, the strategy of retaining high importance input
tuples (i.e. SIMP) proves ineffective. The relative running times
corroborate the cost modeling in Subsection 4.3, with
DIMPPROB and DGL requiring more time than the static priority
heuristics, including PROB. DGL’s greater running time, offset by

120

its superior efficacy, is attributed to its more complex tuple
priority formulation.

5.3 Discussion of Experimental Results
We compared our sliding window join approximation algorithms
to semantic and random load shedding techniques in memory-
constrained situations. Input data consisted of synthetic data
streams with tuple level importance semantics. Offline and online
semantic and random load shedding produce poor join
approximations when dealing with importance semantics,
especially when very little join memory is available. However, our
optimal offline algorithm, ODJA, and our extension to semantic
load shedding, ESJA, compute an optimal join result and quickly
converge upon the exact result as the amount of join memory is
increased. ODJA is up to seven times more time efficient than
ESJA at small and large join memory allotments. In addition,
ODJA’s memory requirement is independent of the input streams’
size. It is 45.3 times more space efficient than ESJA for w=400
and M/2=1. Similar results hold for join memory allotments
nearing EXACT. ESJA has superior space and time efficiency
when M is neither very small nor large. On the other hand, our
online algorithms are consistently superior to PROB, the online
semantic load shedding heuristic, in situations where we vary
tuple lifetime, memory size, domain size, and skewness. By
properly detecting important tuples and those with high match
probabilities, our online algorithms produce high quality
approximations and quickly converge upon the exact result. DGL
degrades most gracefully with decreasing join memory size in
uncorrelated data streams and is most efficacious for joins over
streams with large domain sizes and long tuple lifetimes, while
DIMPPROB and SIMPPROB are most efficacious for correlated
streams. The ineffectiveness of the SIMP heuristic and the
consistency of our results on a large dataset give us confidence
that the data sets do not inherently favor our techniques and,
respectively, that that the efficacy of our methods is unaffected by
specific choices of input stream size, domain size, tuple lifetime,
and join memory size. Overall, we discovered that join
approximation error diminishes with increasing memory size. The
greatest optimization opportunity exists for small join memory
sizes, and it is in this situation that our methods show the largest
gains over the previous state of the art in terms of efficacy, space
efficiency, and time efficiency.

6. CONCLUSIONS AND FUTURE WORK
This paper examined the problem of computing memory-
constrained sliding window join approximations over data
streams. We motivated the inclusion of importance semantics
within input tuples and the objective function of maximizing the
importance of the approximate join result. We introduced efficient
optimal offline and effective, lightweight online algorithms and
showed that previous load shedding techniques are insufficient for
the objective function. Avenues of future work include exploring
other useful QoS-based objective functions for window join
approximation and incorporating our methods into complex
continuous query processing frameworks.

7. REFERENCES
[1] Abadi, D. J., Carney D., Centintemel, U., Cherniack, M.,

Convey, C., Lee, S., Stonebraker, M., Tatbul, N., and
Zdonik, S. Aurora: A New Model and Architecture for Data
Stream Management. In VLDB Journal, 12(2), 2003, 120–
139.

[2] Apers, P. and Wilschut, A. Dataflow query execution in a
parallel main-memory environment. In Proc. 1st Int. Conf.
on Parallel and Distributed Information Syst., 1991, 68–77.

[3] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom,
J. Models and issues in data stream systems. In Proc. ACM
PODS, 2002, 1–16.

[4] Bonnet, P., Gherke, J., and Seshadri, P. Towards Sensor
Database Systems. In Proc. 2nd Int. Conf. On Mobile Data
Management, 2001, 3–14.

[5] Burger, J., Naughton, J., and Viglas, S. Maximizing the
Output Rate of Multi-Way Join Queries over Streaming
Information Sources. In Proc. VLDB Conf., 2003, 285–296.

[6] Chen, J., DeWitt, D. J., Tian, F., and Wang, Y. NiagaraCQ:
A Scalable Continuous Query System for Internet Databases.
In Proc. ACM SIGMOD Conf., 2000, 379–390.

[7] Cortes, C., Fisher, K., Pregibon, D., Rogers, A., and Smith,
F. Hancock: A Language for Extracting Signatures from
Data Streams. In Proc. ACM SIGKDD Conf., 2000, 9–17.

[8] Das, A., Gerkhe, J., and Riedewald, M. Semantic
Approximation of Data Stream Joins. In IEEE TKDE, 17(1),
2005, 44–59.

[9] Fegaras, L., Maier, D., Sheard, T., and Tucker, P. Exploiting
Punctuation Semantics in Continuous Data Streams. In IEEE
TKDE, 15(3), 2003, 555–568.

[10] Franklin, M. J. and Urhan, T. XJoin: A Reactively-Scheduled
Pipelined Join Operator. In IEEE Data Engineering Bulletin,
23(2), 2000, 27–33.

[11] Goldberg, A. V. An Efficient Implementation of a Scaling
Minimum-Cost Flow Algorithm. In J. Algorithms, 22(1),
1997, 1–29.

[12] Guha, S., Indyk, P., Muthukrishnan, S., and Strauss, M.
Histogramming Data Streams with Fast Per-Item Processing.
In Proc. 29th Int. Colloquium on Automata, Languages, and
Programming, 2002, 681–692.

[13] Golab, L. and Ozsu, M. T. Issues in Data Stream
Management. In ACM SIGMOID Record, 32(2), 2003, 5–14.

[14] Golab, L. and Ozsu, M. T. Processing Sliding Window
Multi-Joins in Continuous Queries over Data Streams. In
Proc. VLDB Conf., 2003, 500–511.

[15] Hellerstein, J., Madden, S., Raman, V., and Shah, M.
Continuously Adaptive Continuous Queries Over Streams. In
Proc. ACM SIGMOID Conf., 2002, 49–60.

[16] Kang, J., Naughton, J., and Viglas, S. D. Evaluating
Window Joins over Unbounded Streams. In Proc. ICDE
Conf., 2003, 341–352.

[17] Naughton, J. and Viglas, S. Rate-Based Optimization for
Streaming Information Sources. In Proc. ACM SIGMOD
Conf., 2002, 37–48.

[18] O’Callaghan L., Mishra N., Meyerson A., Guha S., and
Motwani R. Streaming-data algorithms for high quality
clustering. In Proc. ICDE Conf., 2002, 685.

[19] Takaoka, T. O(1) Time Algorithms for Combinatorial
Generation by Tree Traversal. In Computer Journal, 42(5),
1999, 400–408.

121

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

